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In this paper, the Bose-Hubbard model (BHM) with the nearest-neighbor (NN) repulsions is studied from the
viewpoint of possible bosonic analogs of the fractional quantum Hall (FQH) state in the vicinity of the Mott
insulator (MI). First, by means of the Gutzwiller approximation, we obtain the phase diagram of the BHM in a
magnetic field. Then, we introduce an effective Hamiltonian describing excess particles on a MI and calculate
the vortex density, momentum distribution, and the energy gap. These calculations indicate that the vortex solid
forms for small NN repulsions, but a homogeneous featureless “Bose metal” takes the place of it as the NN
repulsion increases. We consider particular filling factors at which the bosonic FQH state is expected to form.
Chern-Simons (CS) gauge theory to the excess particle is introduced, and a modified Gutzwiller wave function,
which describes bosons with attached flux quanta, is introduced. The energy of the excess particles in the bosonic
FQH state is calculated using that wave function, and it is compared with the energy of the vortex solid and Bose
metal. We found that the energy of the bosonic FQH state is lower than that of the Bose metal and comparable
with the vortex solid. Finally, we clarify the condition that the composite fermion appears by using CS theory on
the lattice that we previously proposed for studying the electron FQH effect.
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I. INTRODUCTION

At present, cold atomic physics in an optical lattice is one
of the most intensively studied research fields [1]. This field
opened the door for quantum simulation of various important
condensed-matter systems, which have been studied for a long
time. In particular by the simulation using atomic gases on an
optical lattice, we can obtain new knowledge and viewpoint
concerning the strongly correlated many-body systems for
which the conventional methods cannot clarify the phase
diagram, etc. [2]. Recently, synthetic gauge fields mimicking
uniform magnetic fields have been created in optical lattice
systems by using laser-assisted tunneling in a tilted optical
potential [3,4]. The theoretical proposal for this setup was
given by Jaksch and Zoller [5]. The experiments can produce
much stronger magnetic fields than those obtained by rotating
optical lattice systems [6,7]. As a result, it is expected that a
system similar to the two-dimensional (2D) electron systems
in a strong magnetic field can be produced in the atomic gas
system.

In this paper, we focus on Bose-gas systems on a 2D
lattice that are analogs of the 2D electron systems subject
to a strong magnetic field [8,9]. That is, we study the Bose-
Hubbard model (BHM) in a strong synthetic gauge field. In
particular, we investigate the possibility of the existence of
fractional quantum Hall (FQH) state analogs in this model.
In parallel to the experimental progress, there appeared many
theoretical studies on the existence of integer quantum Hall
and FQH states in boson systems on the lattice [10–15]. In
Refs. [11,12,16], the appearance of the FQH-like states was
suggested by calculating the overlap of the Laughlin wave
function describing the FQH state and a ground-state wave
function obtained by the exact diagonalization. Also, applying
the composite fermion (CF) theory for the hard-core boson
system, some analogous incompressible states to the FQH
state on a lattice were studied [13].

In Ref. [17], Umucalilar and Oktel gave an interesting
observation that in the regime close to a Mott insulator

(MI), excess particles on the Mott state form a FQH analog
state at particular filling factors of the excess particle, i.e.,
the coexistence phase of the Mott state and the hard-core
bosonic FQH state may exist. Motivated by this idea, numerical
studies [16,18] exhibited the possibility of the existence of
FQH analog states in the vicinity of the MI. However, until
now, there has been no unified view of the true ground state
in the vicinity of the MI in the BHM subject to a strong
synthetic magnetic field. Also, the effect of interactions has
not been completely understood yet, e.g., how the long-range
interactions, like the dipole-dipole interactions, change the
ground-state properties. In the optical lattice system, these
interactions, as well as the onsite interactions, are highly
controllable by selecting a kind of dipolar atoms [19].

In this paper, we shall study the BHM in a strong magnetic
field with and without the nearest-neighbor (NN) interactions.
In particular, we investigate properties of the ground-states
in the vicinity of the MI and effects of the NN interaction on
them by using both the Chern-Simons (CS) theory [8,9,20] and
a numerical Gutzwiller method [21,22]. For commensurate
magnetic fields and particle fillings, the Gutzwiller method
shows that a vortex solid forms for weak NN repulsions,
whereas for relatively strong NN repulsions, a featureless
homogeneous state (we call Bose metal) takes the place of
the vortex solid. To investigate the possibility of the bosonic
FQH state, we develop the method that we call CS-Gutzwiller
wave function. In that wave function, an integer number of
flux quanta are attached to each (excess) particle as described
by the CS theory. The energy of the states described by the
CS-Gutzwiller wave function is compared with that of the
vortex solid and Bose metal, and we obtain interesting results.

This paper is organized as follows. In Sec. II, we outline
the target BHM and introduce an effective Hamiltonian that
describes the excess particle in the vicinity of Mott states. In
Sec. III, we carry out the Gutzwiller numerical method for
the BHM in a synthetic gauge field, and observe the ground
states, vortex configurations, momentum distributions, and an
excitation gap on the ground state. Next, we apply the lattice
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CS theory to the BHM and analyze an excitation spectrum and
gap by using the Bogoliubov theory in Sec. IV. In Sec. V,
we construct the CS-Gutzwiller numerical method and apply
it to the excess particle Hamiltonian. Then, we estimate the
energy of the CS-Gutzwiller ground states and compare it
to the energy of the vortex solid and Bose metal obtained
in Sec. III. In Sec. VI, from the view of the CF theory, we
discuss the excess particle system and show the condition
that the CF picture appears as low-energy excitations. There,
the gauge-theoretical consideration plays an important role.
Finally, in Sec. VII, we propose an experimental method to
detect a ground-state excitation gap for the FQH analog state,
and conclude this study. In the Appendix, we consider the
practical cold atomic systems and estimate the onsite and NN
repulsions. There, the NN repulsion between atoms is provided
by the dipole-dipole interaction of atoms.

II. MODEL AND EFFECTIVE HAMILTONIAN IN
THE VICINITY OF MOTT PLATEAUS

In this paper, we consider 2D bosonic gases described by
the BHM in a strong magnetic field with NN repulsions. The
Hamiltonian HBHM of the BHM on the 2D square lattice is
given as

HBHM = −J
∑
〈i,j〉

(a†
i aj e

iAij + H.c.) +
∑

i

U

2
ni(ni − 1)

+V
∑
〈i,j〉

ninj − μ
∑

i

ni, (2.1)

where ai (a†
i ) is the boson annihilation (creation) operator at

site i and ni = a
†
i ai . 〈i,j 〉 denotes a pair of NN sites. The

parameter J is the NN hopping amplitude, U and V are the
onsite and NN repulsions, respectively. In real experiments,
a ratio V/U is highly controllable and can be a fairly large
value to a certain extent (see the discussion in the Appendix).
In this paper, we take the value of V/U up to ∼ 0.3. The
vector potential Aij represents a uniform magnetic field and
satisfies

∑
plaquette Aij = 2πf with a parameter 0 � f � 1. In

this paper, we mostly focus on the case f = 1
2 and sometimes

f = 1
3 , although a generalization to the case f = t/s (s and t

coprime integers) is rather straightforward.
As is well known, the BHM has the MI and superfluid (SF)

phases, whose phase boundary forms lobes. Figure 1 shows the
phase diagram obtained by our Gutzwiller numerical method
that we shall explain in a later section. In general, the MI
phase is enhanced by the magnetic field, i.e., the lobes elongate
compared to the case without the magnetic field. The phase
diagram in Fig. 1 is in good agreement with the previous works
in Refs. [15–17]. In what follows, we shall study the BHM in
the vicinity of the MI of the integer particle filling.

To this end, we consider an effective Hamiltonian that
describes particles in the vicinity of the Mott lobes. In
Ref. [17], it was discussed that in the regime of a uniform filling
ρ = n + ρep (n = a positive integer, 0 < ρep � 1) the total
boson system is divided into two parts: MI part of the filling
factor n and the excess particle part of particle density ρep. In
this picture, the excess particles are moving on the solidlike
MI. However, as the MI particle and the excess particle are
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FIG. 1. Obtained phase diagram of the BHM subject to a strong
magnetic field. The yellow line is the phase boundary separating
the MI and SF states for vanishing magnetic field f = 0 obtained
by the Gutzwiller numerical method. The green line is an elongated
phase boundary as a result of the applied magnetic flux per plaquette,
2πf = π . The red line represents the states with the average particle
density ρ = 1.25.

the same kind of particles, the quantum symmetrization of the
Bose particle has to be imposed on the many-particle quantum
state.

In the excess particle sector, the hopping parameter of
the excess particle changes as J → J (n + 1), and the onsite
interaction U/2 → U from the original ones [15,23], whereas
V is intact. Then, the effective Hamiltonian of the excess
particle HeBHM is given as

HeBHM = −J (n + 1)
∑
〈i,j〉

(c†i cj e
iAij + H.c.)

+
∑

i

Unci(nci − 1) + V
∑
〈i,j〉

ncincj − μ̃
∑

i

nci ,

(2.2)

where ci (c†i ) is an annihilation (creation) operator of excess
boson on site i, the number operator nci = c

†
i ci , and parameter

μ̃ is the chemical potential for the excess particle.
The above results are derived by the following considera-

tion. The MI state with the filling n is given as

|MI〉 =
N∏

i=1

(a†
i )n|0〉, (2.3)

where N is the total number of lattice sites, and |0〉 is the
vacuum state, which includes no particle. The state |MI〉 is
a base state on considering the excess particle Hamiltonian,
i.e., its plays a role of the vacuum state of HeBHM. Next, we
consider one-particle creation on the state |MI〉

|1particle〉 ≡
(∑

i

�
(k)
i a

†
i

)
|MI〉, (2.4)

where �
(k)
i is a wave function of the particle. Then, let

us consider the hopping energy of this state |1particle〉. To
simplify the discussion, we consider a single-particle wave
function in the Hofstadter butterfly [24] for �

(k)
i with energy

εk(f ). Please notice that {�(k)} form a complete set of the
Hilbert space of the state vectors. Then, applying the original
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hopping term to the state |1particle〉, we have(∑
l,j

tlj a
†
l aj

)
|1particle〉 → Jεk(f )(n+1)

(∑
i

�
(k)
i a

†
i

)
|MI〉

= Jεk(f )(n+1)|1particle〉, (2.5)

where tlj stands for general hopping amplitudes and tlj =
JeiAlj in the present case. From Eq. (2.5), we can see that the
hopping energy of the excess particle is given by (n + 1)tij .
This result is in agreement with the previous results by
analytical calculations of the excitation spectrum [23,25] and
the numerical study [17]. In intuitive picture, the above result
can be understood as follows. There are (n + 1) bosons and
they are all equal footing and any of them can hop to a
NN site, then the hopping amplitude of the excess particle
is (n + 1)-fold of the original one.

Next, we consider the onsite interaction energy for the
excess particle. To begin with, we consider one-particle onsite
energy deviation from the MI state. To this end, we put �

(k)
i =

δij , which is another complete set of the wave functions. It is
rather straightforward to calculate

〈1particle|U
2

n̂2|1particle〉 − 〈MI|U
2

n̂2|MI〉 = U

2
(2n + 1).

(2.6)

Thus, the onsite energy of the state |1particle〉 is U
2 (2n + 1).

Similarly, we can consider two-particle onsite energy deviation
from the MI state:

|2particle〉 ≡ (a†
j )|1particle〉,

〈2particle|U
2

n̂2|2particle〉 − 〈MI|U
2

n̂2|MI〉 = U (2n + 2).

(2.7)

From the above results, the two-body interaction energy of the
excess particle is obtained as

U (2n + 2) − 2
U

2
(2n + 1) = U.

Similar discussion on the NN repulsion V
∑

〈i,j〉 ninj shows
that the NN repulsion of the excess particle remains the same.
In this way, the effective Hamiltonian HeBHM in Eq. (2.2) is
derived.

In the rest of this paper, we shall study the model HeBHM

in Eq. (2.2) by means of the numerical as well as analytical
methods.

III. NUMERICAL STUDY BY GUTZWILLER
APPROXIMATION

In this section, we introduce the Gutzwiller approximation
[21,22] that is useful for studying equilibrium states in the
strong interaction regime like the MI and its vicinity. Then,
in this section by means of the Gutzwiller approximation,
we study the system of the total particles described by the
Hamiltonian HBHM in Eq. (2.1). In the practical calculation,
we mostly focus on the case f = 1

2 and n = 1, and the density
of excess particle per site ρep = 1

4 , i.e., the filling fraction
of excess particle νep = ρep

f
= 1

2 , i.e., total mean density
ρ = 1.25.

A. Gutzwiller method

We first introduce a Gutzwiller wave function constructed
from the particle number bases of each site i,

|�GW〉 =
N∏

i=1

( nc∑
n=0

f i
n |n〉i

)
, (3.1)

where N is the number of the lattice sites, nc is a maximum
particle number at each site that is a parameter in the Gutzwiller
approximation, and the coefficients {f i

n} are variational param-
eters, which are to be determined by solving the decoupled
Hamiltonian given below. As the variational parameters {f i

n}
are defined on each site, the total number of parameters is Nnc .

In order to obtain {f i
n} for the ground-state wave func-

tion, we employ a mean-field-type approximation, i.e., we
decouple the hopping and the NN repulsion terms in HBHM in
Eq. (2.1) and derive a single-site Hamiltonian hBHMi . Then,
we introduce an order parameter of the SF, i.e., Bose-Einstein
condensation (BEC),

�i ≡
nc∑

nd=1

√
ndf

∗i
nd−1f

i
nd

. (3.2)

From Eq. (3.1), it is obvious that 〈�GW|ai |�GW〉 = �i . With
�i , the local Hamiltonian is given as

hBHMi = −J
∑

j∈iNN

(a†
i e

iAij �j + H.c.)

+U

2
ni(ni − 1) + V ni

⎛
⎝ ∑

j∈iNN

nj

⎞
⎠− μni, (3.3)

where j ∈ iNN denotes the NN sites of site i. From the local
Hamiltonian hBHMi , the site energy Ei is estimated as follows
by using the wave function |�GW〉:

Ei = 〈�GW|hBHMi |�GW〉

=
nc∑

nd=0

⎧⎨
⎩−J

∑
j

(√
ndf

i
nd−1e

iAij �j

+
√

nd + 1f i
nd+1e

−iAij �∗
j

)
f ∗i

nd

+
[
U

2
nd (nd − 1) − μnd

]
f i

nd
f ∗i

nd

+V ndf
i
nd

f ∗i
nd

⎛
⎝ ∑

j∈iNN

〈nj 〉
⎞
⎠
⎫⎬
⎭, (3.4)

where 〈nj 〉 is the expectation value of nj . This local mean-field
energy Ei and the mean field �i form a self-consistent
equation. By using an iterative process [15,26], the total energy
E =∑i Ei can be minimized and both the corresponding
variational parameters f i

nd
and order parameter �i are obtained

simultaneously. In our practical calculation, we mostly fix the
truncated particle number nc = 7 as this value is expected to
be large enough to capture physics in our target regime. We
have verified this expectation by varying the value of nc for
some specific quantities. Also, most of the calculations were
performed for the linear system size L = 12 with the periodic
boundary condition.
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FIG. 2. Numerical results for the V/U = 0 and J/U = 0.05 cases. The upper panels (a) correspond to the f = 1
2 case. The phase diagram

in the leftmost panel exhibits the point of νep = 1
2 by the cross × at which the measurements of vortex density �(r) and the momentum

distribution n(k) were performed. The middle and right panels show the calculations of �(r) and n(k), respectively. The lower panels (b)
correspond to the f = 1

3 case (νep = 1
2 ). In both cases, the results obviously show that the stable vortex solid forms.

B. Numerical results in the vicinity of the Mott plateaus

In solving the Gutzwiller wave equations practically, there
is a point that has to be taken into account carefully. Solution
to the Gutzwiller wave equation usually depends on an initial
condition [27]. That is, solution sometimes goes to local
minimum and does not reach the true ground state due to a
large number of the variational parameters {f i

nd
}. To overcome

this difficulty, we performed the calculations by varying the
initial configurations in various ways, and searched solutions
of the lowest-energy state by trial and error.

To study the ground-state physical properties, we calculated
vortex configurations, the density momentum distribution, and
also the energy gaps. Vorticity �(r) at the dual lattice site r is
given as

�(r) = 1

2π

∑
μ,ν

εμν∇μJi,ν, ε12 = −ε21 = 1,

ε11 = ε22 = 0, ∇μJi,ν = Ji+μ,ν − Ji,ν, (3.5)

where Ji,ν is a current of �i in the ν direction defined by
the hopping term in the BHM, and explicitly given as ji,ν =
1
4 sin(θi+ν − θi) for �i = √

ρie
iθi . The quantity �(r) measures

a density of pinned quantized vortices in the SF that may arise
by the applied magnetic field. The momentum distribution is
given as

n(k) = 1

N

∑
i,j

〈a†
i aj 〉eik·(Ri−Rj ) = 1

N

∑
i,j

�∗
i �j e

ik·(Ri−Rj )

in the Gutzwiller approximation. Quantity n(k) clarifies the
momentum k at which the BEC takes place. As the analytical
study in Ref. [29] shows, a condensate with a nonvanishing
k is expected to form. In the following numerical study, we
shall verify the existence of such a condensation for certain
parameter regions.

First, we consider the case of the vanishing NN repulsion
V = 0, and show the numerical results. As we stated above,
the magnetic flux per plaquette is 2πf = π and the density
of the (excess) particle ρ = 1.25 (ρep = 0.25), i.e., the filling
factor of the excess particle νep = 0.25

0.5 = 1
2 .

The upper-left panel in Fig. 2 shows the phase diagram in
the (J/U -μ/U ) plane and also the line ρ = 1.25 is indicated.
The cross symbol on the line ρ = 1.25 exhibits the parameter
(J/U = 0.05, μ/U = 0.8) on which we calculated the vortex
density �(r) and the density momentum distribution n(k). By
the application of the magnetic field, the MI phase is elongated.
The upper-middle panel shows that vortices are generated and
they crystallize and form a solid pattern as a result of the
pinning by the lattice and intervortex repulsion. In this vortex
solid state, the momentum distribution n(k) clearly exhibits a
BEC at a finite momentum in the first magnetic Brillouin zone.
The appearance of the same vortex solid pattern was shown for
deep SF states by the previous work using large-scale Monte
Carlo simulations [30]. The numerical results �(r) and n(k)
indicate that the BEC forms even though the condensation
appears at nonvanishing k points. The state breaks the global
U(1) symmetry of the phase rotation and, as a result, the ground
state has a gapless excitation as we show later on. This state is
the genuine SF.
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FIG. 3. Numerical results for the V/U = 0.2 and J/U = 0.05 cases. As in Fig. 2, the upper panels correspond to the f = 1
2 case and

the lower panels to the f = 1
3 case. Calculations of �(r) and n(k) are shown. In both cases, the signals of the vortex solid are weakened, in

particular, in the f = 1
2 case.

Similar results were obtained for the case νep = 1
2 with

f = 1
3 and ρ = 1 + 1

6 . See the lower panels in Fig. 2.
The pattern of the vortex solid is the same with that
observed in the previous work for the deep SF state with
f = 1

3 [30].
Let us study the effects of the NN repulsion. We studied

the case V/U = 0.2, and the obtained phase diagrams are
shown in Fig. 3. Finite NN repulsion shifts the MI-SF boundary
and also the density-wave (DW) state with the density ρ =
1
2 appears, in which the particle density at the even (odd)
sublattice is unity (vanishing) or vice versa. We denote this
state as (0,1) DW in Fig. 3. In order to study the case of the
filling fraction νep = 1

2 near the MI with ρ = 1, we adjusted
the chemical potential properly. The values of μ/U and J/U

for the numerical study are indicated in the phase diagram in
Fig. 3 by the cross symbol.

The calculated local vortex density �(r) and the momentum
distribution n(k) are shown in Fig. 3. Interestingly enough, the
calculation of �(r) shows that the vortex solid melts, and a
featureless state takes the place of the vortex solid. This result
is confirmed by the calculation of n(k). The result in Fig. 3
exhibits the smearing of peaks that existed in the case of V = 0.
We also verified that there exists no phase coherence of �i ,
i.e., �i substantially changes spatially and also under the local
update of {f i

n}. From the above observation, we conclude that
the obtained quantum state for V/U = 0.2 is not the SF, and
the U(1) symmetry of the phase rotation is preserved. It is also
obvious that the state under consideration is not the MI, and
therefore it may be called “Bose metal.”

In order to verify the above conclusion, we calculated the
energy gap from the obtained ground states. In the single-
mode approximation [31], the excitation spectrum in k space is

given by


(k) = 〈�GS|ρ†
k(Ĥ − ε0)ρk|�GS〉
〈�GS|�GS〉 , (3.6)

where |�GS〉 denotes the ground-state wave function and ε0 is
its energy. The density operator ρk is given as follows in the
second-quantized representation:

ρk =
∑

�

eik·R� n̂�, n̂� = a
†
�a�.

By taking k → 0, 
(0) gives an excitation gap from the
ground state. We apply the above formulation to the Gutzwiller
wave function, i.e., the ground-state wave function |�GS〉 is
taken to the Gutzwiller ground-state wave function |�GW〉
obtained for the parameters from V/U = 0 to V/U = 0.2.

Figure 4 shows the excitation gaps of the ground states.
The gap is vanishingly small for 0 < V/U < 0.1 whereas
it starts to increase as V/U increases from 0.1. This result
indicates that the BEC realizes for small V but for V/U >

0.1, another gapped state appears as the above consideration
suggests. Recently, similar gapped states have been reported in
Ref. [18], where a cluster-type numerical mean-field method
was used for the numerical calculation.

It is interesting to search another state that cannot be
described by the site-factorized Gutzwiller wave function in
Eq. (3.1). A candidate of such states is the bosonic FQH state.
In Sec. V, we shall show that such a state can be described by
the modified Gutzwiller wave function based on the idea of the
flux attachment to particle and, in fact, it can be a candidate
of the ground state with strong correlations. Before going into
the details of the calculation, we review the lattice CS gauge
theory for the bosons on the lattice in the following section.
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FIG. 4. Energy gaps calculated by the single-mode approxima-
tion for the states described by the Gutzwiller wave functions in
the case J/U = 0.05. Applied magnetic field is f = 1

2 and 1
3 and

ρ � 1.25. As the NN repulsion V increases, the energy gap increases
from the vanishing value. At V = 0, the stable vortex solid forms
as the density profile in the inset indicates. As a result, the gapless
Nambu-Goldstone boson exists. On the other hand for V/U = 0.2,
the vortex solid melts and the SF is destroyed, and then the excitations
acquire a gap. We took 50 samples in each measurement because the
value of the excitation gap depends on initial values of {�i}.

IV. LATTICE CHERN-SIMONS THEORY FOR EXCESS
PARTICLE AND EXCITATION GAP OF

COMPOSITE BOSON

We apply the CS theory to the excess particle Hamiltonian
(2.2). The CS theory succeeded in describing the FQH state
in 2D electron system [8,9,20]. One of the authors previously
introduced and formulated the lattice version of the CS theory
for 2D lattice fermion system [32], and this formulation is well
suited for study of the present boson system (see Fig. 5).

By using this formalism, we transform the original excess
boson operator ci in Eq. (2.2) to another particle operator bi ,
which we call CS particle, by attaching (νep)−1 magnetic flux
quanta to ci ,

ci = Uibi,

Ui = exp

[
iν−1

ep

∑
r ′

θ (i,r ′)(c†i ′ci ′ )

]
, (4.1)

FIG. 5. Chern-Simons theory of lattice bosons in a strong
magnetic field. Each boson is attached an even number of the flux
quanta (orange arrow) of the CS gauge field. The external magnetic
field (red arrow) is canceled out on the average by the CS gauge field.

where r (r ′) denotes a site of the dual lattice paired to site i (i ′)
of the original lattice as before, and θ (i,r ′) is the azimuthal
angle function on the lattice. As we consider the case in which
ν−1

ep = an integer, the transformation (4.1) is well defined.

Please notice c
†
i ci = b

†
i bi , and therefore

HeBHM = −J (n + 1)
∑
〈i,j〉

(b†i W
†
i Wjbj + H.c.)

+
∑

i

U (b†i bi−1)b†i bi+V
∑
〈i,j〉

b
†
i bib

†
j bj−μ̃

∑
i

b
†
i bi,

Wi = exp

[
iν−1

ep

∑
r ′

θ (i,r ′)(b†i ′bi ′ − ρep)

]
. (4.2)

Here, we have employed the symmetric gauge for Ai,μ ≡
Aij=i+μ, and used the identity

2πεμν∇νG(r,r ′) = ∇μθ (i,r ′), (4.3)

where G(r,r ′) is the two-dimensional lattice Green function,
i.e.,

∑
μ=1,2 ∇2

μG(r,r ′) = −δrr ′ . The CS gauge theory can be
constructed for the system in Eq. (4.2) in the Lagrangian
formalism, but here we only discuss the possible mean-field
solution of the ground-state and low-energy excitations of the
above system. Hereafter as an example, we consider the mean
excess particle density ρep = 1

4 and the magnetic field f = 1
2 ,

and as a result νep = 1
2 . The left panel in Fig. 2(a) indicates the

line ρep = 1
4 . In the case νep = 1

2 , two flux quanta are attached
to one excess particle, and then the CS particle is bosonic, i,e.,
composite boson (CB). Also, we shall discuss a CF picture in
Sec. VI.

If the CB forms a BEC in the system HeBHM of Eq. (4.2),
a bosonic analog of the FQH state is realized. In this case, the
expectation value of the CB operator is the density ρep, which is
uniform on the present lattice system as the external magnetic
field is canceled by the CS gauge field at temperature T = 0,
i.e., 〈Wi〉 = 1. Under this assumption, we can calculate the
energy gap from the Hamiltonian (4.2). We impose hard-core
boson constraint, and then we drop the onsite interaction term
with the coefficient U . This result comes from two reasons:
excess particle density is dilute and we consider the large-U
regime. We first set V = 0 for simplicity and the effect of the
NN repulsion will be studied afterward.

We introduce a quantum fluctuation ηi from the condensa-
tion of the CB operator

bi = √
ρep + ηi. (4.4)

The uniform density ρep determines the chemical potential
μ̃. Substituting the uniform condensed variable bi → b, the
Hamiltonian HeBHM reduces to

HeBHM → Eb = −4J̃ |b|2 − μ̃|b|2, (4.5)

where we have put J̃ ≡ J (n + 1). From this mean-field energy,
the chemical potential is determined as

d

db∗ Eb

∣∣∣∣
b=√

ρep

= 0 → μ̃ = −4J̃ . (4.6)

From Eqs. (4.4) and (4.6), we derive the effective Hamil-
tonian of ηi . First, the hopping term in Eq. (4.2) is rewritten
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as ∑
i,j

(b†i W
†
i Wjbj + H.c.) =

∑
i,μ

(b†i+μeiδAi,μbi + H.c.),

(4.7)

where

δAi,μ = 2π

νep
εμλ

∑
i ′

∇λG(r,r ′)[
√

ρep(η†
i ′ + ηi ′) + η

†
i ′ηi ′].

(4.8)

Substituting Eq. (4.4) into the Hamiltonian (4.2), and keeping
terms up to the second order of the field ηi , we obtain the
effective Hamiltonian with the quadratic order of ηi :

HeBHM → Hη = −J̃
∑
i,μ

[−(∇μη
†
i )(∇μη

†
i )

− i
√

ρepη
†
i (∇μδAi,μ) + i

√
ρepηi(∇μδAi,μ)

− ρep(δAi,μ)2], (4.9)

where we have neglected an irrelevant constant. By using the
properties of the Green function

(∇μ)2G(r,r ′) = −δrr ′ and εμλ∇μ∇λG(r,r ′) = 0,

we obtain the final form

Hη =
∑
i,μ

J̃ (∇μη
†
i )(∇μη

†
i )

+
∑
i,i ′

J̃ (2πf )2(η†
i + ηi)G(r,r ′)(η†

i ′ + ηi ′). (4.10)

The second term of this Hamiltonian Hη is the contribution
from the CS gauge field δAi,μ. As we show, this CS gauge
coupling gives a finite mass to the “would-be massless Nambu-
Goldstone boson” as a result of the long-range interactions
[33,34].

We use the Fourier-transformed representation of Hη. The
lattice Green function G(r,r ′) is explicitly given as [35,36]

G(r,r ′) =
∫

d2k

(2π )2

eik(r−r ′)

4 − 2
∑

μ cos(kμ)
. (4.11)

It should be noticed that this function has an infrared
singularity but its derivative is well defined. Substituting
Eq. (4.11) into (4.10) and then taking the Fourier transforma-
tion, we obtain the following Hamiltonian by using the Nambu

representation �η = (η(k),η†(−k))t :

Hη =
∫

k>0

d2k

(2π )2
�η†(k)Ĥη �η(k),

Ĥη ≡
[
ε(k) + 2α 2α

2α ε(k) + 2α

]
,

ε(k) ≡ J̃

[
4 − 2

∑
μ

cos(kμ)

]
, α = J̃ (2πf )2

4 − 2
∑

μ cos(kμ)
.

(4.12)

It is easy to carry out the Bogoliubov transformation for this
matrix Ĥη; we calculate the eigenvalues of the matrix σ3Ĥη to
obtain the excitation energy, where the σ3 is the z component
of the Pauli matrix [37]. This computation preserves the Bose
commutation relation. Thus, the matrix is directly diagonalized
by multiplying a unitary operator Û and the excitation energy
is obtained as

Ûσ3Ĥ Û † =
[
E(k) 0

0 E(−k)

]
,

E(k) = {[ε(k) + 2α]2 − 4α2} 1
2 . (4.13)

By taking the long wave limit, we have

E(k)
k→0−−→ 2(n + 1)J (2πf ) = 2(n + 1)J�, (4.14)

where � = 2πf is the magnitude of the magnetic flux per
plaquette. The above result indicates that the excitation energy
of the excess CB is gapped. We plot the energy spectrum (4.13)
in Fig. 6(a).

Here, we should remark that in the vicinity of Mott state
there are two independent gapped excitations: the one comes
from this CB boson sector and the other from the based Mott
state. However, the former gap only depends on the parameter
J as in Eq. (4.14). Therefore, the measurement of this energy
gap seems feasible in recent experiments. This point will be
discussed in Sec. VII.

Let us see the effect of the NN repulsion. It is not difficult
to introduce the NN repulsion V

∑
i,j ninj in the above

calculation. In particular for the case U > V , the calculation
is rather straightforward. By using Eqs. (4.12) and (4.13), the
chemical potential μ̃ is estimated as μ̃ = −4J̃ + 4Vρep. Then,
the quadratic terms of the fluctuation ηi come from the term

1.5 1.0 0.5 0.5 1.0 1.5

0.60

0.62

0.64

0.66

0.68

(a) (c)(b)

FIG. 6. Bogoliubov excitation spectrum of J̃ /U = 0.1 (a) for V/U = 0 and (b) V/U = 0.2. (c) Dispersion relations for V/U = 0 and
V/U = 0.2, E(k) and EV (k), in the plane ky = 0. E(0) = EV (0), however, EV (k) > E(0) for k �= 0. This indicates the stability of the CB
picture for V > 0.
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V
∑

i,j ninj are obtained as follows:

V

⎡
⎣∑

i

(4ρepη
†
i ηi) +

∑
〈i,j〉

ρep(η†
i + ηi)(η

†
j + ηj )

⎤
⎦. (4.15)

Adding these terms to Eq. (4.10) and using the Bogoliubov
transformation as before, we obtain the excitation spectrum
including V term as

EV (k) = {[ε(k) + 2α + 2ρepV γ (k)]2

− [2α + 2ρepV γ (k)]2} 1
2 , (4.16)

where γ (k) =∑μ=1,2 cos(kμ). In Fig. 6(b), we plot EV (k).
The value of the energy gaps E(0) and EV (0) are the same, but
as shown in Fig. 6(c), the curvature of EV (k) around k = 0 is
larger than that of E(k). Therefore, we expect that the ground
state of a finite NN repulsion system is more stable than that of
V = 0 as excitations with a finite momentum are suppressed
by the NN repulsion.

In Sec. V, based on the study of the CS theory in this section,
we shall introduce a wave function of the CB. It has a form of
the Gutzwiller type but contains strong correlations between
bosons as described by the CS gauge theory. We calculate
the ground-state energy of the states and compare it with that
of the obtained states in Sec. III. Through the comparison, we
can judge which state is a better candidate for the ground state.

V. CHERN-SIMONS GUTZWILLER APPROXIMATION
OF EXCESS PARTICLE

In this section, we shall formulate the CS-Gutzwiller theory
for the excess particle system whose Hamiltonian is given by
Eq. (2.2). Wave function for the bosonic analog of the FQH
state is constructed by using the singular gauge transformation
similarly to Eq. (4.1) in Sec. IV. Then, we calculate the energy
of the ground state and compare it with that of the state
obtained by the simple Gutzwiller approximation in Sec. III.
We consider both V/U = 0 and 0.2 cases. This formulation
is nothing but the bosonic counterpart of the CB approach for
the electron FQH state.

A. Chern-Simons transformation and the Gutzwllier
approximation

In the CS theory for the CB, fictitious flux quanta are
attached to particle. As a result, the CBs have strong correlation
with each other through the Aharanov-Bohm effect. In the
present case, the number of the attached flux quanta is 1/νep.
In the mean-field approximation, the external magnetic field
and the magnetic field of the fictitious gauge field (the CS
gauge field) cancel out with each other, and the homogeneous
BEC of the CB is a possible ground state of the system.

Let us recall the excess particle Hamiltonian HeBHM, and
the Gutzwiller wave function |�GW〉:

HeBHM = −J (n + 1)
∑

i

(c†i+μeiAi,μci + H.c.) +
∑

i

U (ni − 1)ni + V
∑
〈i,j〉

nc,inc,j − μ̃ni, |�GW〉 =
N∏

i=1

(
nc∑

n=0

f i
n |n〉i

)
.

The above wave function |�GW〉 is site factorized and no
correlation exists in particles at different sites. In order to
attach the flux quanta to particles, we introduce the following
unitary transformation UG:

UG =
N∏

i=1

Wi, (5.1)

Wi = eiν−1
ep

∑
j �=i θ(i,j )nj , (5.2)

which is the first-quantization representation of the operator
Ui in Eq. (4.1). This transformation UG is nothing but the CS
transformation on the lattice [38,39]. By applying the unitary
transformation UG to the simple Gutzwiller wave function
|�GW〉, the flux-attached wave function |�CS〉, which we call
CS wave function, is produced:

|�CS〉 =
N∏

i=1

Wi |�GW〉 =
N∏

i=1

(
nc∑

n=0

Wif
i
n |n〉i

)

≡
N∏

i=1

(
nc∑

n=0

γ i
n|n〉i

)
, (5.3)

γ i
n ≡ eiν−1

ep

∑
j �=i θ(i,j )nj f i

n . (5.4)

As {γ i
n} in Eq. (5.4) show, |�CS〉 represents a strongly

correlated state (see Fig. 5). The state |�CS〉 is a candidate for

the ground state for specific fillings, and physical quantities
like energy are calculated as

ECS = 〈�CS|HeBHM|�CS〉. (5.5)

In the practical calculation, we employ the periodic boundary
condition. The summation in Eq. (5.4) takes only once for each
site j �= i.

In the following subsection, we obtain the CS wave function
of the ground state by the Gutzwllier method and calculate its
energy.

B. Numerical results

We have two candidates for the ground state within the
Gutzwllier method: one is |�GW〉 and the other is |�CS〉, which
are defined by Eqs. (3.1) and (5.3), respectively. We calculated
the energy of the two states by the Gutzwllier approximation.
To see which state has a lower energy, we have to carefully
define the energy of excess particles.

For the state |�GW〉, the energy of the MI has to be
subtracted. In the MI, the particle number at each site is
unity with only very small fluctuations. Also, the local density
terms including the chemical potential term −(U

2 + μ)ni

should be subtracted from the total energy as they only
contribute to control the average particle density. There-
fore, we define the excess particle energy in the |�GW〉,
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FIG. 7. Energies of the states described by the Gutzwiller wave
function and the CS wave function, Eex,GW and Eex,CS, respectively.
For V = 0, these two states have comparable energy. On the other
hand for V/U = 0.2, the CB state has a lower energy than the GW
function state.

Eex,GW, as

Eex,GW ≡ 〈HBHM〉 + (μ + U/2)
∑

i

ρ

−U

2
(1 − 1)1 − V

∑
〈i,j〉

1 × 1,

where ρ = 1.25 in the present case. On the other hand for the
state |�CS〉,

Eex,CS ≡ ECS + (μ̃ + U )ρep.

As we stated above, we consider the two cases V/U = 0
and 0.2. If the particle density were sufficiently large, the
vortex-lattice states observed for V = 0 in the magnetic field
f = 1

2 and 1
3 were expected to be the genuine ground state,

i.e., the optical lattice plays a role of the vortex pinning and
stabilizes the vortex solid. However, in the present system,
the density of the excess particle is very low, and therefore
it is interesting to compare the vortex-lattice state in Sec. III
to the CS ground state. On the other hand for the case with
V/U = 0.2, we expect that the CS state |�CS〉 has a lower
energy than |�GW〉 as there exists no order in the state |�GW〉.

The numerical result for 0.04 � J/U � 0.08 is shown in
Fig. 7. For the V = 0 case, we find that both energies Eex,GW

and Eex,CS are very close, i.e., the vortex solid phase competes
with the excess particle FQH state. On the other hand for the
V/U = 0.2 case, the energy of the state |�CS〉, Eex,CS, is lower
than Eex,GW of the Bose-metal phase. This result indicates that
the finite NN repulsion prefers the bosonic analogs of the FQH
state. This is one of the main conclusions of this paper.

VI. COMPOSITE FERMION PICTURE

In this section, we continue the analytical study on the
excess particle BHM with a relatively large NN repulsion
V . As we showed in Sec. IV, the non-SF phase numerically
observed in Sec. III for V/U = 0.2 is not a true ground
state, and instead of it, the strongly correlated state, which
is described by the CS wave function, is a good candidate for
the genuine ground state.

The above study is based on the CB picture described by
the CS gauge theory coupled with bosons. In this section,
we employ the CF picture, which is another possible theory
describing the FQH state of the hard-core bosons. In fact, the
exact diagonalization for the system with a small size exhibits
a good overlap between the CF wave function and that of the
excess particle BHM [13]. In this section, we shall explain
how the CF picture appears from the effective Hamiltonian of
the excess particle in Eq. (2.2). In the previous paper [32], we
studied dynamics of electrons in the half-filled Landau level,
and showed that the CF picture appears as a result of “the
particle-flux separation,” which is a similar phenomenon to
the spin-charge separation in the strongly correlated systems
like the high-Tc cuprates.

We introduce a fermion ψi that is defined as follows:

ψi = W̃ici, ci = W̃
†
i ψi,

W̃i = exp

[
ip
∑
r ′

θ (i,r ′)c†i ′ci ′

]

= exp

[
ip
∑
r ′

θ (i,r ′)ψ†
i ′ψi ′

]
, (6.1)

where p is an odd integer that is determined shortly and the
other notations are the same with those in Sec. IV. Then,
it is not so difficult to show that ψi’s satisfy the fermionic
anticommutation relations, and the original boson is expressed
as a composite of ψi and the p-flux quanta. One may think
that the strong onsite repulsion generating the MI produces
fermionic properties of the excess particles, but the onsite
repulsion itself is not enough to generate the CF picture as we
see in this section. The hopping term of the Hamiltonian, HJ,
is expressed as follows in terms of ψi :

HJ = −J̃
∑
i,μ

(ψ†
i W̃iW̃

†
i+μ)eiAex

i,μψi+μ + H.c.

= −J̃
∑
i,μ

(ψ†
i e

−iAeff
i,μψi+μ, + H.c.), (6.2)

Aex
i,μ =

∑
i ′

∇μθ (i,r ′)f, rot Aex
i,μ = 2πf,

Aeff
i,μ =

∑
i ′

∇μθ (i,r ′)[pψ
†
i ′ψi ′ − f ], (6.3)

where we have used Eq. (4.3) and Aex denotes the vector
potential of the external magnetic field in the symmetric gauge.
From Eq. (6.3), it is obvious that when the fermion ψi has a
homogeneous distribution with the average density per site ρep

and also the parameters satisfy the relation f = (p − 1)ρep, we
have 〈rot Aeff

i,μ〉 = 2πρep. Therefore, the fermions ψi fill just
the Hofstadter bands ramifying from the lowest Landau level if
interactions between ψi are irrelevant. However, the fermion
ψi has a nonlocal interaction with each other through Aeff

i,μ in
Eq. (6.3), and therefore an elaborate discussion is needed to
justify the above assumption.

To study the above strongly correlated fermion system, we
introduce the following slave-particle representation:

ψi = φiζi, (6.4)
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where φi is a hard-core boson and ζi is a fermion, and we
call ζi and φi chargon and fluxon, respectively. It is not so
difficult to show that ψi’s in Eq. (6.4) satisfy the fermionic
anticommutation relation. The physical state condition of the
slave-particle Hilbert space is given by the local constraint

ζ
†
i ζi = φ

†
i φi . (6.5)

By the local constraint (6.5), we can prove

ψ
†
i ψi = ζ

†
i ζiφ

†
i φi = ζ

†
i ζiζ

†
i ζi = ζ

†
i ζi = φ

†
i φi . (6.6)

Then, the nonlocal operator W̃i in Eq. (6.1) is expressed as

W̃i = exp

[
ip
∑
r ′

θ (i,r ′)φ†
i ′φi ′

]
≡ W

φ

i . (6.7)

The Hamiltonian HeBHM is expressed as follows in the slave-
particle representation:

Hζφ = −J
∑(

ζ
†
i+μφ

†
i+μW

φ

i+μW
φ†
i eiAex

φiζi + H.c.
)

−Lint −
∑

(μζ ζ
†
i ζi + μφφ

†
i φi)

−
∑

λi(ζ
†
i ζi − φ

†
i φi), (6.8)

where λi is the Lagrange multiplier for the local constraint
(6.5), and Lint denotes the NN repulsion in HeBHM in Eq. (2.2).

In order to study the above fermion system, we employ a
Lagrangian formalism with an imaginary time τ . The partition
function Z and the Lagrangian Lζφ are given as follows:

Z =
∫

[dζ ][dφ] exp

(∫ β

0
dτ Lζφ

)
,

Lζφ = −
∑

ζ †
x ∂τ ζx −

∑
φ†

x∂τφx − Hζφ, (6.9)

where x denotes the three-dimensional (3D) coordinate x =
(τ,i) (τ ∈ [0,β]), and β = 1/(kBT ) with the Boltzmann
constant kB and temperature T . Then, we apply the following
Hubbard-Stratonovich transformation to the above system
Lζφ :

Z =
∫

[dζ ][dφ][dV ] exp

(∫ β

0
dτ LζφV

)
, (6.10)

where

LζφV = −
∑

ζ †
x (∂τ+iλx−μζ )ζx−

∑
φ†

x(∂τ−iλx − μφ)φx

+J
∑

[Vxμ(φx+μW ′
x+μW ′†

xφ
†
x+ζ

†
x+μeiaμζx) + H.c.]

+J
∑

(φ†
x+μφx+μφ†

xφx + ζ
†
x+μζx+μζ †

x ζx)

−J
∑

|Viμ|2 + Lint (6.11)

and

W ′
x = Wφ

x e−ip
∑

r′ θ(x,r ′)ρep

= exp

[
ip
∑
r ′

θ (x,r ′)(φ†
x ′φx ′ − ρep)

]
,

aμ =
∑
r ′

∇μθ (x,r ′)(pρep − f ). (6.12)

Several comments on the system LζφV in Eq. (6.11) are in
order:

(1) The fields λi and Viμ behave like a gauge field. In
fact, LζφV is invariant under a time-dependent local gauge
transformation

(ζi,φi,Viμ,λi) → (eiαi ζi,e
−iαi φi,e

i∇μαi Viμ,λi − ∂ταi).

(2) Low-energy properties of the system are determined
by the dynamics of the gauge field Viμ. If its dynamic is
realized in a deconfinement phase like the Coulomb phase, the
fields ζi and φi , chargon and fluxon, describe quasiexcitations,
whereas in the confinement phase, the original boson is the
only physically observable object. We call the phenomenon in
the former case particle-flux separation.

(3) There appears the NN attractive force in the channel
(ζi+μ − ζi) and (φi+μ − φi). This attractive force makes the
system unstable into a phase separated state if the particle-flux
separation takes place. In order to make the system stable, the
existence of the NN repulsion Lint is needed.

(4) In the particle-flux separated state, the fluxon φ is
nothing but a fermion in the commensurate external magnetic
field. This fermion is defined as ϕi = W

φ

i φi and ϕi feels the
effective magnetic field fϕ = pρep. As the density of ϕi is
ρep, ϕi fills the 1/p levels in the lowest Hofstadter bands
ramifying from the lowest Landau level in the continuum.

(5) aμ is the vector potential that represents the magnetic
field with flux quanta (f − pρep) = (f − fϕ) per plaquette.
Then, it is obvious that ηi is nothing but the CF if the
particle-flux separation is realized. The Hofstadter butterfly
[24] predicts the parameters (ρep,f ) at which gapful states
appear.

The above gauge-theoretical consideration gives a basis
of the CF picture proposed by Möller and Cooper for the
low-filling bosons on the lattice [13]. In their work, p = 1 and
the trial CF-state wave function is given as (in their notation)

�trial({�ri}) = �J({�ri}) × �CF({�ri}), (6.13)

where both of �J and �CF are fermionic wave functions. �J

comes from the flux attachment and �CF is the wave function
of the CF. In our derivation, �J is nothing but the wave function
of ϕi and �CF is that of ζi . Our study in this section has clarified
the condition that the CF picture appears as quasiexcitations
at low energy. The problem of the gauge dynamics of the
system LζφV can be studied by the hopping expansion and the
realization of the deconfinement phase (Coulomb-type phase)
is suggested at low temperature [40]. However, a more detailed
study is needed to reach a decisive conclusion. This problem
is under study and the results will be published in the near
future.

There is an ambiguity in the way of decoupling the hopping
term in Hζφ in Eq. (6.8) by the auxiliary field Viμ. We call the
decoupling in Eq. (6.11) optimal particle-flux separation. In
fact in LζφV in Eq. (6.11), the chargon and fluxon do not
interact with each other except the gauge interaction through
Viμ. In the previous paper, we studied the half-filled Landau
level state of 2D electron systems in a strong magnetic field.
There, we used another decoupling in which the chargon feels
magnetic fluxes carried by the fluxon. As a result of a BEC of
the fluxon, the external magnetic field is totally shielded and
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the CF behaves like a gapless fermion with a Fermi line in the
momentum space. For this case, it is known that the dynamics
of the gauge field Viμ realizes a deconfinement phase and
therefore the CF picture is justified [40].

At present, relationship between the CB and CF approaches
is not clear. We shall study this problem in detail and hope that
experiments on the cold atomic gases give an important clue
to solve this problem.

VII. DISCUSSION AND CONCLUSION

In this paper, we have studied the ground-state properties
of lattice bosons in the strong magnetic field in the vicinity
of the Mott states. We have first rederived the excess particle
effective Hamiltonian from the BHM with the NN repulsions.
By using the Gutzwiller numerical method, we obtained the
phase diagrams and investigated the ground-state properties for
particular points near the Mott lobes for which the appearance
of the bosonic analogs of the FQH state is expected. We have
found that the vortex solids form in the absence of the NN
repulsion, but a finite NN repulsion destabilizes the vortex
solids and the featureless homogeneous state appears as the
ground state of the Gutzwiller wave function that we call the
Bose metal.

In order to investigate the ground state in the system with
finite NN repulsions in detail, we have made use of the CS
theory for the excess particle system. After the analytical
study of the CS theory for the lattice boson in the strong
magnetic field, we have applied the CS theory to the Gutzwiller
numerical method and proposed the CS wave function for
describing the bosonic FQH state. Then, we calculated the
ground-state energies of the state given by the Gutzwiller wave
function and the state of the CS wave function. We found that
the NN repulsions prefer the state of the CS wave function.

We expect that the measurement of the energy gaps calcu-
lated in Secs. III, IV, and VI is feasible in real experiments on
ultracold atomic gases. As one example, the lattice modulation
method inducing the two-photon Bragg spectroscopy [41,42]
may be efficient. If the bosonic FQH state or the Bose metal
forms in real experiments, the total system has two energy
gaps, i.e., one is the particle-hole excitation gap U in the base
Mott state and the other is the excitation gap of the excess
particle. On the other hand, if the system forms the vortex
solid, i.e., the superfluid of the finite-momentum mode BEC,
there exists a gapless excitation as a result of the spontaneous
breaking of the U(1) symmetry.

Finally, we have studied the CF theory for the excess
particle by using the CS theory. Our previous gauge-theoretical
study on the electron system of the half-filled Landau level
[32] is applicable rather straightforwardly to the present boson
systems, and we showed the condition that the CF appears as
quasiexcitations at low temperature.

We shall study the BHM with the NN repulsions by means
of the exact diagonalization, the cluster Gutwiller method, etc.,
and examine the obtained results in this paper. In particular at
present, the relationship between the CB and CF approaches to
the 2D strongly correlated systems in a strong magnetic field
is not understood. We expect that the ultracold atomic system
plays an important role to solve this problem because of its
controllability and versatility. We shall study this problem by

means of the analytical and numerical methods mentioned
above and propose experimental setups for testing the CB and
CF pictures.
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APPENDIX: ESTIMATION OF PARAMETERS OF BHM
FOR REAL EXPERIMENTS

In this Appendix, we microscopically evaluate the onsite
and nearest-neighbor (NN) interactions (i.e., U and V ) in the
BHM of Eq. (2.1) as the ratio V/U plays an important role
in this work for experimental realization. We assume the ratio
V/U ∼ 0.2, and therefore it is needed that the NN interaction
V is comparable with the onsite interaction U . As we show,
in real experiment, such a condition is feasible by using large
magnetic dipolar atoms such as Cr, Er, and Dy [19]. In fact, by
using dipolar atoms and the Feshbach resonance techniques,
one can control the ratio V/U rather freely. Generally in a
dipolar atom system, the onsite U is given as U = Us + Ud ,
where Us is the contribution from the s-wave scattering and Ud

is the contribution from the dipole-dipole interaction. Also, the
dipole-dipole interaction gives the NN interaction in the lattice
system. In the case that the dipoles of atoms are perpendicular
to the two-dimensional plane, the NN interaction is given as
follows:

V =
∫

dr dr′|wi(r)|2
[

μ0μ
2Gr−r′

4π |r − r′|3
]
|wj (r′)|2, (A1)

Gr−r′ = 1 − 3 cos2 θr−r′ , (A2)

where μ0 and μ are the permeability of vacuum and magnetic
permeability of the dipolar atom, respectively, and θr−r′ is
the angle between (r − r′) and the orientation of the dipole.
wi(j )(r) is the lowest-band Wannier function, which is tightly
localized at site i(j ). As the above overlap integral (A1) shows,
the value V is determined by the choice of dipolar atom.

In order to increase the ratio V/U = V/(Us + Ud ), it is
necessary to reduce the value of Us + Ud . This is feasible
in real experiments by controlling the parameter Us , i.e., by
controlling the s-wave scattering length as by the Feshbach
resonance techniques [1,43]. Even if the value Ud has a large
positive value compared to V , the small or negative value of
Us can reduce the total value of Us + Ud . As we show, Ud has
a strong dependence on the optical lattice potential and it can
have even a negative value.

For future experiments, we shall estimate the BHM pa-
rameters J, U , and V . In particular, we estimate the value of
tunable s-wave scattering length as for V/U = 0.2 and 0.3 to
be realized.

Then, we consider a two-dimensional lattice similar to
the recent experimental setup [44], and 168Er for the dipolar
atom with the moment μ = 7μB (μB is Bohr magneton).
We consider two-dimensional optical lattice potential with
the lattice spacing d = 266 nm. This potential is explicitly
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FIG. 8. Parameters of BHM evaluated microscopically as a func-
tion of V0/ER and the s-wave scattering length as for the experimental
setup. The value of as is obtained as as(V0) = [V/α − Ud ]/I , where
α = V/U = 0.2 or 0.3.

given as

V (r) = V0{cos2[(2π/λ)x] + cos2[(2π/λ)y]} + 1
2mω2

zz
2,

(A3)
where V0 is the potential depth and λ is the laser wavelength,
m is the atom mass, and ωz is the frequency of the harmonic

trap used to construct the quasi-two-dimensional system. Here,
the optical lattice spacing is given as d = λ/2. In this system,
the other BHM parameters are given by the overlap integrals
similar to Eq. (A1) [44]:

J = −
∫

dr w∗
i (r)

[
−�

2∇2

2m
+ V (r)

]
wj (r), (A4)

Us = 4π�
2as

m

∫
dr|wi(r)|4 ≡ asI, (A5)

Ud =
∫

dr dr′|wi(r)|2
[

49μ0μ
2
B

4π |r − r′|3 Gr−r′

]
|wi(r′)|2, (A6)

where m = 2.78 × 10−25 kg is the 168Er atom mass. To esti-
mate the above integrals, we employ the harmonic oscillator
approximation for the optical lattice potential V (r). In this
approximation, the Wannier function wi(r) is replaced by the
harmonic-oscillator wave function of the lowest energy

wi(r) =
√

β

π
e− β

2 [(x−xi )2+(y−yi )2]

[
βz

π

]1/4

e− βz
2 (z−zi )2

, (A7)

where β ≡ 2m
�2

√
ERV0 [ER is the recoil energy ≡ h2/(2mλ2) ∼

h × 4.2 kHz for 168Er], βz ≡ mωz

�
, and the spatial coordinate

(xi,yi,zi) is the three-dimensional coordinate of optical lattice
site i. We take ωz ∼ 160 kHz to confine atoms tightly in the
two-dimensional plane [45].

We numerically calculated the above integrals (A1) and
(A4)–(A6), and estimated the value as for the ratio V/U = 0.2
and 0.3. We verified that our estimation of the parameters is in
good agreement with the previous works [45]. Figure 8 shows
the calculated results of the values of J, V, I , and Ud as a
function of the potential depth V0. Ud is negative as V0/ER is
getting large as mentioned above. The values of as for realizing
the ration V/U = 0.2 and 0.3 are also shown there. From the
results, to achieve J/U = 0.05 and the target ratio V/U , we
found that for V/U = 0.2, as ∼ 0.70 nm and V0 ∼ 13.5ER,
and for V/U = 0.3, as ∼ 0.67 nm and V0 ∼ 15.0ER. These
values of as and V0 are feasible for real experiments.
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