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Power-law decay exponents: A dynamical criterion for predicting thermalization
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From the analysis of the relaxation process of isolated lattice many-body quantum systems quenched far from
equilibrium, we deduce a criterion for predicting when they are certain to thermalize. It is based on the algebraic
behavior o< ¢t of the survival probability at long times. We show that the value of the power-law exponent
y depends on the shape and filling of the weighted energy distribution of the initial state. Two scenarios are
explored in detail: y > 2 and y < 1. Exponents y > 2 imply that the energy distribution of the initial state is
ergodically filled and the eigenstates are uncorrelated, so thermalization is guaranteed to happen. In this case, the
power-law behavior is caused by bounds in the energy spectrum. Decays with y < 1 emerge when the energy
eigenstates are correlated and signal lack of ergodicity. They are typical of systems undergoing localization due
to strong onsite disorder and are found also in clean integrable systems.
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I. INTRODUCTION

Equilibrium quantum physics can be effectively described
with the framework of quantum statistical mechanics, but the
dynamics that lead to equilibration is far less understood.
Recently, the analysis of nonequilibrium quantum dynamics
has been stimulated by the enormous progress in experimental
techniques, particularly the manipulation of ultracold atomic
gases [1,2], trapped ions [3,4], and nuclear magnetic resonance
(NMR) platforms [5,6], where coherent evolutions can be
studied for long times. Questions that have been at the forefront
of these investigations include the characterization of the
dynamics of isolated lattice many-body quantum systems at
different time scales and whether they can or cannot eventually
thermalize.

The onset of thermalization in isolated quantum systems
is intimately attached to the onset of quantum chaos, which
causes the uniformization of the eigenstates [7-14] and
guarantees the coincidence of infinite-time averages and
thermodynamic averages of few-body observables [15-23].
In real systems, however, where only few-body interactions
exist, even in the presence of level repulsion, the eigenstates
are not truly chaotic (pseudorandom vectors), as in full random
matrices. Nearly random vectors tend to emerge only away
from the edges of the spectrum.

One of the main approaches of the studies of thermalization
in realistic finite systems is the use of scaling analysis to
identify for which systems and in which regions of the
spectrum chaotic eigenstates emerge and statistical descrip-
tions become valid. However, the range of system sizes
that can be reached numerically is limited, which prevents
effective scaling analysis. An alternative is to directly access
the thermodynamic limit using linked-cluster computational
methods for some initial states [24,25]. Another option is to
look for dynamical properties from which one can infer the
structure of the initial state and use it to determine whether
the system will or not thermalize. This is the approach that we
introduced in Ref. [26] and further extend here.

The onset of thermalization can be investigated by studying
the decay at long times of the survival probability. It corre-
sponds to the probability for finding the system still in its
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initial state at a later time . At long times, no matter how fast
the decay may initially be, the survival probability necessarily
exhibits a power-law behavior o t7". The value of y varies
according to the system and initial state, but the unavoidable
onset of the algebraic decay is independent of whether the finite
system is integrable or chaotic, disordered or not, interacting
or noninteracting.

The exponent y depends on the shape and filling of the
weighted energy distribution of the initial state, which is here
referred to as local density of states (LDOS). The ergodic
filling of the LDOS assures that the initial state is highly
delocalized and similar to a chaotic state, which is a sufficient
condition for thermalization [11-13,20,21,25]. Therefore,
the value of y can be used as a criterion for identifying
which systems and for which initial states thermalization is
guaranteed to take place.

We focus on two classes of exponents.

(i) Case 1 corresponds to y > 2. It is related with the
presence of bounds in the energy spectrum [27-37]. This
cause for the algebraic decay has been much explored in
the context of continuous models. Here, we show that energy
bounds are also the main cause of the power-law decay in
lattice many-body quantum systems when the initial state has
an ergodically filled LDOS. In realistic lattice models with
two-body interactions, y = 2, while in nonphysical systems
with the simultaneous interactions of many particles, the
exponent can reach the limit of y = 3 [26,38]. Exponents in
this range of values anticipate thermalization.

(i1) Case2refersto0 < y < 1.Itoccurs when the LDOS is
sparse, which indicates lack of ergodicity. The decay exponent
is related to the presence of correlations in the eigenstates
of the Hamiltonian [39-49]. It has been studied in the
context of Anderson localization [41-45] and more recently in
interacting systems with onsite disorder [48-50]. Here, we
show that exponents y < 1 emerge also in noninteracting
integrable models without disorder. The methods that have
been developed to extract the value of y in disordered systems
apply also for these clean models.

There are integrable systems studied in the literature
[51-53] for which we find 1 < y < 2. This range of exponents
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is obtained also in disordered interacting systems in the chaotic
domain, although not at the point of maximum delocalization
of the eigenstates [26,50]. The origin of the algebraic decay
for these values of y is not yet clear.

We note that the emergence of power-law decays has been
observed also for different physical observables, especially in
works about disordered systems. In most of these cases, the
values of the exponents have not been analytically justified, as
we do here. A discussion about the power-law route to thermal
equilibrium is found, for instance, in Ref. [54].

This paper is organized as follows. Section II introduces
the survival probability and describes its behavior at short
and intermediate times. Section III summarizes the theory
associated with the behavior of the survival probability at
long times. Section IV illustrates these behaviors for a spin-%
system under different choices of parameters and initial
states. Final remarks are given in Sec. V. Details about the
calculations are found in the Appendixes A-C.

II. SURVIVAL PROBABILITY AND LDOS

The time evolution of an initial nonstationary state may
be viewed as follows. Suppose that the system is prepared at
¢t = 0 in some initial state |¥(0)), which is an eigenstate of a
Hamiltonian Hj. The dynamics is triggered by rapidly chang-
ing (quenching) the Hamiltonian to a new final Hamiltonian

Hy — H = Hy+ gV, ey

where g is the perturbation strength. The probability for finding
the system at time ¢ still in state |\ (0)) is known as the survival
probability and is given by

F(t) = |A@)* = (W 0)|e 7' 1w(0)) 2)

where A(t) is the survival amplitude. F(¢) is also referred to
as nondecay probability, return probability, or fidelity between
the initial state and the evolved one. The term Loschmidt echo
is not appropriate in this case, since no time reversal (“echo”)
is involved.

By projecting the initial state on the eigenstates |/,) of H
and substituting it into Eq. (2), we obtain

2 2
Fi) =Y |cOFe ™| = ' / dEe " py(E)| . (3)
where Céo) = (¥, | W (0)) are the overlaps and
po(E) =Y |COPS(E — Eo) )
o

is the LDOS (also known in nuclear physics as strength
function). The survival amplitude is the Fourier transform of
the LDOS or, equivalently, A() is the characteristic function
of the weighted energy distribution. All information about the
evolution of F(t) is contained in pg(FE).

The energy and variance of the initial state are important
elements in the description of the dynamics. They are respec-
tively given by

Ey = (W) H|¥©O) = Y _ |COE, (5)
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and

o5 = Y |COP(Es — Eo). (6)
o

The decay of F(¢) shows different behaviors at different
time scales. For very short times, ¢ < o, 1, the decay is
quadratic, as observed experimentally [55]. After this universal
quadratic behavior, the decay depends on the nature and
strength of the perturbation. In lattice many-body quantum
systems with two-body interactions and a unimodal LDOS,
if the perturbation is strong, the decay can be exponential
or even Gaussian [22,56-60]. This second behavior holds
for o, ' <t < tp, where tp corresponds to the moment of
the onset of the power-law decay. At long times, ¢ 2> tp, the
dynamics is necessarily algebraic, F(t) o< t~7. This work is

mainly concerned with this last time regime.

A. Short and intermediate time scales: t < fp

By Taylor expanding the phase factor in Eq. (3), it is
straightforward to show that the survival probability at very
short times, t < o 1, is quadratic in ¢,

O PO T
o o
1 2
-5 2 F - Eo)zrz]
~ 1 —ogr, (7)

independently of the initial state and the Hamiltonian H.

For intermediate times, o, ! <t < tp, the behavior of F(t)
depends on the shape of the LDOS, which, in turn, depends
on the strength of the perturbation. In systems with two-body
interactions, the density of states is Gaussian [13,61-63]. In
this scenario, the LDOS, which is a § function for g = 0,
broadens as the strength of the perturbation increases. When
the perturbation gV is stronger than the mean level spacing
(Fermi golden rule regime), the LDOS becomes a Lorentzian
(also known as Breit-Wigner) of width Iy,

(E) = - L 8)
o 27 (Eo— B’ + T2/4 (
The Fourier transform of the Lorentzian leads to the exponen-
tial behavior

F(1) = exp(~To1). )

As the perturbation further increases, the LDOS stretches and
eventually reaches a Gaussian shape (different functions are
used to fit the intermediate regime between the Lorentzian and
Gaussian form [58,64—67]). The Gaussian LDOS that emerges

when g — 1,
(E — Ey)*
exp| ————|, 10
P[ 207 (10)

po(E) = ;

2mo;
reflects the density of states, which, as said above, is also
Gaussian. This is the maximum spreading of the initial state.
In this case, the survival probability decay is Gaussian,

F(t) = exp (—o31%). (11)

013604-2



POWER-LAW DECAY EXPONENTS: A DYNAMICAL ...

Notice that whether the decay is exponential or Gaussian
depends on the strength of the perturbation and not on
the regime, integrable or chaotic, of the final Hamiltonian.
Gaussian and Lorentzian LDOS can be found in quenches to
both chaotic and also integrable Hamiltonians [12—14,56—60].

There are special situations where the decays can be even
faster than Gaussian. This happens, for instance, when the
LDOS is bimodal and the decay is dictated by the distance
between the peaks [58]. Another example corresponds to
systems with random many-body interactions, the extreme
case being that of full random matrices, where the density
of states and also the LDOS have a semicircular shape [56—
58,68],

po(E) =

2 _ 2
27[0()2\/(200) E2. (12)

Full random matrices are matrices filled with random numbers.
Their only constraint is to satisfy the symmetries of the
system they try to represent [69]. They are unphysical, because
they imply that all the particles interact simultaneously.
However, they are useful to establish bounds for the speed
of the evolution. The Fourier transform of the semicircle
gives the following analytical expression for the survival
probability [38,56,57],

[J12o01)]?

F(t) =
===

, (13)
where 7, is the Bessel function of the first kind. Equation (13)
gives the fastest possible decay of the survival probability for
lattice many-body quantum systems with a unimodal LDOS.

III. LONG-TIME SCALES: ¢t > tp

While for ¢ < tp the dynamics can be very fast depending
on the envelope of the LDOS, at long times the decay of
the survival probability slows down and necessarily shows a
power-law behavior,

F() <t (y >0). (14)

The theoretical causes for the algebraic decay corresponding
to Case 1 (y > 2) and Case 2 (y < 1) are explained below.
Numerical examples, as well as a brief discussion about the
intermediate region 1 < y < 2, are given in Sec. IV.

A. Case 1: y > 2 (ergodically filled LDOS)

Any real quantum system necessarily has a lower bound in
the energy spectrum, which we denote by Ej,y. Taking this
bound into account in the LDOS, that is po(E < Ejow) = 0,
and using the Paley-Wiener theorem, Khalfin showed in
1958 [27] that the survival probability at long times has to
decay more slowly than exponentially [27,32]. The behavior
should become F(t) o< exp(—ct?), withc > 0andg < 1. This
study was done for LDOS that were absolutely integrable
functions; that is [70],

f po(ENdE 50, (15)
AE

where AE is any interval inside the spectrum.
Asymptotic analyses have actually shown that the decay of
F(t) becomes power-law at long times and that the exact value
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of the exponent y in Eq. (14) depends on how the LDOS decays
to zero at the bounds of the spectrum [71,72]. Assuming that
po(E) is absolutely integrable and that its derivatives exist and
are continuous in [ Ejoy,00], two cases are singled out.

(i) If the LDOS is such that

lim po(E) > 0,
E— Ejow

the survival probability decays as
F(t) o<t 72 (16)

Gaussian and Lorentzian LDOS belong to this class. The
Gaussian LDOS with exponential tails considered in nuclear
shell models [64] also fall in this category. Details on how
to obtain the ¢~ decay are shown in Appendix A. There, we
consider the general case, where both bounds are present, the
lower, Ejoy, and the upper one, Ep.

(ii) If the LDOS goes to zero at Ejoy, that is,

po(E) = (E — Eiow)* n(E), (17)
with
lim n(E) >0,

E— Ejpy
and 0 < & < 1, and if the derivatives of n(E) exist and are
continuous in [ Ejoy,00], then the decay is given by

F(t) oc t 726+, (18)

Hence, apart from how the LDOS approaches the energy
bound, its exact shape does not play an important role in the
long-time decay of F(z).

Examples of Case 1 (ii) for continuous models describing
a trapped particle in an inverse-square potentials are found in
Refs. [73,74]. The semicircle LDOS shown in Eq. (12) also
belongs to Case 1 (ii). For it, one has £ = 1/2, Ej,w = —200,
and

A/ 200 —FE

E) =
n(E) 2707

’

which leads to
F(r) oc 173, (19)

This result can also be derived directly from the analytical
expression of the survival probability given in Eq. (13). For
t> o0, 1, one finds that

1 — sin(4oyt)

F(t > J(;l) - 2o t3

(20)
The value y = 3 should therefore be the upper bound for
the power-law exponent of F(¢) of finite-lattice many-body
quantum systems.

1. Thermalization and y > 2

The results described above are valid for continuous
functions. In finite-lattice many-body quantum systems, where
the spectrum is discrete, we expect the power-law exponent to
approach values y > 2 when the LDOS is ergodically filled.
By this we mean that the initial state, projected on the energy
eigenbasis, is very similar to a pseudorandom vector, so it
samples most of the energy eigenbasis with energy within o
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(most C (gO) are nonzero) without any preference (C éo) are close
to uncorrelated random numbers). As a result of the ergodicity,
the LDOS is well approximated by an absolutely integrable
function.

Ergodicity is certainly satisfied for arbitrary initial states
projected onto the eigenstates of full random matrices. Since
all of these eigenstates are chaotic (pseudorandom) vectors, so
is the projected initial state. Full random matrices, however, do
not describe realistic systems. For the latter, where only few-
body interactions exist, the Hamiltonian matrices are sparse,
random elements may not even be present, and the density of
states is Gaussian instead of semicircular. Yet, in the chaotic
regime, these systems still follow random matrix statistics;
that is, away from the edges of the spectrum, there occurs
level repulsion and the eigenstates are very similar to random
vectors. In the case of a strong perturbation that quenches the
initial Hamiltonian into such final chaotic Hamiltonians, the
LDOS of the initial state will also be very well filled, since
|W(0)) is projected onto nearly random vectors [14].

To verify whether the LDOS is ergodically filled, one uses
quantities that measure the level of delocalization of the initial
state [7,75,76]. A commonly employed one is the participation
ratio, defined as

1
(e
A large value of PRy indicates that the initial state is
delocalized in the energy eigenbasis |, ). For chaotic (pseu-
dorandom) states, PRy o D, where D is the dimension of the
Hamiltonian matrix.

The value of the PR can be calculated directly from Eq. (21)
by using exact diagonalization or from the survival probability
after saturation. Since the treated systems are finite, F(¢)

eventually saturates to a finite positive value. From Eq. (3),
one sees that

P = Y60+ 3 [y et o
o atp

PR) = 21

The time average of the second term can be dropped for large
times, provided the system does not have an excessive number
of degeneracies. The infinite-time average of the survival
probability is then

F=Y |cO|* = 1PR,, (22)

where IPR stands for the inverse of the participation ratio. For
finite-lattice systems, IPRy # 0.

Quantum chaos and the onset of thermalization are directly
linked [7,14]. An ergodically filled LDOS guarantees that
the initial state will thermalize [7,11,14,20,25,77]. In this
case, the diagonal entropy S; [78], which is the entropy
that characterizes the system after equilibration, and the
thermodynamic entropy S, coincide [11].

The diagonal entropy is defined as

Si=—>_|COPm|c. (23)

It is the Shannon (information) entropy [7] of the initial state
written in the energy eigenbasis. As shown in Refs. [11,78],
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S4 can be written as the sum of a smooth and a fluctuating
part. The smooth part approaches the microcanonical entropy
as the system size increases, which in turn coincides with
the canonical entropy Sc,, when the system is large. The
fluctuating part becomes negligible for large system sizes
when the LDOS is a smooth function of energy, which
happens when py(E) is ergodically filled. The approach of
S, to the thermodynamic entropy as the system size increases
was indeed shown numerically in Ref. [11] for initial states
with energies away from the edges of the spectrum and
evolving according to the same chaotic Hamiltonians that are
investigated in Sec. IV A.

2. Time scales

We identify three time scales associated with the distinct
behaviors of the survival probability: t < o, ! 00_1 <t <tp,
and 7 2 tp. The time for F(¢) to saturate and simply fluctuate
around IPR( depends on the different behaviors encountered
during the evolution. It should have a strong dependence on
the width of the LDOS and on the value of IPR.

For chaotic initial states, we expect the saturation time to be
smaller than the Heisenberg time, 1y = 27 /6 E, where  E is
the mean spacing between energy eigenvalues. ¢y corresponds
to the interval after which, due to the energy-time uncertainty
principle, the system starts to “feel” the discreteness of the
spectrum [79]. This time is large in many-body quantum
systems and it grows exponentially with system size.

B. Case 2: y < 1 (sparse LDOS)

A sparse LDOS signals the presence of correlated non-
chaotic eigenstates in the final Hamiltonian. These states
appear in disordered systems that undergo spatial localization
due to strong onsite disorder [39-50]. In this case, the
power-law exponent of the survival probabilityisy < 1. Aswe
show in Sec. IV C, this picture occurs also for noninteracting
integrable models without disorder.

Naturally, the spectrum remains bounded also in these non-
chaotic disordered and clean models. However, the exponent
of the power-law decay due to correlations is smaller than
that caused by the energy bounds, so it is the correlations that
determine the behavior of F(f) at long times.

The survival probability can be expressed in terms of the
correlation function C(w) as follows:

F(t) = / dwe'” C(w),
—o0
2 2
Clw)= > |CP|CO[8(Ey — Eg — ). (24)
a.p
The long-time behavior of F(¢) is dominated by small w. A
power-law decay with y < 1 emerges at large t when [39-45]

Clw — 0) x w’ L. (25)

The value of y indicates the level of correlations between the
components |C ((xo) |2 and thus also between the eigenstates.

A sparse LDOS is the consequence of a nonergodic initial
state, which samples only a portion of the Hilbert space. In
this case,

IPRy &x D~ P2, (26)
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with D, < 1. The exponent D, coincides with the power-
law exponent of F(f) when y < 1. Thus, y can be obtained
either from the decay of the survival probability or from the
scaling analysis of IPRy, as extensively done in studies of
Anderson localization [41-43] and, more recently, many-body
localization [48-50].

When the initial state is ergodic, |C, é0)|2 are approximately
normalized random variables and D, — 1. Notice that at this
point, the power-law decay of F(¢) is not determined by
correlations anymore, so the scaling analysis of IPRy can no
longer be used to derive the exponent of the algebraic decay.

IV. RESULTS FOR SPIN-% MODELS

The general results discussed in the previous section are
illustrated here for finite one-dimensional lattice many-body
quantum systems described by spin—% models. The Hamilto-
nian is given by

H = Hj, + HnN + AHnnw,
L
Hy =) hS;,
n=1

Haw =) J(Sy Sy + S8, + AS;SEL),

n

Haw = ) T (SiSia + SiSis + ASSi,). (2D

n

Above, h =1, S,"”° are the spin operators on site n, and L
is the total even number of sites in the chain. The amplitudes
h, are random numbers from a uniform distribution [—A,k],
where & is the disorder strength. The system is clean when
h = 0. The Hamiltonian contains nearest-neighbor (NN) and
possibly also next-nearest-neighbor (NNN) couplings. The
coupling strength J, the anisotropy parameter A, and the ratio
A between NNN and NN couplings are positive. The sums in
Hnn and Hyny go fromn = 1ton = L — 1 when the chain has
open boundaries and up to L when it has periodic boundaries.
The energy scale is set by J = 1. The total spin in the z
direction, S%, is conserved. We analyze the largest subspace,
where 87 = 0 and the dimension is D = L!/(L/2)!°.

Hamiltonian (27) presents the following limits.

(1) It is a noninteracting clean integrable model when
h,A, A = 0. In this case, it is referred to as the XX model.
When the couplings in the x and y directions have different
strengths, the Hamiltonian represents the XY model.

(ii) It is an interacting clean integrable model, referred to
as the X XZ model, when h,A = 0.

(iii)) When L =0, A <1, and 0 < h < 1, the spectrum
shows level repulsion with the level spacing distribution
coinciding with the Wigner-Dyson distribution [80-83], as
typical of chaotic systems [69,76]. In contrast, the levels can
cross and many-body localization eventually takes place when
the disorder becomes strong [82—85].

(iv) When 2 =0, A < 1, and A < 1, the spectrum again
shows level repulsion [86,87].

We consider as initial states site-basis vectors, where the
spin on each site points either up or down in the z direction.
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They include the Néel state,

INS) = [J AT --0),

—1)h, JA
Ey=Y" % +SIEE - DL =23 @28)

J
oy = 5\/ L — 1,
and the domain wall state,

DW) =t 144D,

DR, JA
Bo= Y T s v o

J —

These are important states in magnetization. They are often
used in theoretical studies of quench dynamics and are
accessible to experiments with optical lattices [88,89]. They
are eigenstates of the initial Hamiltonian Hy, where h,A = 0
and A — oo.

A. Power-law exponent y > 2

We start by investigating the survival probability of the Néel
state evolving under the clean chaotic Hamiltonian (27), with
h=0,A =1/2, and A = 1. The perturbation that takes H,
into this Hamiltonian is strong, since we need to change the
anisotropy abruptly from A — oo to A = 1/2. As mentioned
in Sec. IT A, the envelope of the LDOS should therefore have a
Gaussian shape. This is confirmed in Fig. 1(a). The Gaussian
LDOS is nearly symmetric, since Ej is close to the middle
of the spectrum, and it agrees very well with the analytical
envelope obtained with Ej and oy from Eq. (28). For initial
states with E closer to the edges of the spectrum, the LDOS
acquires some degree of skewness [58].

Figure 1(b) shows the evolution of the survival probability.
Up to tp ~ 2, the decay is Gaussian, as anticipated from
the Gaussian LDOS. The numerical curve agrees extremely
well with the analytical expression using oy from Eq. (28).
Interestingly, in this initial decay, F(¢) reaches several orders
of magnitude below the infinite-time average F = IPR,.
This pronounced dip has been referred to as survival col-
lapse [92,93] and is further explained in Sec. IV A 1.

For times longer than ¢, a power-law decay o<t ~2 emerges.
As mentioned before, this is expected to occur when the
Gaussian LDOS is ergodically filled. This is indeed confirmed
with Fig. 1(c). Using the values of IPR, for L = 12,14,16
obtained from exact diagonalization [Eq. (22)] and the values
for L = 18,20,22,24 obtained from averages of the fluctuating
values of F(t) after saturation, we verify that IPRy oc D!,
For L > 16, our computations are done with EXPOKIT [90,91],
which is a software package for the evolution of the matrix
exponential e *#' used when the Hamiltonian matrix is very
large, but sparse.

The ergodic filling of the LDOS justifies Fourier transform-
ing the continuous Gaussian function with the lower ( E)oy,) and
upper (Eyp) bounds. This reveals the t~2 decay of the survival
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FIG. 1. Local density of states (a), survival probability decay (b),
and scaling analysis of the IPR, (c) for the Néel state evolving under
H (27), with h =0, A = 1/2, » = 1, and open boundaries. In (a)
the shaded area is the numerical result and the solid line is a Gaussian
with Ey and oy from Eq (28); L = 16. In (b) the solid line is the
numerical result obtained with EXPOKIT [90,91], circles indicate the
analytical Gaussian decay with oy from Eq. (28), the dashed line is
the time average coinciding with =2, and the thick horizontal line
marks the saturation F' = IPRy; L = 24.In(c) the solid lineis IPR, =
6/D. The first three points are obtained with exact diagonalization,
and the last four are infinite-time averages computed with EXPOKIT.

probability,

1 Z o~ Ex—Eo)?/of (30)

Fle» o) =5 inas

k=up,low

Above, N is a normalization constant (see the derivation in
Appendix A).

The numerical curve for F(¢) at long times is affected
by finite size effects, which cause the fluctuations observed
in Fig. 1(b). To smoothen the curve and substantiate the
72 behavior, we show with a dashed line the time-averaged
survival probability defined as

C(t,1y) = ﬁ/ F(r)dr. 3D

In practice, we actually average the logarithm of F(¢) instead of
F(t) via (Int — Inty)~! fanz:) In F(n)dn. The power-law decay
predominates after the survival collapse (see Sec. IV A 1), so
the values of fy and ¢ that we choose correspond, respectively,
to the moment of the first revival of F(¢) and the time at which
the survival probability saturates. Further support for the onset
of the =2 behavior is given in Sec. IV A 2 for other parameters
and system sizes and in Sec. IV A 3 for a disordered chaotic
Hamiltonian.

An estimate for the time 7p where the algebraic decay starts
can be obtained with the following approximation:

e ~ F(1p > o57).
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FIG. 2. |Ag(?)|?, |Ar(?)]?, and the interference term A, (?) =
2Re[A§(2)Ar(1)] for different time scales: short times (a), long times
(b), and the vicinity of ¢p (c). The dot-dashed line in (b) corresponds
to F(t) < t=2. The vertical solid line in (c) indicates ¢p ~ 1.98.
The data are obtained analytically for a Gaussian py(E) using the
values of Ej and oy from Eq. (28) for a Néel state under H with
h=0,A=1/2,x=1, L =16. The values of E,, and E,, are
obtained from exact diagonalization.

It leads to

Wil = Yo e B ) |

k=up,low

~ 1
Ip =0,

where W is the Lambert W function.

1. Survival collapse

The survival collapse is characterized by an abrupt drop
of F(t) by several orders of magnitude, which can bring it
below the saturation point F = IPRy. This collapse can be
understood as follows. Let us write the survival amplitude as
a sum of two amplitudes, A(t) = Ag(t) + Ar(?), so that

F(t) = [AcO)* + [AR@D)]* + A(2),
A1) = 2Re[AG (1) AR(D)]. (32)
Ag(t) is obtained with the unbounded LDOS,
o0
Ag(t) = / po(E)e ' F'dE.

[o¢]
Its absolute square leads to a pure Gaussian decay when py(E)
is Gaussian. Ag(?) is the probability amplitude for the initial
state to be reconstructed due to the presence of the bounds in
the spectrum,

Elow
AR(t) = — f po(E)e  F'dE — /

00 Eyy

o]

po(E)e 'EdE.

Ag(t) and Ag(?) can interfere destructively. When this hap-
pens, Am(f) < 0, which causes the low values of F(¢).
Figure 2 shows |Ag(t)|%, |Ar(t)|>, and Ap(t) for an
analytical Gaussian py(E) with lower and upper energy bounds
obtained for a Néel state that evolves under H with h =
0, A=1/2, A =1, L =16. The Gaussian decay dominates
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(®) ]

FIG. 3. Normalized survival probability f(¢) for the Néel state
evolving under the chaotic H (27) with h =0, A = 1, and open
boundary conditions. In (a) A = 1/2, and in (b) A = 0. Light solid
lines indicate L = 22 and dark lines L = 24. The dashed line is
¢ — (1/L)1In(z~?), where c is a fitting constant.

the evolution when ¢ < 2 [Fig. 2(a)], the contributions from
|AR(#)|* and Apy(t) being negligible. In the contrast, the
power-law behavior that emerges from |Ar(¢)|? controls the
dynamics for ¢ > 2 [Fig. 2(b)].

The interference effect is significant at the crossover from
the Gaussian to the power-law decay, where the contributions
from |Ag(tp)|? and |Ar(zp)|? are similar. Given Ey, 6¢, Eiow,
and Ep, the crossover point zp can be obtained numerically
from |Ag(1)|> = |Ar(t)|>. With the values used in Fig. 2, we
find that #p ~ 1.98. At the vicinity of ¢p, the interference term
Amn(?) is negative and of absolute value similar to [Ag(®)]* +
|AR(?)|?, as seen in Fig. 2(c). This is the region where the
survival probability can be brought to very small values [94].

2. Further examples of t=* decays in clean systems

A way to partially conceal the finite size effects is to
consider the normalized survival probability used in Ref. [95],

ft) = —% In F(1). (33)

This quantity is useful when comparing results for different
system sizes. In Fig. 3 we show f(z) for the Néel state
evolving under the chaotic Hamiltonian (27), with 4 = 0 and
A = 1 for systems with L = 22 and L = 24 and two values of
the anisotropy parameter: (a) A = 1/2 and (b) A = 0. Both
examples suggest that F(z) o< 2. Scaling analysis of IPR,
for both cases give IPRy ~ D!

3. Disordered systems with t=* decay

The t~2 behavior is further reinforced by studying the
dynamics under the disordered Hamiltonian (27) with0 < h <
1, A = 1,and A = 0. For these parameters, the Hamiltonian is
chaotic. The initial states considered are site-basis vectors with
E( away from the edges of the spectrum. In Fig. 4(a), we show
the average of the survival probability, (F(z)), for different
values of the disorder strength € [0.2,1]. At intermediate
times, the behavior is Gaussian. It is subsequently followed
by power-law decays.

Due to the averages over a total of 10° data, including
several realizations and initial states, the curves are smoother
than those for the clean Hamiltonians in Figs. 1 and 3. The
average also erases the survival collapse.

The decay of the oscillations for the bottom curve in
Fig. 4(a), which is obtained for 2z = 0.2, follows a t~2 behavior.
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F(t) = exp(-6°t)

<f>

FIG. 4. Survival probability (a) and normalized survival prob-
ability (b),(c) for initial states corresponding to site-basis vectors
and evolving according to H (27) with 4 in [0.2,1], A=1, A =0,
and closed boundaries. The average is performed over 10° disorder
realizations and initial states with energies E, close to the middle
of the spectrum; L = 16. In (a) the curves from bottom to top have
h =0.2,0.3,...,1. The thick black line corresponds to 4 = 1. In (b)
and (c), the dashed lines are ¢ — (1/L)In(t""), where c is a fitting
constant and y is indicated.

This is made evident with the fitting line in Fig. 4(b), where
this curve is isolated.

The value y = 2 is the limit for lattice many-body quantum
systems with two-body interactions, as those described by
H (27). Toincrease the value of y above 2 and eventually reach
the upper bound of y = 3 established by full random matrices
[Eq. (20)], one needs to increase the number of uncorrelated
elements in the Hamiltonian matrix, so that the density of states
and the LDOS will broaden and finally reach the semicircle
shape. The intermediate values of y between 2 and 3 can be
achieved with banded random matrices [26].

Banded random matrices were introduced in an attempt
to better describe the details of real complex systems, where
few particles interact simultaneously [68]. Instead of having
the matrix completely filled with random numbers, as in an
full random matrix, the random numbers are restricted to a
bandwidth around the diagonal. Beyond the band, the elements
are either zero, as in Wigner banded random matrices [68,96],
or very small, as in power-law banded random matrices [97].
By increasing the bandwidth from zero, one can cover all
values of the power-law exponent, from O to 3. This was
discussed and illustrated in Ref. [26].

We reiterate that power-law exponents y > 2 reflect the
ergodic filling of the LDOS. The algebraic decay in this case
is caused by bounds in the spectrum and the initial state should
eventually thermalize.

The t=2 decay was observed also in the interacting
integrable XX Z model with A = 1. The initial states con-
sidered were superpositions of equally weighted Bethe-ansatz
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eigenstates in a window of energy [98]. These initial states are
constructed by choice to be ergodic. This may explain why,
despite integrability, the exponent reaches the value y = 2.

B. Power-law exponent 1 < y < 2

For the disordered Hamiltonian (27) with A = 1 and A = 0,
level repulsion persists throughout the region of & € [0.2,1]
and scaling analyses of the level of delocalization of the
initial states written in the energy eigenbasis indicate that
they are chaotic, IPRy o« D! [50]. The highest level of
delocalization occurs for 2 ~ 0.2. As h further increases, the
level of delocalization decreases and so does y, as seen in
Fig. 4(a). The thick black line corresponds to & = 1. This
curve is also shown in Fig. 4(c) together with the fitting line
with y = 1.

The cause for the power-law exponents 1 < y <2 in
these systems still needs to be understood. They suggest the
existence of some minor correlations. The values of y could
be a consequence of the interplay between these correlations
and the energy bounds. Since the signatures of quantum chaos
persist, we should still expect thermalization to take place.

We find exponents in this intermediate region also in
integrable models. From the analytical expressions for the
survival probability of the ground state evolving under the
Ising model in a transverse field [51] and under the XY
model [52,53], one can show that for long times F(t)
exp(Lt™7), with y = 3/2. Contrary to the disordered model
above, the algebraic decay here develops only when Lt™7 <
1. It is possible that the nature of the power-law decay with
1 < y < 2 for the disordered model is different from what
occurs for these integrable models.

C. Power-law exponent y < 1

In the disordered model, the power-law exponent becomes
smaller than 1 when A& > 1. In this case, the LDOS is
sparse and IPRy o« D72, with D, < 1. In Refs. [48-50],
we demonstrated that D, coincides with the value of the
power-law exponent y of the survival probability decay. In
this section, we show that also for the Néel state evolving
under the clean noninteracting X X model, y < 1 and it agrees
with D5.

As shown in Ref. [99], only 22/ of the D overlaps C¥) =
(¥« INS) between the Néel state and the eigenstates of the X X
model are nonzero and their squared values are all the same,

|CO? =272, (34)

[Details of the derivations are in the Appendix B.] The LDOS
is therefore very sparse. As a matter of fact, the ratio x of the
number of nonzero |C?|? over the dimension of the Hilbert
space goes exponentially to zero as L — oo,

2L/2
X=""7

For open boundary conditions, the analytical expression for
the survival probability is [99]

L2 o412 /T, (35)

L2

F(t)zncosz{tcos[Lnjl]}. (36)

n=I1
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FIG. 5. Components [C|* (a) and f(r) (b) for the Néel state
evolving under the XX Hamiltonian [Eq. (27) with A,A A =0,
and open boundaries]. In (a), L = 12. In (b), f(z) (solid line) and
—(1/L) In(t~?) (dashed line); L = 2000.

At long times, L/+/t — 0, choosing L to be the largest length
scale of the system, we find that the envelope of the decay of
F(t) is given by

F(Wi> L)ocexp(Lt™"?) > 1+ Lt™ "2, (37)

from where the power-law exponent is evident.

In Fig. 5(a), we give the values of |C(§f))|2 as a function
of the energies, making it clear that the number of nonzero
components is small. Figure 5(b) shows f(¢) from Eq. (36)
and the +~!/? decay of the survival probability.

The power-law exponent y = 1/2 can also be derived from
a scaling analysis, as done for systems with strong disorder.
Using the fact that for the Néel state IPRy = 272/2 and that
from the Stirling approximation InD >~ L1n2,

InIPRy = —D,InD = D, = 1, (38)

which agrees with y. Whether this relationship is a mere
coincidence or is valid also for other initial states and integrable
models remains to be elucidated. Similarly to the discussions
in the end of Sec. IVB, we stress that the cause for the
power-law decay in the integrable XX model may not be
exactly analogous to the one found in the disordered model.
The source for the latter are the correlations in the eigenstates,
measured equivalently with D, or y. In the XX model, the
decay may be more involved, as Eq. (37) suggests.

Since the LDOS is sparse, the initial state should not
thermalize. This can be corroborated by comparing the
diagonal entropy [Eq. (23)] and the canonical entropy

Scan =InZ+ EO/ T, (39)

where Z =), e E/T is the partition function, T is the
temperature, and the Boltzmann constant is set to 1. From
Eq. (34),

L
Sy = 5 In2. (40)

For the Néel state in the XX Hamiltonian, Ey = 0, so the
temperature is infinite and e %/T — 1, so Z =D. The
thermal entropy for large L is therefore

Sean >~ L1In2. 41

The fact that S.;, and S; do not coincide implies lack of
thermalization.
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FIG. 6. LDOS (a),(b) and survival probability [Eq. (42)]; (c),(d)
for the domain wall state evolving under the XX Hamiltonian
[Eq. (27) with h,A, A = 0, and open boundaries]. Two system sizes
are shown in all panels. The (red) light lines indicate L = 24; the
(black) dark lines L = 30; and the (blue) circles the Gaussian curves
po(E) = e2F" //m/2 and F(1) = exp(—1*/4).

We note that care should be taken when computing the
diagonal entropy. The expression (23) is appropriate for
systems without too many degeneracies.

D. A special case

The domain wall state evolving under the X X model is a
very special case, where the power-law decay does not seem
to develop [99]. As seen from Eq. (29), the width of the LDOS
does not depend on the system size, it is fixed at op = J/2. In
addition, for the X X model, Ey = 0. Therefore, as L increases,
the LDOS becomes an increasingly better filled Gaussian,
po(E) = e 2E* ) /7 /2. The contributions from the tails be-
come less and less relevant, and the survival probability decay
approaches a perfect Gaussian behavior, F(t) = exp(—t2/4).

In Figs. 6(a) and 6(b), we confirm that the LDOS width
remains unchanged as L increases. Two system sizes, L = 24
and 30, are considered. Figure 6(b), in particular, emphasizes
the negligible contributions from the tails already at energies
smaller than the energy bounds of the entire spectrum [cf.
Figs. 6(b) and 5(a)].

For open boundary conditions, the exact expression for the
survival probability is

2L—l L L/2 L/2
— )
F(t)_(L+1> Z{COS[IZCOS k,,:|,[[lsm k,

{kn} n=1

L2 ky — k b+ o\ ||
xl_[sinz( : 5 m)sin2< . 5 m)” . (42)
m=n+1

[Details on how to obtain Eq. (42) are shown in Appendix C.]
The decay obtained with this expression is compared in
Figs. 6(c) and 6(d) with F(t) = exp(—t2/4). The agreement
is extremely good. After + >~ O(L), an oscillatory behavior
sets in. When that happens, F(¢) is already essentially zero,
so if a decay rate still exists, it is very difficult to estimate.
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Furthermore, as seen in Fig. 6(d), the value of F(t >~ L) goes
to smaller numbers as L increases and it stays there for longer
periods of time. The revivals observed at later times occur
when the excitations eventually reach the system’s boundary.
In the thermodynamic limit, we should therefore expect F(¢)
to decay to zero and recurrences to be nonexistent.

V. CONCLUSIONS

We investigated the long-time decay of the survival prob-
ability in isolated lattice many-body quantum systems. We
considered integrable and chaotic, interacting and noninter-
acting, and clean and disordered systems. Our results showed
that for all of these systems the long-time decay is algebraic,
F(t)oct™.

There is a clear-cut relationship between the power-law
decay exponent y and the degree of delocalization of the
initial state written in the energy eigenbasis. For a maximally
delocalized initial state, its weighted energy distribution
(LDOS) is ergodically filled and the power-law decay is
caused by the ever-present bounds in the spectrum. For realistic
models with two-body interactions, this leads to y = 2. When
the initial state is no longer chaotic, so that IPRy DDz with
D, < 1,then y = D.

Since ergodicity guarantees thermalization, we were able
to establish a criterion for thermalization based purely on the
dynamics of the system at long times. This is a significant
result, because various experimental studies of many-body
systems focus on time evolutions. We can summarize our main
findings as follows:

nonchaotic initial state, sparse LDOS,

y <1 correlated eigenstates;
chaotic initial state, ergodically filled LDOS,
y =2 Wigner-Dyson level repulsion,

uncorrelated eigenstates, thermalization.

Still an open question is the case of the intermediate values
of y € [1,2). They may be due to a competition between minor
correlations and energy bounds.
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APPENDIX A: POWER-LAW EXPONENTS FOR
ABSOLUTELY INTEGRABLE LDOS

As mentioned in Sec. III A, an absolutely integrable po(E)
with a Gaussian or Lorentzian shape falls into the category of
Case 1 (i), where for long times F(t) oc t~2. For Case 1 (ii),
the decay of the survival probability is faster, having y > 2.
It holds when the LDOS is a function that goes to zero at the
energy bound.
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1. Case 1 (i): Gaussian LDOS

The survival amplitude for the Gaussian LDOS with a lower
bound E),y is given by

1
\ /271002

—lElowf

,/2710

where £ = E — E),, For long times, the first exponential
inside the integral oscillates very fast, unless £ is very small. If
we then set £ = 0 in the second exponential inside the integral,
we find that

o0
/ dge—igte—(Eh,W—Eo)z/Zag x fl’
0

A(t) =

o0
/ dEe—iEte—(E—EO)Z/Z(rUZ
Elow

o0
—i&t —(E+Eiow—E)? /202
/ dgel e(+lo 0)/00’

SO
F(1) = |A(D)]> o t72.

A more rigorous way to obtain F(¢) at long times takes into
account the lower bound Ejq, and the upper bound E\; as

Al = —— / dEe e R (Al
N 27‘[0‘ Elo“
where N\ is the normalization constant,
1 Ey— E Ey— E,
N = 3 erf [ 20— | o[ 2020 . (A2)
2002 20&

and erf is the error function. The survival amplitude can be
obtained analytically and reads

AW = Le_ogﬂ/zﬂEO’ [erf(W)
ZN \/50’0

E
—erf( 0

— Ey +iodt )]
«/500 '
The corresponding survival probability is then
(=)

«/EU()
Crf (EO —Eyp+ iaozt)]
V20

F(t) =

2
(A3)

In the limit # > 1/00,
Ft>oy)
~ ! [
- 2 N2%0(1?

— 2o (E&—2E0(Eow+Eup)+ Ejp,, +2E3 ) /208 cos(AEt)],

e_(Eup_EO)Z/O'(% + e_(Elow_EO)z/aﬂ2

where AE = Ey, — Ejoy is the width of the spectrum. Aver-
aging out the oscillations from the cosine term, this expression
becomes

1 s Z e (Ex— Eo)? /ffo (A4)

F(f>>%_1)—m

k=up,low

from where the decay oct 2 is evident.

PHYSICAL REVIEW A 95, 013604 (2017)

2. Case 1 (i): Lorentzian LDOS

In the case of a Lorentzian LDOS, we have

e*iEtdEv7

A = foo 1 Lo
~ Jg,, 27 (Eg — E)? 4T} /4

I‘Oe*iEluwf 0

=——— | f(&edE  where
2 0

1
(Eg — € — Eyow)* +T3/4°

€ = E — E\, and T’y is the width of the distribution. The
integral above can be solved by replacing it with a contour
integral in the complex plane [36]. The complex contour has
three parts, the positive real energy axis from zero to oo, the
arc of infinite radius running clockwise from the positive real
axis to the negative imaginary axis, and the negative imaginary
axis going from —ioo to the origin,

[ =

ff(g)efiftdg — /OO f(£)€7i61d5 +/ f(g)efiftdg
¢ 0 arc

0
+ f(&)e¢dE.

—ioo

(A5)

As it is often the case, the integration along the arc vanishes.
Using £ = —ie, we are left with

I[(t) = / ” f(&)e ¢dE
0
= f F(E)e 1 dE + / o F(E)eCdE
C 0

= y{ f(E)e™1dE — i / ” f(—ig)e 'de
C 0
= Ii(t) + L(1).

The contour integral above is solved with residues. It has a
poleatE = Ey — Ejow — iI'o/2, which leads to the exponential
decay,
—u‘,'r
[E=(Ey=E1on)]=iT0/2 Elow)] iTy/2

ho= §£ [€ — (Eog — Eiow)] +iT0/2

e—i(Eo—Ei)t p—i(=iTo/2)t o
= (—27i) : xe 7.
—lF()
The second integral leads to the power-law decay. Since the
integrand goes to zero for long times unless ¢ is small, we set
e =0in f(—ie),

oo —é&t
L) = —i/ ¢ 5 5—de Py
0o (Eo— Eow)?+T¢/4

Just as for the Gaussian, I,(7) leads to F(¢) oc t 2.

3. Case 1 (i): Gaussian LDOS with exponential tails

Studies of the nuclear shell model have dealt with an LDOS
that is Gaussian in the center and has exponential tails [64]. To
obtain the power-law decay exponent y for this case, we shift
the LDOS and set the lower energy bound E}o, = 0. At long
times, the relevant part of the LDOS is that where py(E =~ 0)
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and the exponential tail becomes dominant. This holds for a
certain energy scale [0, E£], for which we can write

E
At — 00) ~ / dEe "E! py(E ~ 0)
0

E
:/ dEe Bt oF
0

(efé(itfl) _ 1)
(—it+1)
The power-law decay of F(¢) is then ot 2.

(AO6)

4. Case 1 (ii)

The derivation of Eq. (18) was done rigorously in
Refs. [71,72]. Here, we provide a less rigorous alternative
that incorporates Cases 1 (i) and 1 (ii) in a single equation. It
was proposed in Ref. [100] and goes as follows. Suppose that
po(E) has the structure

p0(E) = (E — Ejon)* P(E)Y)(E)O(E — Eoy),

where now & > 0, P(E) may contain poles, n(E) is an
analytical function with n(E — o0) — 0, and O(E — E\oy)
is the Heaviside step function. The survival amplitude then
reads

o0

A(t) = [ dEe™"®'(E — Eiow)* P(E)N(E).
Eiow

As done for the Lorentzian LDOS above, it is convenient to

write this integral in the complex plane. It also helps to shift

the lower bound to the origin of the complex plane by defining

E=E— Eow,

A(r) = e Bt / dEe ' EE P(E + Eiow)n(€ + Eiow)
0

= e P I(r).

The complex contour is the same used in Eq. (A5) and again
the integral along the arc is assumed to vanish, so

() = f dEe ' EE P(E + Eiow)(E + Eiow)
C

o0
(it / dse' ¢ P(Eioy — i)0(Epoy — i),
0

where in the second integral we used £ = —ie. Similarly
to what we saw for the Lorentzian LDOS, the first integral
depends on the poles of P(E) and it leads to very fast decays.
It is the second integral that leads to much slower decays and
therefore dominates the behavior of F(¢) at long times. Since
for large ¢ only small values of ¢ contribute to the second
integral, we set ¢ = 0 in P and n and obtain

I(t = 00) ~Cr~¥~',  where
C = (=) P(Eiow)n(Eiow)T'(§ + 1).
Hence, the survival probability decays as
F(t — 00) ~ [C|2t72¢+D), (A7)

which agrees with Eq. (18), butincludes also & = 0. This result
remains valid if we include a finite energy upper bound Ej,
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since the behavior at long times is controlled by the lower
spectrum bound.

APPENDIX B: NEEL INITIAL STATE IN THE XX MODEL

Using the Jordan-Wigner transformation [101], the Hamil-
tonian for the noninteracting X X chain (h,A,A = 0) becomes

HXX = Z 6kn CZ,, Ckn ’ Ekn = cos k” N (B 1)
k/l

The values of the momenta k, depend on the boundary
conditions.

1. Open boundary conditions

Following Ref. [99], the momenta k, for open boundary
conditions are

L
n
kn € K= . B2
© {L + 1 }n—l ( )
The eigenstates of the S* = 0 sector are
L/2
Wa) =[] <k 10). (B3)
n=1

pointing down in the z direction). The eigenvalues are obtained
with subsets {k,} of IC,

Ey = Z{ME& cos(ky). (B4)

To clarify the notation, we consider the case where L = 4.
For this choice, the set /C is

K — w 2w 3w 4m (B5)
15757575

and the subsets o = {k;,k;} belong to
T 27 T 3w T 4w
CENNT T (Vo= (V== [
55 55 55

{271 371} {27‘[ 471} {371 471”
9 9 b 9 bl . (B6)
55 5° 5 55

The Néel state can be written in terms of fermionic operators
as

L/2
INS) =[] e, 10, (B7)
j=1

where the ¢;’s are the inverse Fourier transform of the operators

L
" [ 2 . .
o = 11 JEZI sm(k,,j)c;. (BY)

Cky >

The overlaps

L2
CO = (YuINS) = (0] [ ex,eh;_,10) (B9)
n,j=1
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can be expressed in terms of Slater determinants applying
Wick’s theorem,

VRN o
€= (7)o, o~ Dk

Considering again the example above, for L =4 and
choosing o = {ky,ky} = {7 /5,2 /5}, the overlap is

2
C(?r)/s 27/5) <\/_> 5-+5)
(1+ﬁ>/2>’ B11)

X det( I
(1++5)/2 ~1

From the overlaps (B10), Eq. (36) in the main text can be
obtained as done in Ref. [99].

(B10)

2. Periodic boundary conditions

For periodic boundary conditions, the inverse Fourier
transform of the operators c;’s are

\/7261/@/ T

(B12)

where

L
2n —a)rw } (B13)
n=1

kneIC={
L

and a=0(1) if L/2 is odd (even). The corresponding
overlaps (B9) read [99]

0 1 L/ L2y ok i
CO=(—=) 2=k det (e7%0J),  (Bl4)
L 1<j,n<L/2
and the survival probability is given by [95,99]
L)2
2n —a)
F(t) = *tcos | ——— 1. B15
) gcos { cos|: 2 (B15)

At long times, we find the same decay as in Eq. (37).

APPENDIX C: DOMAIN WALL STATE IN THE X X MODEL

The domain wall can be written as
L2

IDW) = [ 10). (C1)

Below, we show how we obtain the overlaps and the expression
for the survival probability for open and periodic boundary
conditions.

1. Open boundary conditions
For open boundary conditions, the overlaps C? are

L2

©Of TT exc} "10). (C2)

n,j=1

CO = (y,]DW) =

PHYSICAL REVIEW A 95, 013604 (2017)

Using Eq. (B8) and applying Wick’s theorem, this expression
becomes

L
cO = (2" det [sin(jko)l. (C3)
P L+1) 1<jncip "

Using the symplectic Vandermonde determinant evaluation,

1<n(,lj¢<tL/2 (x,{ - x"_])

L2 L2

= l_[xn_L/z(l - ‘x}%) 1_[ (xn — )1 = xp2),
n=1

m=n+1
we obtain

L2

cO — ;-L2 —i(L/2ka (] _ ik
O =i AT +1) He " )

L)2
<[] " — e —eeit )]. (C4)

m=n+1
The corresponding |C?|? reads

L2

L
1 7
O = 25<L—‘><—) [1‘[ sin’k
L+1 i

X l_[ sm( )sn (@)} (C5)

m=n+1
From these overlaps, we obtain Eq. (42).

2. Periodic boundary conditions

For periodic boundary conditions, the (squared) overlaps
for the domain wall are now

%
IcO)? = (l)
. L

To evaluate this determinant, it is convenient to use the
Vandermonde determinant formula. We obtain

2

(e™) (C6)

e
1<j,n<L/2

L2 L)2 L2
=TT T = [T e
Using Eq. (C7), expression (C6) becomes
L|L)2 L)2 2
coF=(z) T TT 0-ev) . e
n=1 m=n+1

Further simplification leads to

L2 L2

(L Z)Ll—[ 1—[ sin ( km> (C9)

n=1 m=n+1

e =

013604-12
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The survival amplitude then reads

| L L2 L/2 LJ2 b —k
A = (z) 2<L2>L/4z{nems<k~f>n I sin2<_" . m)} (10)
{kn} Ln=1

n=1 m=n+1

Writing A(#) in terms of real quantities only, we obtain

DL L2 L2 L2 ko 2
F(t):T{g}: cos t;cos(k,,) Emgﬂsm (T) , (C1D)

where {k,} is the set of ( Ll/IZ) elements consisting of all combinations of momenta corresponding to the first L odd (even) numbers
in £ x{1,3,...,2L — 1} (in £ x {2,4,... 2L}) if a = 1 (a = 0). In the thermodynamic limit, the survival probability decay
approaches the Gaussian behavior given by F(t) = exp(—t2/2), which differs from the case of periodic boundary conditions by

a factor of 1/2 (see Sec. IV D).
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