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We present an extensive study of two-dimensional Larkin-Ovchinnikov (LO) superfluidity in a spin-imbalanced
two-component atomic Fermi gas. In the context of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase, we explore
a wide and generic class of pairing gap functions with explicit spatial dependency. The mean-field theory of
such phases is applied through the Bogoliubov-de Gennes equations in which the pairing gap can be determined
self-consistently. To systematically explore the configuration space we consider both the canonical and grand
canonical ensembles where we control the polarization or chemical potentials of the system, respectively.
The mean-field calculations enable us to understand the nature of the phase transitions in the fully paired
Bardeen-Cooper-Schrieffer (BCS) state, exotic LO phase, and partially polarized free Fermi gas (NPP). The order
of the phase transitions has been examined and, in particular, we find a weak first-order phase transition between
the exotic inhomogeneous LO phase and the BCS phase. In comparison to the three-dimensional case, where the
phase diagram is dominated by a generic separation phase, we predict a broader parameter space for the spatially
inhomogeneous LO phase. By computing the superfluid density of the LO phase at different polarization, we
show how the superfluidity of the system is suppressed with increasing spin polarization.
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I. INTRODUCTION

Superfluidity in fermionic systems has been experimentally
and theoretically explored since the seminal experiments
performed with 3He in the early 1970s [1,2]. Here it was found
that the critical temperature was roughly a thousand times less
than the bosonic 4He superfluid transition temperature. The
statistical properties of the fermionic system led theorists to
consider an analog of the successful Cooper pairs Ansatz used
in the Bardeen-Cooper-Schrieffer (BCS) theory, describing
the superfluid state by a superconducting theory involving
particles without electric charge [3]. Although successful in
describing the low-temperature behavior of the 3He system, the
BCS theory was an incomplete treatment for more complicated
systems, such as the case of imbalanced Fermi mixtures. A
finite polarization, due to Pauli paramagnetism, is strongly
opposed to the BCS-predicted ground state.

The first theoretical attempt to explore polarized fermionic
systems was independently performed by Fulde and Ferrell
(FF) [4] and by Larkin and Ovchinnikov (LO) [5] and the
resulting phase has since then been referred to as the FFLO
phase. Starting from the Cooper solution of a fermionic pair
that experiences an attractive potential over a Fermi surface,
they considered the case where the pair could carry a finite
center-of-mass momentum. This situation in the balanced case
is energetically costly. It was pointed out by Cooper that
pairs with finite center-of-mass momentum are energetically
unfavorable due to the increase of internal energy from the
pair-drift velocity [6]. In the case of an imbalanced system,
where the Fermi surfaces of different components do not fully
overlap, however, the most favorable energetic configuration
of the ground state has a spatially inhomogeneous order
parameter, compared with the BCS solution of a uniform
order parameter. In an imbalanced system, Fulde and Ferrel
proposed an Ansatz for the order parameter of the form
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�(x) = �0 exp(iQ · x), where �0 is a constant parameter and
Q plays the role of the nonvanishing pair center-of-mass
momentum [4]. Larkin and Ovchinnikov proposed the sum
of two opposite plane waves with the same momentum,
�(x) = �0 cos(Q · x) [5].

Understanding these exotic inhomogeneous superfluid
phases has attracted considerable experimental and theoretical
attention over the past fifty years in different branches of
physics. The study of the FFLO phase has been of great interest
to the condensed-matter community, where the FFLO could
be a candidate phase in heavy-fermion superconductors such
as CeCoIn5 at large in-plane Zeeman fields [7–9]. The obser-
vation of anisotropic conductivity in organic superconducting
compounds indicates that these materials may represent an
interesting system to accommodate this inhomogeneous order-
parameter phase [10,11]. The FFLO state is of interest in
quantum chromodynamics where it may be favored at low
temperature and high density [12]. However, so far, conclusive
signatures of a spatially inhomogeneous superfluid phase have
yet to be clearly demonstrated.

Over the past decade, ultracold Fermi gases have of-
fered a unique environment to explore population-imbalanced
fermionic systems [13–16]. The controllability of ultracold ex-
periments allows the tuning of interactions between fermions
through Feshbach resonances to access a broad range of
different interaction regimes [17,18]. The combination of
available techniques, such as optical lattices [19,20], radio-
frequency-driven (spin) population imbalance [21], and exotic
interactions such as spin-orbit coupling [22,23], has opened up
new methods to probe the existence of any novel phases that
are strongly believed to occur at low temperatures. However,
the existence of the FFLO phase in cold-atom systems is
yet to be confirmed. The lack of experimental observation
of the FFLO phase in three dimensions can be understood
from the fragile nature and small region of the phase space
where the FFLO is energetically favorable [24–26].

There are alternative scenarios to explain pairing in the
presence of imbalance, like breached pairing [27] and Sarma
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FIG. 1. Thermodynamic potential per particle for the FF Ansatz
in two dimensions. The z axis is rescaled by using a logarithmic
function f (z) = ln (1 + αz/(2πεF )), with α = 9.916.

states [28–30], which directly compete against the FF Ansatz
being a local maximum of the FF thermodynamic potential in
Fig. 1. Both of these cases suffer, in three-dimensions (3D),
from the instability towards a phase-separation phase [31], in
which the BCS superfluid coexists with a normal fraction; thus
they will not be considered in this work.

A promising method to study imbalanced Fermi gases and
the FFLO phase is through evolving the system in reduced
dimensions. Anisotropy-related effects such as exotic inhomo-
geneous superfluid phases can be enhanced and stabilized by
Fermi surface “nesting” in low-dimensional systems [32–34].
A full one-dimensional (1D) configuration [35] and a suitable
experimental setup has been investigated [36], providing new
interesting hints for the FFLO-phase observation and detec-
tion. In two-dimensional (2D) systems the problem has been
theoretically analyzed by testing the FF Ansatz [37,38] or LO
Ansatz with linearized single-particle dispersion relation [39],
by considering square lattices within both FF and LO theo-
ries [40], and by investigating beyond-mean-field effects with
an FF order parameter [41]. It is worth noting that, recently,
there has been rapid progress in experimentally probing 2D
Fermi gases [42–45]. We anticipate that these advancements
will be of great importance in finding the FFLO phase.

Theoretical results suggest that the FF Ansatz is not the most
energetically favorable choice and that the LO Ansatz describes
the preferred ground state [16]. In this work, we build upon
this idea and extensively explore the LO-type Ansatz in 2D
imbalanced Fermi gases through the Bogoliubov-de Gennes
(BdG) mean-field theory and determine the phase space where
the LO-type phase is energetically favorable.

This work is structured as follows: In Sec. II we describe the
FFLO family and set the appropriate notations of the Ansatz
of the order parameter to be used in this paper. The model is
described in Sec. III, including the relevant scattering theory,
BdG formulation, and computational implementation of the
model. Section IV is devoted to the results where we discuss
the canonical ensemble first and then the grand canonical en-
semble. Section V contains the results of the superfluid density
of the LO phase. Finally, in Sec. VI we present our conclusions.

II. THE FULDE-FERRELL-LARKIN-OVCHINNIKOV
FAMILY

For the sake of clarification we provide a summary of the
definitions of the main cases in the FFLO family. The most

generic order parameter for an imbalanced Fermi gas in a box
with sides L and volume V = Lν , for arbitrary dimension
ν > 1 that satisfies periodic boundary conditions is a Fourier
transform over the discretized modes of the box,

�FFLO(x) =
∑

Q

�Q exp(iQ · x), (1)

with Q ∈ Zν . Within this family many further approximations
and simplifications may be made; for example, we can choose
a single vector Q and obtain the FF Ansatz for the order
parameter,

�FF(x) = �Q exp(iQ · x). (2)

We show in Fig. 1 the thermodynamic potential per particle
for the FF Ansatz in 2D for chemical potential, μ = εF ,
chemical-potential difference, δμ = 0.65εF , and interaction
strength, εB = 0.35εF , as a function of the pair momentum
Q = |Q|. The order parameter is rescaled with the 2D BCS
order parameter, �0 = √

εB(εB + 2μ) in the balanced limit.
The appearance of the FF minimum in Fig. 1, at Q ∼ kF ,
indicates a first-order phase transition from the BCS minimum.
The transition from FF to the partially polarized normal state
is second order, at which the FF minimum merges with the
free Fermi gas line (� = 0). These results are found in the
thermodynamic limit where the saddle-point approximation
of the thermodynamic potential can be analytically written
by integrating the fermionic path integrals after a Hubbard–
Stratonovich transformation. This case has been extensively
studied and used to understand the generic features of the
FFLO phase in 2D [37,38]. The FF Ansatz, however, is not
the most energetically favorable ground state. It has been
shown that, for general dimensions, a sum over Q momenta is
favorable [46,47].

If we consider the summation in Eq. (1) of momenta Q and
−Q, we find a standing wave, the LO Ansatz,

�LO(x) = �Q cos(Q · x). (3)

The LO Ansatz suffers from the loss of an analytic formula
for the thermodynamic potential as the fermionic fields cannot
be integrated out analytically from the partition function. To
this end, some efforts to obtain a truncated approximation of
the thermodynamic potential in 3D have provided interesting
qualitative results [48].

The LO Ansatz in Eq. (3) can be further simplified by
requiring the order parameter to depend on a single direction. It
has been shown in 2D and 3D that the spontaneous breaking of
symmetry due to the LO transition essentially occurs in a ran-
dom direction only, and in 3D it occurs in a very narrow region
of the phase diagram [16]. The cost of the diagonalization of
the Hamiltonian can be reduced in complexity and a complete
study becomes tractable. Specifically, we have for a given
momentum Q along the x axis the pairing order parameter

�LO1 (x) = �Q cos(Qx), (4)

and we refer to this as the LO1 pairing order parameter. This
approach allows us to model the order parameter as a much
more detailed function as long as we keep the phase-transition
symmetry breaking in one direction. In particular, we are able
to study a generalization of the LO1 phase that will be called

013603-2



LARKIN-OVCHINNIKOV SUPERFLUIDITY IN A TWO- . . . PHYSICAL REVIEW A 95, 013603 (2017)

LOg through the whole work,

�LOg (x) =
∑
Q

�Q cos(Qx), (5)

where Q here is summed over the box modes in a single
direction under a periodic boundary condition. This choice
includes the largest number of Q choices available in a finite
box and turned out to be, in 1D, energetically favorable with
respect to the single Q choice in the FF Ansatz and the double
Q choice of the LO1 [35]. If we exclude the dependency of the
order parameter on more than a single direction in space, the
LOg represents again the most general Ansatz.

For the sake of completeness, we mention that the mul-
tidirectional symmetry-breaking phase transition is referred
to as LO2. When the system experiences a large population
imbalance, the order parameter may depend on two or three
directions in space. It can be argued that, for symmetry reasons,
similar to the LO phase discussion, the LO2 transition should
occur with Qi = Q in any ith direction, leading to a form
�LO2 (x) = �Q[cos(Qx) + cos(Qy)] in two and three dimen-
sions, or �LO3 (x) = �Q[cos(Qx) + cos(Qy) + cos(Qz)] in
three dimensions. The role played by these phases involves
only a small part of the phase diagram at large polarization [48],
and we can neglect them from the main study of the LOg phase.

III. MODEL

In this work we consider a polarized Fermi gas in the
2D regime through a single-channel model. Highly oblate
systems can be realized via a combination of harmonic traps
along the radial and axial directions, where the anisotropic
aspect ratio is λ = ωz/ωρ , for axial confinement, ωz, and
the radial counterpart denoted by ωρ . When the temperature
of the gas, kBT , is significantly smaller than the energy
spacing of the harmonic-oscillator states, �ωz or �ωρ , the
condition kBT � �ωz � �ωρ/N describes a 1D regime with
the transverse direction frozen, while the condition

kBT � �ωρ � �ωz/
√

N (6)

freezes out the axial direction and describes a 2D system.
The 2D Fermi gas is then described by the following effective
single-channel Hamiltonian:

H =
∑

σ

[ ∫
V

d2x ψ∗
σ (x)

(
− �

2

2m
∇2 − μσ

)
ψσ (x)

]

+ g2D

∫
V

d2x ψ∗
↑(x)ψ∗

↓(x)ψ↓(x)ψ↑(x), (7)

where ψσ (x) is the Fermi field operator with pseudospins
σ =↑ , ↓, V is the area of the system, g2D is the magnitude
of the contact interaction, μ↑ = μ + δμ and μ↓ = μ − δμ

are the chemical potentials for the spin components, δμ is
the chemical potential imbalance, and m is the mass of the
atoms. We define the polarization of the system in terms of the
populations N↑ and N↓,

p = N↑ − N↓
N↑ + N↓

, (8)

where N = N↑ + N↓ is the total number of atoms in the
system. The interaction is modeled as a contact potential

in the s-wave channel, U2D(x,x′) = g2Dδ(x − x′), and in
two dimensions must be carefully dealt with. The contact
interaction should be renormalized due to the unphysical
ultraviolet divergence (UV) at high energy. From the two-body
T matrix we have

T −1(E) = Vg−1
2D − 
(E), (9)

where E is the scattering energy in the center-of-mass frame,
the particle-particle bubble is given by


(E) =
∑

k

1

E − 2εk + i0+ , (10)

and εk = �
2k2/2m. The particle-particle bubble diverges

logarithmically in two dimensions and we regularize this by
introducing a cutoff � for large k. We match the s-wave 2D
scattering amplitude to the two-body T matrix,

T (E) = 4π�
2/m

ln(εB/E) + iπ
, (11)

in the zero-energy limit and for the binding energy εB of
the two-body bound state. The scattering amplitude can be
recovered from the contact potential by setting and defining,

1

g2D(�)
= − 1

V

∑
|k|<�

1

2εk + εB

. (12)

The two-body binding energy is then related to the 2D
scattering length via

εB = �
2

ma2
2D

. (13)

It is useful to compare 2D scattering to its 3D counterpart,
describing how a quasi-2D system is related to a 3D sys-
tem [49,50]. Integrating out the axial direction we can relate
the 3D scattering length to an effective quasi-2D scattering
length,

a2D

lz
=
√

π

B
exp

(
−
√

π

2

lz

a3D

)
, (14)

where lz = √
�/(mωz) is the axial harmonic-oscillator length

and B � 0.905 is a constant. Equation (14) is valid when the
scattering energy is negligible compared with the strength of
the confinement. In actual experiments, the scattering length,
a2D, can be changed via Feshbach resonances and hence the
effective interactions can be tuned [45].

A. Bogoliubov-de Gennes self-consistent method

We now turn to the many-body formulation of a population-
imbalanced Fermi gas considered through the BdG equations.
Starting from the Heisenberg equation of motion of the
Hamiltonian found in Eq. (7), we define sgn(↑) = − sgn
(↓) = 1 and we obtain for the fermionic fields ψσ (x,t),

i∂tψσ =
(

− �
2∇2

2m
− μσ

)
ψσ + g2D(sgn σ )ψ∗

σ̄ ψ↓ψ↑. (15)

Via the mean-field approximation, we can replace the coupled
terms, g2Dψ

†
↑ψ↓ψ↑ and g2Dψ

†
↑ψ↓ψ↑ with their respective
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mean fields,

g2D(sgn σ )ψ∗
σ̄ ψ↓ψ↑ � g2Dnσ̄ (x)ψσ − (sgn σ )�(x)ψ∗

σ̄ , (16)

where we have defined the order parameter and the density pro-
files, �(x) = −g2D〈ψ↓(x)ψ↑(x)〉 and nσ (x) = 〈ψ†

σ (x)ψσ (x)〉.
The above decoupling of the fields gives the following to the
equations of motion for the spin component σ :

i
∂ψσ

∂t
(x,t) = (H0 − μσ )ψσ (x,t) − sgn(σ )�(x)ψ†

σ̄ (x,t),

(17)

where H0 = −�
2∇2

x/(2m). Note that we will discard the
Hartree term as we take g2D → 0 in the renormalization
procedure. We insert the standard Bogoliubov transformation
to solve the equations of motion,

ψ↑(x,t) =
∑

η

[uη↑(x)cη↑e−iEη↑t − v∗
η↓(x)c†η↓eiEη↓t ],

ψ
†
↓(x,t) =

∑
η

[u∗
η↓(x)c†η↓eiEη↓t + vη↑(x)cη↑e−iEη↑t ],

where the wave functions uση(x) and vση(x) are normalized by
the condition ∫

V

dx (|uση(x)|2 + |vση(x)|2) = 1. (18)

This gives the well-known BdG equations,[
H0 − μσ −�(x)
−�∗(x) −H0 + μσ̄

][
uησ (x)
vησ (x)

]
= Eησ

[
uησ (x)
vησ (x)

]
, (19)

for quasiparticle energy Eησ . The unequal spin populations
require the chemical potential of each spin component to be
unequal; this leads to different quasiparticle wave functions
for each spin component; however, the ↓ problem is related to
the ↑ problem through the unitary transformation[

uησ (x)
vησ (x)

]
=
[−v∗

ησ̄ (x)
u∗

ησ̄ (x)

]
, (20)

and the real-valued quasiparticle energies through Eησ =
−Eησ̄ . Without loss of generality we then remove the spin
index of the BdG equations, defining uη = uη↑, vη = vη↑, and
Eη = Eη↑, leading to the following form:[

H0 − μ↑ −�(x)
−�∗(x) −H0 + μ↓

][
uη(x)
vη(x)

]
= Eη

[
uη(x)
vη(x)

]
. (21)

Through the Bogoliubov transforms the density profiles nσ (x)
can be written in terms of the quasiparticle creation and
annihilation operators,

n↑(x) =
∑

η

u∗
η(x)uη(x)f (Eη), (22)

n↓(x) =
∑

η

v∗
η(x)vη(x)f (−Eη), (23)

and the pairing gap function becomes

�(x) = −g2D

∑
η

uη(x)v∗
η(x)f (Eη). (24)

The contact interaction introduces a UV divergence in the
order parameter and this will be dealt with in the next

section. We impose fermionic statistics for excitations at
inverse temperature β = 1/(kBT ) through the Fermi-Dirac
distribution f (Eη) = 1/(1 + eβEη ).

B. Bogoliubov-de Gennes equations with the LOg Ansatz

The first step to solve the BdG equations is to expand
the quasiparticle wave functions onto a complete basis and
define the order parameter as being a real-valued function.
The complete basis we will use is a tensor product of a
1D complete orthonormal basis that satisfies the periodic
boundary conditions of a box with length L. Specifically, for
a given n = (n1,n2) ∈ N × N, we have

φ(2)
n (x) = φ(1)

n1
(x) ⊗ φ(1)

n2
(y), (25)

where

φ(1)
n (x) =

⎧⎨
⎩

L−1/2 if n = 0
(2/L)1/2 cos [nπx/L] if n is even
(2/L)1/2 sin [(n + 1)πx/L] if n is odd,

(26)

and n1 and n2 are non-negative integers. Letting � = 2m = 1,
the 1D basis functions, φ(1)

n (x), are eigenvectors for the
one-dimensional free Hamiltonian, H = −(d2/dx2), with
eigenvalues

εn :=
{
π2n2/L2 if n is even
π2(n + 1)2/L2 if n is odd.

(27)

The product basis, Eq. (25), are eigenvectors for H0 with
eigenvalues εn = εn1 + εn2 . We expand the basis functions
uη(x) and vη(x) onto this basis,

uη(x) =
∑

n

A(η)
n φ(2)

n (x), vη(x) =
∑

m

B(η)
m φ(2)

m (x),

and the BdG equations (21) become[
(εn − μ↑)δnm −�nm

−�∗
nm −(εn − μ↓)δnm

][
A

(η)
m

B
(η)
m

]
= Eη

[
A

(η)
n

B
(η)
n

]
, (28)

where

�nm =
∫

V

d2x φ(2)
n (x)�(x)φ(2)

m (x). (29)

The eigenvalue problem described by Eq. (28) comes at
significant computational cost and is not easily tractable. In
this work we solve the simpler case of an order parameter �(x)
that is a real-valued function depending on the x direction only
and is a sum of Q modes, the LOg Ansatz defined in Eq. (5).
The periodic boundary conditions force the Fourier transform
of �(x) to be dependent on the discretized, even modes of
the box. This fixes Q = 2πn/L for each non-negative integer
n ∈ N. From Eq. (29), we integrate for each n = (n1,n2) and
each m = (m1,m2) over the variable y, i.e.,

�nm = δn2,m2

∫ L/2

−L/2
dx φ(1)

n1
(x)�(x)φ(1)

m1
(x),

= δn2,m2�n1,m1 . (30)

We can simplify the BdG equations further by exploiting the
y dependence of the densities and order parameter for all η

in Eqs. (22)–(24), and the BdG equations (28). We see that
the dependence on m2 falls out of the problem and the BdG
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equations become block diagonal in n2. This simplifies the
BdG equations and we have for our final form,[

ε↑ −�n1m1

−�n1m1 −ε↓

][
A

(ηn2)
m1

B
(ηn2)
m1

]
= En2

η

[
A

(ηn2)
n1

B
(ηn2)
n1

]
, (31)

where ε↑ = (εn1m1,n2 − μ↑)δn1m1 and ε↓ = (εn1m1,n2 −
μ↓)δn1m1 .

C. Hybrid Bogoliubov-de Gennes strategy

To deal with the infinite-dimensional size of the BdG
equations matrix we introduce a cutoff energy Ec to make the
matrix equations finite and treat the high-lying energy states in
Eqs. (31) separately as free states or plane-wave functions [35].
Specifically, we have the discrete part, below the cutoff, and
a continuous part above the cutoff. From Eqs. (22)–(24) we
truncate the sums to obtain

nd↑(x) =
∑

|Eη|<Ec

u∗
η(x)uη(x)f (Eη), (32)

nd↓(x) =
∑

|Eη|<Ec

v∗
η(x)vη(x)f (−Eη), (33)

�d (x) = −g2D

∑
|Eη|<Ec

uη(x)v∗
η(x)f (Eη), (34)

and where the gap equation is still yet to be renormalized. The
high-lying states, treated as plane waves,

uη(x) → 1√
V

uk(x)eik·x,

vη(x) → 1√
V

vk(x)eik·x, (35)

allow us to solve Eq. (31) and compute the energies above
the cutoff. In particular, we can define the energies Ek(x) =
[(εk − μ)2 + �(x)2]1/2 and obtain the continuum corrections,

nc↑(x) =
∑

k

(
1

2
− εk − μ

2Ek(x)

)
�(Ek(x) + δμ − Ec), (36)

nc↓(x) =
∑

k

(
1

2
− εk − μ

2Ek(x)

)
�(Ek(x) − δμ − Ec), (37)

�c(x) = −g2D

∑
k

�(x)

2Ek(x)
�(Ek(x) + δμ − Ec), (38)

where �(x) is the Heaviside step function. The continuous
and discrete parts of the order parameter can be combined and
using the regularization condition we have,

�(x) = −geff
2D(x)

∑
|Eη|<Ec

uη(x)v∗
η(x)f (Eη), (39)

where

1

geff
2D(x)

= 1

g2D
+ g(x), (40)

and using the definition

g(x) = 1

V

∑
k

1

2Ek(x)
�(Ek(x) + δμ − Ec). (41)

In the thermodynamic limit, due to the high density of
states beyond the cutoff, the continuous contribution can be
analytically solved, giving

nc↑(x) = 1

8π
[Ec − δμ + μ − kc(x)2], (42)

nc↓(x) = 1

8π
[Ec + δμ + μ − kc(x)2], (43)

1

geff
2D(x)

= − 1

8π
ln

(
Ec − δμ − μ + kc(x)2

εB

)
, (44)

where we introduce the cutoff momentum, kc(x) = {μ +
[(Ec − δμ)2 − �(x)2]1/2}1/2. Gathering together all these re-
sults we achieve the final form for the densities profiles,

n↑(x) = nd↑(x) + nc↑(x),

n↓(x) = nd↓(x) + nc↓(x),

�(x) = −geff
2D(x)�d (x).

(45)

In the grand canonical ensemble we find the absolute
minimum of the thermodynamic potential, � = �(μ,δμ,T ) =
U − T S − μN − δμδN , where U is the internal energy and
S is the entropy. Simulations performed in the canonical
ensemble requires more computational effort, where the BdG
equations depend self-consistently on μ and δμ that are
computed by using the number equations

N = −∂�

∂μ
, δN = − ∂�

∂(δμ)
, (46)

converging to a given μ(n,δn,T ) and δμ(n,δn,T ). To find the
ground state for momenta Q we minimize the Helmholtz free
energy, F = F (n,p,T ) = U − T S with respect to Q.

D. Energy and entropy

In addition to the calculation of the order parameter and
densities, the complete study of this system, either at zero
or finite temperature, requires the total energy and entropy
densities. Through the Bogoliubov transformations we define
the profiles for the energy density, E(x), and the entropy
density, S(x), on quasiparticles modes as

E(x) = μ↑n↑(x) + μ↓n↓(x) − |�(x)|2
g

+
∑

η

{[|uη(x)|2

+ |vη(x)|2]f (Eη) − |vη(x)|2}, (47)

S(x) = −kB

∑
η

{[f (Eη) ln (f (Eη)) + f (−Eη) ln (f (−Eη))]}

× [|uη(x)|2 + |vη(x)|2]. (48)

Since both the energy density and entropy density depend on
sums over the eigenvalues, Eη, and eigenvectors, uη(x) and
vη(x), we can calculate the energy and entropy densities of the
system through the expansion of the discrete and continuous
states. It is possible to show that the continuous correction to
the entropy density is negligible for high-lying states [51], and
we focus on the energy. Treating the high-energy states in the
thermodynamic limit, we write E(x) = Ed (x) + Ec(x) and get
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the following contribution:

Ec(x) = 1

8π

⎧⎪⎪⎨
⎪⎪⎩�2

⎡
⎢⎢⎣1

2

+ ln

⎛
⎜⎜⎝
√

E− +
√

E2− − �2

√
E+ +

√
E2+ − �2

εB

⎞
⎟⎟⎠
⎤
⎥⎥⎦

+
∑
σ=±

Eσ

2

√
E2

σ̄ − �2 − E2
c + δμ2

⎫⎪⎪⎬
⎪⎪⎭, (49)

where for simplicity we define E± = Ec ± δμ.
The solutions to the BdG equations were carried out

following an iterative algorithm, self-consistently calculating
the order parameter and the density profiles. We perform
calculations in either the grand canonical ensemble, fixing
μ and δμ and computing the number of particles N and
polarization p, or in the canonical ensemble, fixing N and p,
and iteratively computing μ and δμ. It is important to remark
that the nature of the quantities we want to investigate, the
Helmholtz free energy and thermodynamic potential, show
very small variations while changing the thermodynamic
variables. From the knowledge we have from solving the FF
Ansatz found in Fig. 1, the relative difference needed to see
the appearance of new absolute minima in the thermodynamic
potential is approximately 10−7. To reach this precision we
have to increase both the number of particles, which increases
the size of the BdG equations, and the sampling rate over the
box length, which increases the integration precision. Once
the algorithm reaches convergence, the cutof-energy depen-
dence is tested to ensure the calculations do not depend on
the cutoff Ec.

The BdG equations are a mean-field treatment of the
imbalanced system and they are expected to be quantitatively
incorrect in the strongly correlated regime. However, they will
provide constant qualitative results for all interaction strengths
and will provide an excellent picture of the system under
investigation.

IV. RESULTS

In the calculations we use natural units, such that � = 2m =
kB = 1 and, in the case of a nonvanishing polarization, we set
kF = 1 where kF is, at fixed particle number, the free Fermi
momentum. In 2D the linear relation between the Fermi energy
and the density of particles requires that the size of the box
L increases as the square root of the number of particles,
N . An increase in the number of particles corresponds to a
quadratic increase in the size of the BdG equations. We have
used a particle number of N = 2000, which corresponds to a
box size of L � 112/kF , comparable with similar results in the
1D case [51]. We set the cutoff energy for values Ec � 10εF ,
where εF = �

2k2
F /2m is the Fermi energy; however, some

calculations require higher cutoff values. It is interesting to
note that, for the self-consistent calculations, a large cutoff Ec

slows down the runtime, but reduces the number of iterations
before convergence. The accuracy of the diagonalization
process of the BdG equations has been implemented with an
additional number n̄ of orthonormal basis elements beyond the
cutoff energy such that

n1 <

√
EcL2

π2
− n2

2 = n̄. (50)

In the following sections we look at the results for the LOg

phase in the canonical ensemble and follow with the treatment
of the grand-canonical-ensemble results. We discuss the phase
diagram at zero and finite temperature, and the structure of
the LOg ground states that depends on the spin imbalance. A
specific comparison with the LO1 Ansatz will be treated. The
behavior in the grand canonical ensemble will be extensively
investigated with emphasis on the order of the phase transition.

A. Canonical ensemble

In Fig. 2 we present the LOg phase diagram in the canonical
ensemble for polarizations p and for reduced temperature,
T/TF = 0, and binding energy εB = 0.25εF . For a fixed
polarization p we define the free Fermi gas Helmholtz free
energy at zero temperature Ffree(T = 0,n,p) and we introduce
a rescaling constant F0 = 2π × 10−2εF N , with N being the
number of particles, such that we can plot the dimensionless
quantity,

δF/F0 = [
FLOg (T ,n,p) − Ffree(T = 0,n,p)

]/
F0. (51)

We see that the LOg phase is the energetically favorable ground
state (with respect to the BCS and FF minima) for polarizations
0.02 � p � 0.58, above p > 0.58 the system falls into the
free Fermi gas phase [52]. We know that a finite nonzero
polarization destroys the BCS phase, and we see a transition
at very low polarizations, pc1 = 0.02. The finite nature of
this transition is due to the numerical difficulty in finding
the true ground state. We expect that, for finite nonvanishing
polarizations below the transition, p < pc1, the LOg phase is

FIG. 2. The energy difference δF = FLOg − Ffree, for the
Helmholtz free energy, FLOg , and the free Fermi gas, Ffree, at tem-
perature T/TF = 0, and interaction strength εB = 0.25εF . Rescaled
for graphic purposes through the constant F0 = 2π × 10−2NεF . The
transition polarization pc1 � 0.02, from BCS to LOg, and pc2 = 0.58,
from LOg to NPP, are denoted by bold black vertical lines. The region
p > 0.4 denotes the LOg phase that is indistinguishable from the LO1

phase.
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FIG. 3. The inhomogeneous order parameter �(x)/εF as a func-
tion of the x direction (solid line) and the local spin polarization p(x)
(dashed line) calculated via the self-consistent method at temperature
T/TF = 0 and interaction strength εB = 0.25εF , for polarizations
(a) p = 0.08, (b) p = 0.10, and (c) p = 0.28.

still the ground state. At high polarizations 0.40 < p < 0.58
the LOg and LO1 phase have merged, and we explore and
elucidate this part of the phase diagram further below through
the structure of the order parameter.

In Fig. 3 we explore the spatial distribution of the order
parameter (solid line) and the local spin polarization (dashed
line),

p(x) = n↑(x) − n↓(x)

n↑(x) + n↓(x)
, (52)

from the converged BdG solutions for polarizations p = 0.08
[Fig. 3(a)], p = 0.10 [Fig. 3(b)], and p = 0.28 [Fig. 3(c)]
as a function of the box length xkF , where kF is the Fermi
momentum. We see in Figs. 3(a)–3(c) that the increasing
polarization p leads to a higher main amplitude Q and becomes
consistent with the LO1 Ansatz. The local spin polarization is
plotted as a function of space and we observe the structure
imposed by the LOg phase. We see the favorable ground-state
configuration places the excess spin-up atoms (the majority)
where the order parameter vanishes, and the superfluid fraction
at the peaks, and here excitations are less probable to occur,
preserving superfluidity.

We can compare the LOg ground-state order parameter
with the LO1 Ansatz, by decomposing the self-consistently
computed order parameter through a cosine Fourier transform.

FIG. 4. (a) The weight �n (in Fermi energy units) of each Fourier
cosine mode n of the LOg phase, calculated according to Eq. (53) at
zero temperature and εB = 0.25εF , at different spin polarizations p.
(b) The weight of the main Fourier mode, shown in percentage with
respect to the other nonvanishing modes, as a function of the spin
polarization. The insets are a guide to show the behavior of the order
parameter for a given polarization.

The order parameter has to be an even function along the
chosen preferred direction; that is,

�LOg (x) =
∞∑

n=1

�n cos

(
2πn

L
x

)
, (53)

then the LOg and the LO1 are the same phase when the Fourier
transform has only one mode. In Fig. 4(a) we show that the self-
consistent LOg phase is a superposition of different Fourier
cosine modes and has a main mode occupation that is provided
by the LO1 Ansatz. A comparison between the LOg phase
configuration versus the LO1 indicates that the LOg choice is
always energetically favorable. This fact is true at both low
and high polarizations where the LOg and LO1 phases almost
match. To explore this overlap we study the percent occupation
of the main mode and we observe in Fig. 4(b) that a perfect
overlap between the phases never fully occurs. We can then
conclude that there is always a combination of modes that is
the energetically preferred ground state.

In Fig. 5 we show the behavior of the Helmholtz free energy
for two different cases: at zero temperature and letting the po-
larization vary [Fig. 5(a)], while in Fig. 5(b) the polarization is
fixed at p = 0.07 and we increase the temperature. Figure 5(a)
shows that the minimum of the free energy that occurs at
Qmin always lies away from Q/kF = 0 and Qmin increases
proportionally with the polarization. Figure 5(b) shows that
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FIG. 5. The Helmholtz free-energy difference between the LOg

(for Q �= 0 and BCS at Q = 0) and the free Fermi gas free energy
rescaled by F0 = 2π × 10−2NεF : (a) at zero temperature varying
the polarization and (b) at fixed polarization p = 0.07 increasing
the temperature. The semitransparent bullets indicate the absolute
minimum position Qmin for each configuration. The dashed horizontal
line in panel (a) is the free Fermi gas free energy: every time the Q

is too high the model mimics the free Fermi gas destroying the order
parameter. Here, the binding energy is εB = 0.25εF .

there is a transition point between the LOg phase and the BCS
phase in the temperature range 0.15TF < T < 0.20TF . We
observe that the increase of polarization pushes the minimum
to high Q values, while the increase of temperature pushes
it back towards the Q = 0 limit (i.e., the BCS phase). This
behavior is expected to change for high polarization when the
LOg phase has a transition directly to the free Fermi gas phase.
We note that the interaction strength εB = 0.25εF requires a
pair-fluctuation treatment to produce quantitative results as the
mean-field theory predicts the transition temperature from the
BCS to normal state of 0.41TF , well above the experimental
observations [42,53].

B. Grand canonical ensemble

Although the canonical ensemble can tell us about the
properties and exotic phases of a spin-polarized Fermi gas, it
is important to know the nature of the phase transitions and the
transition temperatures of the phases we have described so far;
to perform this we now work in the grand canonical ensemble.
The absolute minimum of the thermodynamic potential is
found at fixed chemical potentials μ and δμ, and this minimum
moves through the landscape of the thermodynamic potential,
giving us an insight as to the order of each phase transition.
To explore the system we first need to study the behavior

FIG. 6. The behavior of μ and δμ with respect to their expected
behavior as free Fermi gas thermodynamic variables, as a function
of the polarization, at zero temperature, density n = k2

F /(2π ) and
binding energy εB = 0.25εF . The phase transition in the canonical
ensemble are denoted by the background color as found in Fig. 2.

of the chemical potentials μ and δμ, found through the self-
consistent BdG method in the canonical ensemble. We explore
different regimes through the equations of state, μ(n,δn) and
δμ(n,δn), with respect to a fixed density n = k2

F /(2π ) and
varying polarization to justify the regimes of interest in the
grand canonical ensemble.

The values of μ and δμ used to compute the real
order parameter �(x) at fixed density n and polarization p,
normalized by the Fermi energy and polarization multiplied
by the Fermi energy, respectively, are plotted in Fig. 6. The
shaded regions correspond to the phases found in Fig. 2, at
polarization pc1 � 0.02, where we have the transition from
BCS to LOg, and pc2 = 0.58, for the transition from LOg to
NPP [54]. At zero temperature, the BCS phase is favorable
only at p = 0. The underlying mean-field theory in 2D for
the equation of state of a possible phase-separation phase (i.e.,
a mixture of a BCS superfluid and a normal gas) has been
studied in Ref. [55] and the δμ versus μ phase diagram that
involves the transition between BCS phase and the free Fermi
gas has been explored therein. We take the salient results here,

μBCS = π�
2

m
n − εB

2
, 0 � δμ <

�0√
2
. (54)

The upper limit for δμ is the Chandrasekhar–Clogston (CC)
limit,

δμCC =
√

ε2
B

2
+ μεB, (55)

above which the superfluid breaks down. We observe that both
μ and δμ assume an almost direct proportionality with the
Fermi energy εF and the polarization p whenever δμ is large
enough. Since in the grand canonical ensemble the LOg phase
arises at high δμ, we consider the case of μ/εF = 1 and vary
δμ through the CC limit at different binding energies.

Taking the above values for the chemical potentials, in
Fig. 7 we plot the phase diagram of the spin-imbalanced
Fermi gas as a function of the binding energy, εB/εF , and
dimensionalized chemical-potential difference, δμ/εF . The
dashed line represents the CC limit, and we observe that the
LOg phase provides two transition lines that we will denote
with δμ1 (stars), below the CC limit, and δμ2 (squares), above
it. In particular, the δμ2 line is in agreement with the results
provided by the FF Ansatz in Ref. [38]. It is interesting to
observe how the reduced dimensionality of the problem, at
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FIG. 7. The critical phase-transition values of δμ as a function of
the binding energy εB at zero temperature, δμ1 (stars) from the BCS
superfluid to LOg and δμ2 (crosses) from LOg to NPP.

least at zero temperature, enhances the effect of both the FF
and the LOg phase. In 3D, it is possible to estimate that the
FFLO phase is available for roughly 4% of the δμ values
for which a superfluid phase is favorable, either BCS or
FF, as evaluated from the phase diagram temperature versus
magnetization [56]. We find from examining the corresponding
region in Fig. 7 that, at a fixed binding energy, the FFLO is
accessible for roughly 17% of the phase space, in which the
system is a superfluid; that is, (δμ2 − δμ1)/δμ2 � 0.17.

We can find the favorability of the LOg phase com-
pared with the BCS and FF phases by finding the absolute
minima of the thermodynamic potential. In Fig. 8 we plot
the local minima of the thermodynamic potential of three
different Anätze: BCS, FF, and LOg, for two binding energies,
εB = 0.10εF [Fig. 8(b)] and εB = 0.25εF [Fig. 8(a)]. Vary-
ing the dimensionless chemical-potential difference, δμ/�0,
where �0 is the BCS order parameter at zero temperature,
we determine the region where the LOg phase is favorable.
The intersection of different phases determines the critical
values δμ1 (i.e., from the BCS to LOg transition) and δμ2 (i.e.,
from the LOg to NPP transition).

We see in Fig. 8 that the LOg to NPP transition is smooth [57]
while the BCS to LOg has a discontinuity, although not easy to
observe. The order of the BCS-LOg transition can be examined
as we increase the binding energy εB . We check the behavior
of the order of phase transitions in Fig. 9, where we have
plotted the thermodynamic potential of the LOg phase as a
function of Q at the points labeled (1)–(4) in Fig. 8(a) for the
interaction strength εB = 0.10εF , sliced at different δμ values.
The comparison between subplots in Figs. 9(c) and 9(d) reveals
the second-order nature of the LOg-NPP phase transition. In
this part of the phase diagram, an increase of δμ leads to: (i)
an increase of the LO momentum Q, (ii) the order-parameter
amplitude squeezes until it vanishes in δμ2, and (iii) the order-
parameter frequency matches the LO1 initial Ansatz. The BCS-
LOg phase transition can be studied by observing the evolution
of the thermodynamic potential in the subplots in Figs. 9(a)
and 9(b). It is known that the FF phase undergoes a first-order
phase transition towards the BCS phase [38]. In our case, the
presence of a local maximum at small Q in the subplot in
Fig. 9(a) is an indication of the first-order phase transition.
However, within our accuracy, the local maximum is shown
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FIG. 8. The zero-temperature minima of FF, BCS, and LOg

thermodynamic potentials. The upper panel (a) is for interaction
strength εB = 0.10εF and panel (b) is for interaction εB = 0.25εF .
The critical chemical-potential imbalance, δμ2 denotes the LOg to
NPP transition and �0 is the BCS energy gap at zero temperature.
The thermodynamic potentials are defined with respect to the free
Fermi gas thermodynamic potential, �free, and scaled by the constant
�0 = 2π × 10−3NεF . In panel (a), the labels from (1) to (4) refer to
Fig. 9 and denote the configurations for which we studied the shape
of the thermodynamic potential itself.

by a single point only. It is possible to increase the binding
energy and thereby to relatively improve the accuracy of the
calculation. As shown in Fig. 9(e), at εB = 0.35εF , the local
maximum at low Q becomes more evident. Considering the
accuracy of our numerical calculations and also the difficulty
of reaching convergence close to the BCS-LOg transition line,
we cannot make a conclusive determination of the order of the
BCS-LOg transition. Throughout the work, we interpret it as a
weak first-order transition, to reflect the fact that the structure
of the local maximum is weak.

C. Finite temperature

We can extend the BdG equations from the zero-
temperature regime to study the LOg phase at finite tempera-
tures. In the deep-BCS limit, the critical transition temperature,
T BCS

c , can be approximated from the gap equation in 2D,
following the Landau theory of the second-order phase
transition,

T BCS
c � 2

π
eγ−ln(kF a2D)TF , (56)

where γ is the Euler–Mascheroni constant. We can estimate the
tricritical-point (TCP) temperature, where the BCS, CC limit,
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FIG. 9. The thermodynamic potential as a function of Q for
interaction strength εB = 0.1εF and chemical-potential difference
(a) δμ = 0.3, (b) δμ = 0.31, (c) δμ = 0.33, and (d) δμ = 0.36. The
plots (a)–(d) correspond to points (1)–(4), respectively, in Fig. 8(a).
(e) BCS-LOg transition at higher binding energy εB = 0.35εF to
emphasize the first-order nature of the transition. The thermodynamic
potential is defined with respect to the free Fermi gas through
δ� = � − �free, and scaled by a constant, �0 = 2π × 10−3NεF .

and FFLO phase intersect, with the numerical value [58–60]

TTCP � 0.561T BCS
c . (57)

From our self-consistent BdG equations we plot out the phase
diagram for the critical temperature as a function of chemical-
potential difference in Fig. 10 for interaction strengths εB =
0.10εF [Fig. 10(a)] and [Fig. 10(b)] εB = 0.25εF , the inset
shows the entire phase diagram. The transition between the
BCS and NPP phase, found through the BCS theory, is
second order for temperatures above TTCP. The first-order
CC limit (dashed line) is entirely contained in between the
two LOg transition temperatures at any relevant δμ value.
Moreover, the order of the phase transitions is preserved, the
second-order phase transition between the LOg and NPP phase
is unaffected by an increasing temperature below TCP. The
weak first-order BCS LOg is preserved within our numerical
accuracy.

We note that, in the weakly interacting regime εB = 0.10εF ,
T BCS

c is approximately 0.25TF . It appears that the mean-field
treatment requires a beyond-mean-field approach to take into
account the fact there is no superfluid behavior above the
Berezinskii–Kosterlitz-Thouless (BKT) temperature TBKT �
0.125TF . We observe that most of the LOg phase is below
TBKT, and within our numerical calculations the existence and
availability of the LOg phase at finite temperatures is also
below the TCP temperature, at least in the weakly interacting
regime. However, we cannot provide accurate quantitative
results for the transition temperatures among the phases under
investigation due to the mean-field nature of the calculation.

V. SUPERFLUID DENSITY OF LOg PHASE

The superfluid density is an essential signature of a
superfluid system, and as we have seen the structure of the

FIG. 10. Critical temperature of the second-order BCS-NPP

(solid) transition, the CC limit (dashed), weak first-order BCS-LOg

transition through δμ1(T ) (crosses), and second-order LOg NPP

through δμ2(T ) (stars). The graph is scaled with respect to the BCS
critical temperature T BCS

c at δμ = 0 and the BCS pairing gap at zero
temperature �0. The inset shows the full phase diagram and the black
dashed line is the BKT transition temperature.

pairing order parameter has been significantly altered for a
finite polarization. We can study the superfluid density of
a Fermi gas by imposing a superfluid twist [61–64]. The
superfluid part of the system, if it exists, cannot react to
small excitations like a normal gas and creates a superfluid
current, whose magnitude is proportional to the superfluid
density contained in the gas [65]. We impose the twist by
modifying the pairing order parameter in Eq. (21),

�(x) = �(x)eiQs ·x, (58)

where the twist momentum is Qs and the superfluid velocity
vs is given by

vs = Qs

2m
. (59)

The Helmholtz free energy F must increase if we impose a
flow in the superfluid phase and the shape of the free energy
for small twists is shown to behave like the square of the phase
twist amplitude around the point F (Qs = 0) [61],

F (Qs) − F (0)

V
� |Qs |2

2V

(
∂2F (Qs)

∂|Qs |2
)

Qs→0
≡ 1

2
ρsmv2

s , (60)
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FIG. 11. Effect of a phase twist imposed on the pairing order
parameter. In the parallel direction (red broken line), superfluid
current can hardly be produced, while in the perpendicular direction
(blue line), superfluid current is allowed to flow, except the regions
where the order parameter vanishes and the spin imbalance is high.

where the superfluid density ρs is

ρs = 4m

(
∂2F (Qs)

∂|Qs |2
)

Qs=0
, (61)

and the normal part density must be ρn = n − ρs .
Due to the symmetry we have imposed on the LOg order

parameter and from Fig. 3, where the local spin polarization
is peaked when �(x) vanishes, we can infer the fundamental
properties of the superfluid phase. In Fig. 11, we illustrate
the idea of what might happen when we impose a superfluid
twist that is either parallel (x direction) or perpendicular (y
direction) to the LO order parameter. A macroscopic current
along the x direction must cross regions where the LOg

phase has domain walls and thus cannot flow. A superfluid
current along the y direction is able to flow as the order
parameter is nonzero. By setting Qs = Qs x̂, we find that
there is no detectable superfluid density within our numerical
precision. Thus, we restrict the following analysis to the
perpendicular case, choosing Qs = Qs ŷ and computing the
superfluid density via Eq. (61) through a modification of
the BdG equations given in Sec. III.

Equations (31) in the presence of the twist are now complex
valued and need to be recast in a real-valued form. To achieve
this we have to consider again the Heisenberg equations
of motion and perform a new Bogoliubov transformation
including the twist order parameter Eq. (58). The new modes
will be decomposed as follows:

ψ↑(x) =
∑

η

[
uηQs↑(x)cηQs↑e−iEηQs↑t − v∗

ηQs↓(x)c†ηQs↓eiEηQs↓t
]
,

ψ
†
↓(x) =

∑
η

[
u∗

ηQs↓(x)c†ηQs↓eiEηQs↓t + vηQs↑(x)cηQs↑e−iEηQs↑t
]
,

(62)

yielding

M↑

[
uηQs↑
vηQs↑

]
=
[ −∇2

x − μ↑ −�(x)eiQs ·x

−�(x)∗e−iQs ·x ∇2
x + μ↓

][
uηQs↑
vηQs↑

]
.

(63)

We can remove the phase from the order parameter through
the transformation AM↑A∗, where

A =
[
e

i
2 Qs ·x 0
0 e− i

2 Qs ·x

]
. (64)

As in the derivation of the FFLO BdG equations, the two spin
components are related through a unitary transformation and
we only need to study one spin component. We thus define
uηQs↑ = uηQs

and vηQs↑ = vηQs
, obtaining the following form

for the BdG equations,[
−( �∇ + i Qs

2

)2 − μ↑ −�(�x)

−�(�x)
( �∇ − i Qs

2

)2 + μ↓

][
uηQs

vηQs

]

= EQs

η

[
uηQs

vηQs

]
. (65)

Choosing a Hilbert basis of complex-valued functions,

φk(x) = eik·x
√

V
, k = 2π√

V
n,

with n ∈ Z2, we expand the quasiparticle wave functions as

uηQs
=
∑

k

A
(ηQs )
k φk, vηQs

=
∑

k

B
(ηQs )
k φk,

and expand the BdG equations with the requirement that �(x)
be a real valued, uni-directional function and a superposition
of cosine Fourier modes. As in Sec. III, we obtain a block-
diagonal set of matrix equations in n2, giving[

ε
↑
nm −�n1m1

−�nm −ε
↓
nm

][
A

(ηQsn2)
m

B
(ηQsn2)
m

]
= EQsn2

η

[
A

(ηQsn2)
n

B
(ηQsn2)
n

]
, (66)

where we define the two single-particle energies

ε↑
nm =

[(
k + Qs

2

)2

− μ↑

]
δnm,

ε↓
nm =

[(
k − Qs

2

)2

− μ↓

]
δnm. (67)

The order-parameter matrix elements are found from

�nm = 1

L

∫ L/2

−L/2
dx cos ((n − m)x)�(x). (68)

The choice of the cutoff energy is matched to the Qs = 0 cal-
culations and adjusted to ensure the calculation is independent
from the cutoff choice.

In Fig. 12 we show the Helmholtz free energy under
a phase twist Qs = Q⊥ = Qsŷ with increasing twist am-
plitude (measured in units of the Fermi momentum kF ) at
zero temperature and interaction strength εB = 0.25εF . The
parabolic dependency in Qs is obtained by fitting the data
with polynomial cure, ax2 + bx4. We find the coefficient b

is negligible and the coefficient a is then proportional to the
superfluid density of the system using Eq. (61). We note that,
in the presence of the LO order parameter, the calculation of
the superfluid density becomes very difficult. The only way
to increase the precision of our approach is to increase the
size of the system, i.e., L. This can be done by increasing
the number of particles; however, this greatly increases the
computational cost. Previous computations related to the FF
phase [66], which use similar methods, have been able to
dramatically increase the accuracy of numerical calculations,
approximately 10 times better than our accuracy.
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FIG. 12. The perpendicular Helmholtz free-energy difference
δF⊥ = F (Q⊥) − F (0) as a function of the phase twist, for various
polarizations. The free-energy variation is calculated by using Q⊥ =
Qsŷ and is plotted in units of a rescaling constant F0 = 2π ×
10−3NεF . The continuous lines are the data fit using a two-parameter
polynomial curve ax2 + bx4.

In Fig. 13, we present the superfluid fraction as a function
of the polarization at the interaction strength εB = 0.25εF

and at zero temperature. In general, we observe that an
increase of polarization suppresses the superfluid density. As
the LO momentum of the pairing gap increases with increasing
polarization, as shown in Fig. 3(c), the local spin imbalance
becomes more spread in space, making it more difficult for the
superfluid current to flow. We note that there is a significant
drop in the superfluid density for polarization larger than
p � 0.4pc2. This behavior may be due to the high polarization
causing the pairing order parameter to be highly oscillatory,
where the LOg and LO1 phases are matching, increasing the
number of zeros in the order parameter and preventing the
superfluid current from flowing. As a result, the superfluid
fraction decreases dramatically, making this regime difficult
to experimentally probe.

A direct observation of the superfluid density is available
through the detection and measurement of excitations caused

ρ s
/n

p/pc2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

FIG. 13. The superfluid fraction ρs/n as a function of the
polarization p at εB = 0.25εF at zero temperature. The polarization is
rescaled by the critical polarization pc2 = 0.58, at which the LOg-NPP

transition occurs. The green and yellow regions correspond to the
LOg → LO1 and BCS regions shown in Fig. 2, respectively. The
solid line is a guide line.

by resonant interactions on the gas. Although experimentally
hard to probe, the propagation of second sound is a technique
that has been successfully adopted to investigate the ratio ns/n

in a 1D Fermi gas [67], promoting this quantity as a viable
experimental candidate to study Fig. 13.

VI. CONCLUSIONS

We have studied in detail the mean-field theory of a
two-component 2D atomic Fermi gas in the presence of
spin-population imbalance. The pairing order parameter has
been self-consistently determined through numerical solutions
of the BdG equations in the case of an s-wave scattering contact
potential, allowed only between opposite-spin particles. We
have considered different types of pairing order parameter and
explored the phase transitions and the superfluid nature of
the system. In particular, the LO Ansatz for the pairing order
parameter has been refined and treated with reasonable approx-
imations in order to make computations accessible and useful.
In contrast to the previous studies with a FF Ansatz [37,38],
such a refinement reveals the pivotal importance of the LOg

Ansatz among the broad FFLO family in 2D. The LOg phase
turns out to be energetically favorable with respect to both the
FF and the original LO Ansatz.

The detection of the LOg phase, similarly to the LO1

case [68], is related to the density of states, otherwise called
the LO phase signature. The Hamiltonian spectrum in the
BCS phase must display a gap between states with positive
and negative energies. In particular, the density of states must
vanish in the energy interval |E| < �BCS. The presence of
weakly bound Andreev states populates the gap with extra
additional peaks due to the modulation in frequency of the
order parameter �LOg . While the LO1 phase has a single peak,
multiple peaks are indeed expected to appear in the band gap
in the LOg case due to the frequency spectra of Fig. 4. This
signature has been recently tested with promising results in
probing the existence of the FFLO family [69].

The superfluid density of the LOg phase has been calculated
by adding a phase twist to the pairing order parameter. We have
predicted the qualitative behavior of the superfluid density with
increasing spin polarization.

The mathematical and computational methods employed in
our work are satisfactory, although they are incomplete for pro-
viding exact quantitative results. Many of the configurations
under investigation mimic some experimental settings for 2D
or quasi-2D Fermi gases [45]. Therefore, we anticipate that our
results might be useful for possible experimental realizations
of a FFLO phase in 2D in the near future. We note also that a
beyond-mean-field treatment is required to obtain quantitative
results and to estimate the critical temperature of the LOg

phase.
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(2014).
[42] P. A. Murthy, I. Boettcher, L. Bayha, M. Holzmann, D. Kedar,

M. Neidig, M. G. Ries, A. N. Wenz, G. Zürn, and S. Jochim,
Phys. Rev. Lett. 115, 010401 (2015).

[43] W. Ong, C. Cheng, I. Arakelyan, and J. E. Thomas, Phys. Rev.
Lett. 114, 110403 (2015).

[44] K. Fenech, P. Dyke, T. Peppler, M. G. Lingham, S. Hoinka, H.
Hu, and C. J. Vale, Phys. Rev. Lett. 116, 045302 (2016).

[45] P. Dyke, K. Fenech, T. Peppler, M. G. Lingham, S. Hoinka, W.
Zhang, S.-G. Peng, B. Mulkerin, H. Hu, X.-J. Liu, and C. J.
Vale, Phys. Rev. A 93, 011603 (2016).

[46] N. Yoshida and S.-K. Yip, Phys. Rev. A 75, 063601 (2007).
[47] A. Bulgac and M. McNeil Forbes, Phys. Rev. Lett. 101, 215301

(2008).
[48] J. E. Baarsma and H. T. C. Stoof, Phys. Rev. A 87, 063612

(2013).
[49] D. S. Petrov and G. V. Shlyapnikov, Phys. Rev. A 64, 012706

(2001).
[50] J. Levinsen and M. M. Parish, Strongly interacting two-

dimensional Fermi gases, in Annual Review of Cold Atoms and
Molecules (World Scientific Pub Co Pte Lt, 2015), Chap. 1,
pp. 1–75.

[51] X.-J. Liu, H. Hu, and P. D. Drummond, Phys. Rev. A 75, 023614
(2007).

[52] It is possible the ground state for these polarizations is the
more complicated LO2 phase, which is not considered in this
work.

[53] I. Boettcher, L. Bayha, D. Kedar, P. A. Murthy, M. Neidig, M. G.
Ries, A. N. Wenz, G. Zürn, S. Jochim, and T. Enss, Phys. Rev.
Lett. 116, 045303 (2016).

[54] The distinction between the fully polarized normal Fermi gas
NFP and the partially polarized NPP that occurs when δμ > μ

is not taken into account here and we will use the notion of free
Fermi gas for the NPP phase.

[55] L. He and P. Zhuang, Phys. Rev. A 78, 033613 (2008).
[56] M. M. Parish, F. M. Marchetti, A. Lamacraft, and B. D. Simons,

Nat. Phys. 3, 124 (2007).
[57] The FF line of minima is always above the LOg line close to

the BCS line, although at high δμ values, the model accuracy
does not allow us to conclude whether there is, or is not,
another transition FF-LOg. Besides, we must say that is very
inessential because, at high δμ, the energy-gap parameter
reduces continuously its amplitude until it vanishes and the
difference between the magnitude of the two Ansätze might
be negligible. Moreover, at high δμ values it’s even more likely,

013603-13

https://doi.org/10.1103/PhysRevLett.28.885
https://doi.org/10.1103/PhysRevLett.28.885
https://doi.org/10.1103/PhysRevLett.28.885
https://doi.org/10.1103/PhysRevLett.28.885
https://doi.org/10.1103/PhysRevLett.29.920
https://doi.org/10.1103/PhysRevLett.29.920
https://doi.org/10.1103/PhysRevLett.29.920
https://doi.org/10.1103/PhysRevLett.29.920
https://doi.org/10.1103/PhysRevLett.29.1227
https://doi.org/10.1103/PhysRevLett.29.1227
https://doi.org/10.1103/PhysRevLett.29.1227
https://doi.org/10.1103/PhysRevLett.29.1227
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1016/0921-4534(96)00065-2
https://doi.org/10.1016/0921-4534(96)00065-2
https://doi.org/10.1016/0921-4534(96)00065-2
https://doi.org/10.1016/0921-4534(96)00065-2
https://doi.org/10.1016/0921-4534(95)00724-5
https://doi.org/10.1016/0921-4534(95)00724-5
https://doi.org/10.1016/0921-4534(95)00724-5
https://doi.org/10.1016/0921-4534(95)00724-5
https://doi.org/10.1103/PhysRevLett.91.187004
https://doi.org/10.1103/PhysRevLett.91.187004
https://doi.org/10.1103/PhysRevLett.91.187004
https://doi.org/10.1103/PhysRevLett.91.187004
https://doi.org/10.1103/PhysRevLett.99.187002
https://doi.org/10.1103/PhysRevLett.99.187002
https://doi.org/10.1103/PhysRevLett.99.187002
https://doi.org/10.1103/PhysRevLett.99.187002
https://doi.org/10.1016/j.physc.2009.11.151
https://doi.org/10.1016/j.physc.2009.11.151
https://doi.org/10.1016/j.physc.2009.11.151
https://doi.org/10.1016/j.physc.2009.11.151
https://doi.org/10.1103/RevModPhys.76.263
https://doi.org/10.1103/RevModPhys.76.263
https://doi.org/10.1103/RevModPhys.76.263
https://doi.org/10.1103/RevModPhys.76.263
https://doi.org/10.1038/nature04936
https://doi.org/10.1038/nature04936
https://doi.org/10.1038/nature04936
https://doi.org/10.1038/nature04936
https://doi.org/10.1103/PhysRevLett.97.030401
https://doi.org/10.1103/PhysRevLett.97.030401
https://doi.org/10.1103/PhysRevLett.97.030401
https://doi.org/10.1103/PhysRevLett.97.030401
https://doi.org/10.1103/PhysRevLett.96.060401
https://doi.org/10.1103/PhysRevLett.96.060401
https://doi.org/10.1103/PhysRevLett.96.060401
https://doi.org/10.1103/PhysRevLett.96.060401
https://doi.org/10.1088/0034-4885/73/7/076501
https://doi.org/10.1088/0034-4885/73/7/076501
https://doi.org/10.1088/0034-4885/73/7/076501
https://doi.org/10.1088/0034-4885/73/7/076501
https://doi.org/10.1038/32354
https://doi.org/10.1038/32354
https://doi.org/10.1038/32354
https://doi.org/10.1038/32354
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/nphys138
https://doi.org/10.1038/nphys138
https://doi.org/10.1038/nphys138
https://doi.org/10.1038/nphys138
https://doi.org/10.1103/PhysRevA.78.033614
https://doi.org/10.1103/PhysRevA.78.033614
https://doi.org/10.1103/PhysRevA.78.033614
https://doi.org/10.1103/PhysRevA.78.033614
https://doi.org/10.1103/PhysRevA.87.051608
https://doi.org/10.1103/PhysRevA.87.051608
https://doi.org/10.1103/PhysRevA.87.051608
https://doi.org/10.1103/PhysRevA.87.051608
https://doi.org/10.1103/PhysRevLett.110.110401
https://doi.org/10.1103/PhysRevLett.110.110401
https://doi.org/10.1103/PhysRevLett.110.110401
https://doi.org/10.1103/PhysRevLett.110.110401
https://doi.org/10.1103/PhysRevB.71.214504
https://doi.org/10.1103/PhysRevB.71.214504
https://doi.org/10.1103/PhysRevB.71.214504
https://doi.org/10.1103/PhysRevB.71.214504
https://doi.org/10.1103/PhysRevLett.95.117003
https://doi.org/10.1103/PhysRevLett.95.117003
https://doi.org/10.1103/PhysRevLett.95.117003
https://doi.org/10.1103/PhysRevLett.95.117003
https://doi.org/10.1103/PhysRevA.83.063621
https://doi.org/10.1103/PhysRevA.83.063621
https://doi.org/10.1103/PhysRevA.83.063621
https://doi.org/10.1103/PhysRevA.83.063621
https://doi.org/10.1103/PhysRevLett.90.047002
https://doi.org/10.1103/PhysRevLett.90.047002
https://doi.org/10.1103/PhysRevLett.90.047002
https://doi.org/10.1103/PhysRevLett.90.047002
https://doi.org/10.1016/0022-3697(63)90007-6
https://doi.org/10.1016/0022-3697(63)90007-6
https://doi.org/10.1016/0022-3697(63)90007-6
https://doi.org/10.1016/0022-3697(63)90007-6
https://doi.org/10.1103/PhysRevA.67.053603
https://doi.org/10.1103/PhysRevA.67.053603
https://doi.org/10.1103/PhysRevA.67.053603
https://doi.org/10.1103/PhysRevA.67.053603
https://doi.org/10.1103/PhysRevB.73.132506
https://doi.org/10.1103/PhysRevB.73.132506
https://doi.org/10.1103/PhysRevB.73.132506
https://doi.org/10.1103/PhysRevB.73.132506
https://doi.org/10.1103/PhysRevLett.91.247002
https://doi.org/10.1103/PhysRevLett.91.247002
https://doi.org/10.1103/PhysRevLett.91.247002
https://doi.org/10.1103/PhysRevLett.91.247002
https://doi.org/10.1103/PhysRevLett.99.120403
https://doi.org/10.1103/PhysRevLett.99.120403
https://doi.org/10.1103/PhysRevLett.99.120403
https://doi.org/10.1103/PhysRevLett.99.120403
https://doi.org/10.1088/1367-2630/10/4/045014
https://doi.org/10.1088/1367-2630/10/4/045014
https://doi.org/10.1088/1367-2630/10/4/045014
https://doi.org/10.1088/1367-2630/10/4/045014
https://doi.org/10.1103/PhysRevA.86.023630
https://doi.org/10.1103/PhysRevA.86.023630
https://doi.org/10.1103/PhysRevA.86.023630
https://doi.org/10.1103/PhysRevA.86.023630
https://doi.org/10.1103/PhysRevA.76.043605
https://doi.org/10.1103/PhysRevA.76.043605
https://doi.org/10.1103/PhysRevA.76.043605
https://doi.org/10.1103/PhysRevA.76.043605
https://doi.org/10.1038/nature09393
https://doi.org/10.1038/nature09393
https://doi.org/10.1038/nature09393
https://doi.org/10.1038/nature09393
https://doi.org/10.1103/PhysRevA.77.053617
https://doi.org/10.1103/PhysRevA.77.053617
https://doi.org/10.1103/PhysRevA.77.053617
https://doi.org/10.1103/PhysRevA.77.053617
https://doi.org/10.1103/PhysRevA.92.053631
https://doi.org/10.1103/PhysRevA.92.053631
https://doi.org/10.1103/PhysRevA.92.053631
https://doi.org/10.1103/PhysRevA.92.053631
https://doi.org/10.1103/PhysRevB.30.122
https://doi.org/10.1103/PhysRevB.30.122
https://doi.org/10.1103/PhysRevB.30.122
https://doi.org/10.1103/PhysRevB.30.122
https://doi.org/10.1080/09500340.2015.1128009
https://doi.org/10.1080/09500340.2015.1128009
https://doi.org/10.1080/09500340.2015.1128009
https://doi.org/10.1080/09500340.2015.1128009
https://doi.org/10.1103/PhysRevB.89.014507
https://doi.org/10.1103/PhysRevB.89.014507
https://doi.org/10.1103/PhysRevB.89.014507
https://doi.org/10.1103/PhysRevB.89.014507
https://doi.org/10.1103/PhysRevLett.115.010401
https://doi.org/10.1103/PhysRevLett.115.010401
https://doi.org/10.1103/PhysRevLett.115.010401
https://doi.org/10.1103/PhysRevLett.115.010401
https://doi.org/10.1103/PhysRevLett.114.110403
https://doi.org/10.1103/PhysRevLett.114.110403
https://doi.org/10.1103/PhysRevLett.114.110403
https://doi.org/10.1103/PhysRevLett.114.110403
https://doi.org/10.1103/PhysRevLett.116.045302
https://doi.org/10.1103/PhysRevLett.116.045302
https://doi.org/10.1103/PhysRevLett.116.045302
https://doi.org/10.1103/PhysRevLett.116.045302
https://doi.org/10.1103/PhysRevA.93.011603
https://doi.org/10.1103/PhysRevA.93.011603
https://doi.org/10.1103/PhysRevA.93.011603
https://doi.org/10.1103/PhysRevA.93.011603
https://doi.org/10.1103/PhysRevA.75.063601
https://doi.org/10.1103/PhysRevA.75.063601
https://doi.org/10.1103/PhysRevA.75.063601
https://doi.org/10.1103/PhysRevA.75.063601
https://doi.org/10.1103/PhysRevLett.101.215301
https://doi.org/10.1103/PhysRevLett.101.215301
https://doi.org/10.1103/PhysRevLett.101.215301
https://doi.org/10.1103/PhysRevLett.101.215301
https://doi.org/10.1103/PhysRevA.87.063612
https://doi.org/10.1103/PhysRevA.87.063612
https://doi.org/10.1103/PhysRevA.87.063612
https://doi.org/10.1103/PhysRevA.87.063612
https://doi.org/10.1103/PhysRevA.64.012706
https://doi.org/10.1103/PhysRevA.64.012706
https://doi.org/10.1103/PhysRevA.64.012706
https://doi.org/10.1103/PhysRevA.64.012706
https://doi.org/10.1103/PhysRevA.75.023614
https://doi.org/10.1103/PhysRevA.75.023614
https://doi.org/10.1103/PhysRevA.75.023614
https://doi.org/10.1103/PhysRevA.75.023614
https://doi.org/10.1103/PhysRevLett.116.045303
https://doi.org/10.1103/PhysRevLett.116.045303
https://doi.org/10.1103/PhysRevLett.116.045303
https://doi.org/10.1103/PhysRevLett.116.045303
https://doi.org/10.1103/PhysRevA.78.033613
https://doi.org/10.1103/PhysRevA.78.033613
https://doi.org/10.1103/PhysRevA.78.033613
https://doi.org/10.1103/PhysRevA.78.033613
https://doi.org/10.1038/nphys520
https://doi.org/10.1038/nphys520
https://doi.org/10.1038/nphys520
https://doi.org/10.1038/nphys520


TONIOLO, MULKERIN, LIU, AND HU PHYSICAL REVIEW A 95, 013603 (2017)

as discussed in Sec. II, the presence of an LO2 phase. The latter
might actually be favourable with respect to both FF and LOg.

[58] H. Burkhardt and D. Rainer, Ann. Phys. (Berlin, Ger.) 506, 181
(1994).

[59] S. Matsuo, S. Higashitani, Y. Nagato, and K. Nagai, J. Phys.
Soc. Jpn. 67, 280 (1998).

[60] R. Combescot and C. Mora, Eur. Phys. J. B 28, 397 (2002).
[61] E. Taylor, A. Griffin, N. Fukushima, and Y. Ohashi, Phys. Rev.

A 74, 063626 (2006).
[62] N. Fukushima, Y. Ohashi, E. Taylor, and A. Griffin, Phys. Rev.

A 75, 033609 (2007).

[63] E. Taylor, Phys. Rev. B 77, 144521 (2008).
[64] M. Holzmann and G. Baym, Phys. Rev. B 76, 092502 (2007).
[65] M. E. Fisher, M. N. Barber, and D. Jasnow, Phys. Rev. A 8,

1111 (1973).
[66] Y. Cao, X.-J. Liu, L. He, G.-L. Long, and H. Hu, Phys. Rev. A

91, 023609 (2015).
[67] L. A. Sidorenkov, M. K. Tey, R. Grimm, Y.-H. Hou, L.

Pitaevskii, and S. Stringari, Nature (London) 498, 78 (2013).
[68] Y. L. Loh and N. Trivedi, Phys. Rev. Lett. 104, 165302 (2010).
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