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The coupling of spins to long-wavelength bosonic modes is a prominent means to engineer long-range spin-spin
interactions, and has been realized in a variety of platforms, such as atoms in optical cavities and trapped ions. To
date, much of the experimental focus has been on the realization of long-range Ising models, but generalizations
to other spin models are highly desirable. In this work, we explore a previously unappreciated connection
between the realization of an XY model by off-resonant driving of a single sideband of boson excitation (i.e.,
a single-beam Mølmer-Sørensen scheme) and a boson-mediated Ising simulator in the presence of a transverse
field. In particular, we show that these two schemes have the same effective Hamiltonian in suitably defined
rotating frames, and analyze the emergent effective XY spin model through a truncated Magnus series and
numerical simulations. In addition to XY spin-spin interactions that can be nonperturbatively renormalized from
the naive Ising spin-spin coupling constants, we find an effective transverse field that is dependent on the thermal
energy of the bosons, as well as other spin-boson couplings that cause spin-boson entanglement not to vanish at
any time. In the case of a boson-mediated Ising simulator with transverse field, we discuss the crossover from
transverse field Ising-like to XY -like spin behavior as a function of field strength.
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I. INTRODUCTION

Externally driving a system with electromagnetic fields
has become a ubiquitous means for engineering properties
of synthetic many-body quantum systems that are difficult
to obtain statically, with examples including the generation
of synthetic gauge fields [1–5], frustrated magnetism [6,7],
topological phases [8–11], and Floquet topological insulators
[12–14]. Often, the driving is used to generate a potential
with desired single-particle properties, e.g., a topologically
nontrivial band structure [15], with the ultimate aim of
combining this single-particle potential with interactions to
study novel interacting quantum phases. Theoretical analysis
of such driven quantum systems is frequently based on a high-
frequency expansion of the driven dynamics [4,16–18]. When
the drive is simultaneously applied with other noncommuting
terms, e.g., interactions or other static fields, the applicability
of the high-frequency limit and any conclusions drawn from it
must be carefully re-examined [19,20].

One particularly successful example of realizing tailored
many-body systems in this way is quantum spin systems cou-
pled to long-wavelength boson modes with a spin-dependent
drive. Such coupled spin-boson systems can be realized in
many platforms, such as cavity QED with atoms in optical cav-
ities [21–23] or superconducting qubit-based artificial atoms
in microwave cavities [24], or in trapped ions, in which ion
spins are coupled to phonon modes of the equilibrium crystal
structure [25–31]. In the absence of any additional fields, the
high-frequency expansion of a spin-dependent drive (∝σ̂ z)
leads to an exact, terminating series featuring boson-mediated
long-range Ising spin-spin interactions [Fig. 1(a)]. This has

*Present address: The Johns Hopkins Applied Physics Laboratory,
Laurel, Maryland 20723, USA; mwall.physics@gmail.com

led to many spectacular successes in quantum simulation of
long-range interacting spin models [29,30,32–36], which, in
spite of the classical nature of the eigenstates of the Ising
model, reveal nonclassical features such as spin squeezing [37]
in out-of-equilibrium dynamics. In this same setting, it can
also be shown that residual spin-boson entanglement, which
degrades the fidelity of quantum simulation, can be made small
or stroboscopically vanishing [36,38].

From the quantum simulation viewpoint, there is great
experimental impetus to go beyond Ising spin-spin interactions
and realize a richer class of models. For example, many works
have focused on adding an effective transverse field to the Ising
simulator, ideally realizing a long-range transverse field Ising
model (TFIM) for which analytic solutions are unavailable and
numerical simulations are challenging [34,35,39–43]. More
complex spin-spin interactions could in principle be realized
by coupling beams with different spin coupling character
(e.g., ∝σ̂ x and ∝σ̂ y) to distinct boson modes [27]; however,
experimentally this is challenging and has yet to be achieved.
Other proposals for more complex spin-spin interactions have
arisen using only a single branch of boson modes, for example
realizing an XY model from an assumed TFIM description
with a static field [34,35] or more complex models assuming
drives with additional phase control and time modulation
[44,45]. However, in all of these more complex scenarios we
lose the benefit of an exact high-frequency expansion, and the
validity of mappings between the driven spin-boson system
and effective spin-only descriptions depend on the particular
parameters and time scales considered.

In this work, we explore in detail a particular means to gen-
erate more complex spin-spin interactions, namely, an XY spin
model, through the use of a spin-dependent force the direction
of which rotates in time [Fig. 1(b)]. In particular, we show that
the same XY description arises from two seemingly distinct
physical realizations: (i) by applying a spin-dependent force
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FIG. 1. Driven quantum Ising and XY spin simulators from static and rotating spin-dependent forces. (a) Coupling of spins to boson
modes via a spin-dependent force leads to spin-boson entanglement in the form of spin-dependent boson displacement (one possible spin
configuration/displacement shown for clarity) and Ising spin-spin interactions that are positive (red solid) for aligned spins and negative (blue
dashed) for antialigned spins. (b) A rotating spin-dependent force, as occurs for an Ising simulator in the presence of a transverse field, leads
to XY spin-spin interactions and qualitative changes to the spin-boson entanglement.

which by itself stroboscopically generates an Ising model and
superimposing an additional transverse field and (ii) by driving
of off-resonant spin flips near a single excitation sideband (i.e.,
“half” of a Mølmer-Sørensen drive [25,26]). We show below
that for both of these situations there exists an appropriate
rotating frame where the high-frequency expansion of the
Hamiltonian yields an XY model. Beyond effective spin-spin
dynamics, we examine the coupling between spins and bosons,
and show that terms exist in the high-frequency expansion
which couple spins and bosons and do not vanish at any time.

Our analysis of the driven spin-boson system uses comple-
mentary analytical and numerical techniques. On the analytical
side, we derive effective spin models using a truncated
Magnus series which corresponds to a high-frequency limit
in the detuning relative to the drive strength, but can be
nonperturbative in the transverse field strength. In addition,
we look at the limit of weak transverse field using perturbative
techniques. We benchmark our analytical predictions against
unbiased numerical simulations.

This work is organized as follows. In Sec. II we discuss the
two microscopic models of spins coupled to bosons considered
in this work: (i) quantum Ising spin simulators realized
with spins coupled to bosons via spin-dependent forces in
a superimposed transverse field and (ii) a single-frequency
drive of spin excitations through off-resonant boson excitation.
In particular, after discussing different physical realizations
of these two models, we show that they have the same
effective Hamiltonian of a spin-dependent force, the spin
direction of which rotates in time, in suitably defined rotating
frames. Section III presents an approximate expression for
the time-ordered propagator of this effective Hamiltonian,
based on a truncated Magnus series, and discusses its physical
consequences, including an effective description in terms of
a long-range XY spin model. The validity of this approxi-
mate description is explored in Sec. IV through numerical
simulations with many spins and a single boson mode.
Section V studies the parameter regimes where the XY model
description fails in more detail, discusses alternate models for
these regimes, and discusses how our XY model description
smoothly connects with these descriptions. Finally, Sec. VI
concludes. Detailed calculations of our truncated Magnus
series appear as Appendices.

II. DRIVEN SPIN-BOSON SYSTEMS

In what follows, we consider two particular realizations of
long-range spin models which arise by driving a collection
of boson modes in a spin-dependent fashion. In spite of their
different physical realizations, we show that they have the same
effective Hamiltonian in suitably defined rotating frames, and
so display the same boson-mediated spin interactions in the
high-frequency driving limit.

A. Boson-mediated Ising simulator in a transverse field

The first model we consider is a system of spin-1/2 particles
driven by external fields that generate a spin-dependent force in
the presence of an additional transverse field. For concreteness
we will focus on realizations of this Hamiltonian in trapped
ions, and point out related descriptions in other systems
momentarily.

Spin-dependent forces are engineered in trapped ion
experiments through two different mechanisms, which we
now briefly review for future reference. In the first, the
spin-dependent force arises from an ac Stark shift due to a
running-wave optical lattice formed by the interference of two
laser beams with Raman beatnote frequency ωR [30,46]. The
Hamiltonian describing a system of spins and phonons coupled
in this fashion at lowest order in the Lamb-Dicke expansion is
(� = 1 throughout)

Ĥ (t) = Ĥω + ĤSB + Ĥqubit, (1)

Ĥω =
∑

μ

ωμn̂μ, (2)

Ĥqubit = ωeg

2

∑
i

σ̂ z
i , (3)

ĤSB = −
∑
μj

gμj cos (ωRt)(âμ + â†
μ)σ̂ z

j . (4)

The operators σ̂
x,y,z

i are Pauli operators acting on the spin-1/2
or qubit degrees of freedom, âμ is an annihilation operator
for boson mode μ, and n̂μ = â†

μâμ. In the trapped ion
realization [27,30], {ωμ} are the phonon mode frequencies, ωeg

is the “bare” ion qubit frequency, and gμj = Fbjμ

√
1/(2Mωμ)
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codifies the force on the j th ion due to driving the μth phonon,
with F the magnitude of the spin-dependent force, bμ the
normalized mode amplitude of phonon μ, and M the ion
mass. The beams are arranged in a geometry such that the
net momentum transfer is nonzero only along a particular
direction with respect to the ion crystal—exciting the phonon
modes described by âμ—and the polarization of the beams is
chosen such that the spin-independent differential Stark shift
vanishes and only a spin-dependent shift remains.

Since the single-spin Hamiltonian commutes with the
spin-boson coupling, we can transform to a frame rotating
with Ĥqubit without changing the form of the spin-boson
coupling Hamiltonian. In addition, it is useful to transform
to the interaction picture rotating with Ĥω and perform a
rotating wave approximation. This (optical) rotating wave
approximation is not essential, but considerably simplifies
expressions, and is an excellent approximation in the parameter
regimes explored herein. Finally, we additionally consider the
addition of an effective transverse field, which is realized
through direct coupling of the two states realizing the spin-1/2
degree of freedom (e.g., microwave coupling of ion qubits).
The complete Hamiltonian of the spin-dependent force with
the transverse field in this frame is then

ĤI (t) = ĤSB;I (t) + ĤB, (5)

ĤSB;I (t) = −1

2

∑
μj

gμj (â†
μe−iδμt + âμeiδμt )σ̂ z

j , (6)

ĤB = −B

2

∑
j

σ̂ x
j , (7)

where δμ = ωR − ωμ is the detuning of the drive from mode μ.
The second common realization of a spin-dependent force

uses the Mølmer-Sørensen (MS) scheme [25,26]. Here, the
Hamiltonian takes the same form of Eq. (1), with the spin-
phonon coupling given by a pair of Raman beams described
by the Hamiltonian

ĤSB =
∑

q

∑
j

�q

2

(
σ̂+

j ei[
∑

μ ημj ;q (âμ+â
†
μ)+(ωeg−ωq )t] + H.c.

)
.

(8)

In this expression, q = 1,2 indexes the Raman beam pairs, �q

is the resonant Rabi frequency of beam q, ημj ;q is the Lamb-
Dicke parameter kqbjμ

√
1/(2Mωμ) with kq the wave vector of

the Raman beam pair q, and ωq is the frequency of beam pair q,
defined with respect to the bare qubit frequency. In particular,
in the MS scheme the beams have the same Rabi frequencies
�1 = �2 = � and equal but opposite detuning, ω1 = ωbsb =
ωeg + ωμ + δμ, ω2 = ωrsb = ωeg − ωμ − δμ. Hence, beam 1
corresponds to a blue sideband excitation and beam 2 corre-
sponds to a red sideband excitation. Transferring to the rotating
frames of Ĥω and Ĥqubit, expanding the exponentials to lowest
order in the Lamb-Dicke parameters ημj ;1 ≈ ημj ;2 ≡ ημj , and
performing a rotating wave approximation where we neglect
terms with frequencies larger than the detunings δμ, we find

ĤSB;I = −
∑

j

∑
μ

�ημj

2
(e−iδμt â†

μ + eiδμt âμ)σ̂ y

j . (9)

Hence, the MS scheme reproduces exactly the interaction
picture Hamiltonian of Eq. (6) following a trivial rotation of
the spin basis which maps σ̂

y

j → σ̂ z
j and the identification

of gμj ≡ �ημj . More generally, after performing a spin
rotation, Eqs. (5) and (6) describe Rabi-type atom-photon
interactions, with gμj the atom-photon coupling strength and
B the frequency of the atomic transition. Hence, our analysis
of this model also applies to artificial cavity QED systems in
which cavity dissipation may be neglected.

We refer to the Hamiltonian Eq. (5) as a driven spin-boson
Ising simulator in a transverse field because the propagator
when ĤB → 0 is exactly [26,38]

ÛI (t) = ÛSB(t)ÛSS(t) (10)

with the spin-boson and spin-spin coupling propagators

ÛSB(t) = exp

⎡
⎣∑

μ,j

gμj [αμ(t)â†
μ − H.c.]σ̂ z

j

⎤
⎦, (11)

ÛSS(t) = exp

⎡
⎣−i

∑
i,j

J̃ij (t)σ̂ z
i σ̂ z

j

⎤
⎦, (12)

and spin-boson and spin-spin coupling parameters

αμ(t) = (1 − e−iδμt )/(2δμ), (13)

J̃jj ′ (t) =
∑

μ

gμjgμj ′[δμt − sin(δμt)]/
(
4δ2

μ

)
. (14)

At times long compared to 1/δ where δ ≡ minμ δμ, J̃jj ′ (t) can
be approximated by its unbounded in time (secular) component
as J̃jj ′ (t) ≈ Jjj ′ t , where Jjj ′ = ∑

μ gμjgμj ′/(4δμ). In this

approximation, ÛSS(t) is the propagator of a long-range Ising
model ĤIsing = ∑

i,j Ji,j σ̂
z
i σ̂ z

j . The spin-spin couplings can be
approximated by a power-law form Ji,j ∼ 1/|i − j |ζ , with
the exponent ζ ∈ [0,3) being tunable by the Raman beatnote
frequency ωR [30,47]. For a single mode with detuning δμ,
the spins decouple from the bosons at the decoupling times
td = 2πn/δμ, with n an integer, where αμ(td ) = 0. In the case
where many modes contribute to the dynamics, the various
detunings {δμ} are not generally commensurate, and the only
means to approximately decouple the spins from the bosons
is to have the amplitude of the spin-boson couplings gμjαμ(t)
parametrically small, i.e., gμj/δμ must be small [38].

In many works [34,35,39–43,48], the small-B limit of
Eq. (5) has been considered, and the physics is shown to be
well described by the transverse field Ising model

ĤTFIM =
∑
j,j ′

Jj,j ′ σ̂ z
j σ̂ z

j ′ − B

2

∑
j

σ̂ x
j , (15)

that is derived from treating ĤB perturbatively in the high-
frequency expansion and ignoring the boson dynamics. How-
ever, importantly, this high-frequency expansion no longer
exactly truncates due to the noncommutativity of ĤB and
ĤSB;I . This means that higher-order terms in the expansion
can modify, even qualitatively, both the spin physics and
the spin-boson coupling. In order to derive a high-frequency
expansion of the time-ordered dynamics of Eq. (5) which is
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nonperturbative in the field strength B, it is convenient to
transform to a frame which rotates with the transverse field
Hamiltonian ĤB . The Hamiltonian in this frame reads

ĤI (t) = −
∑
μj

gμj

2
(âμeiδμt + â†

μe−iδμt )

× [
cos(Bt)σ̂ z

j − sin(Bt)σ̂ y

j

]
. (16)

This is indeed a spin-dependent force the spin character of
which rotates between the z and y directions at a rate B

[Fig. 1(b)]. A discussion on the boson-mediated spin physics
derived from Eq. (16) will be presented in Sec. III, and is not
a transverse field Ising model for all parameter regimes.

B. Single-beam Mølmer-Sørensen scheme

The second model that we consider is a modified Mølmer-
Sørensen scheme in which only one of the pairs of Raman
beams is present. For concreteness, let us consider that only
the blue sideband beams are present, in which case we have
the Hamiltonian [see Eq. (8)]

ĤSB;I =
∑

j

�

2

[
cos (ωbsbt)σ̂

x
j + sin (ωbsbt)σ̂

y

j

]

−
∑

j

∑
μ

�ημj

2

[
cos (ωbsbt)σ̂

y

j − sin (ωbsbt)σ̂
x
j

]

× (â†
μeiωμt + âμe−iωμt ), (17)

where, as before, ωbsb = ωeg + ωμ + δμ and we are in the
frame rotating with Ĥω and Ĥqubit. The first term in Eq. (17)
is a spin rotation that is not coupled to the bosons, and gives
rise to an ac Stark shift in perturbation theory. In order to
put Eq. (17) into the form of Eq. (16), we first move to a
frame which rotates with (ωbsb/2)

∑
j σ̂ z

j , where the effective
Hamiltonian reads

ĤSB;I ′ = −ωbsb

2

∑
j

σ̂ z
j +

∑
j

�

2
σ̂ x

j

+
∑

j

∑
μ

�ημj

2
σ̂

y

j (â†
μeiωμt + âμe−iωμt ). (18)

If we now move to a frame that rotates with
−(ωbsb/2)

∑
j σ̂ z

j + ∑
j (�/2)σ̂ x

j we find the effective Hamil-
tonian

ĤSB;I ′′ =
∑

j

∑
μ

�ημj

2
(â†

μeiωμt + âμe−iωμt )

× [
cos(ωeff;j t)σ̂

y

j − σ̂ · n sin(ωeff;j t)
]
, (19)

where ωeff;j =
√

ω2
bsb + �2 and the unit vector n = (ωbsb,0,

−�)/ωeff;j .
One may expect that the first term in Eq. (17) is irrelevant

on the basis that it rotates fast compared to the second term,
and so may be ignored. Our rotating frame analysis above
enables us to make this intuition more precise, as follows. The
operator which defines the interaction picture in which the

effective Hamiltonian Eq. (19) applies is

ÛI ′′ =
∏
j

Ûj , (20)

Ûj = e−i
ωbsb t

2 σ̂ z
j +i �t

2 σ̂ x
j ei

ωbsb t

2 σ̂ z
j . (21)

Clearly, as � → 0, Ûj becomes the identity for all times.
In the basis of σ̂ z

j , the diagonal elements of Ûj consist of
terms rotating as exp(±i�2t/ωbsb) which have order unity
amplitudes up to O(�2/ω2

bsb) corrections and terms rotating
as exp[±it(2ωbsb + �2/ωbsb)] which have order O(�2/ω2

bsb)
amplitudes. The off-diagonal components also contain terms
rotating as exp(±i�2t/ωbsb) and exp[±it(2ωbsb + �2/ωbsb)],
all of which have order O(�/ωbsb) amplitudes. In this rotating
frame, the effective Hamiltonian now has the same form
as Eq. (16) provided we perform a spin rotation to take
σ̂ · n → σ̂

y

j and σ̂
y

j → σ̂ x
j and identify δμ → −ωμ, B → ωeff ,

and gμj → −�ημj . We note that the case of a single-beam
MS scheme has been considered before in the context of spin
models [49] and has been experimentally utilized to engineer
a spin-one XY model [50].

III. EFFECTIVE XY MODEL: OVERVIEW

Our model of a rotating spin-dependent force Eq. (16),
while compact and superficially simple, does not immediately
enable us to determine the dominant boson-mediated spin-spin
physics. In addition, as this Hamiltonian is explicitly time
dependent, our analysis of the spin-spin interactions must
take into account the necessary time ordering. A systematic
means of determining properly time-ordered, unitary approx-
imations to the propagator of a time-dependent Hamiltonian
is provided by the exponential of the Magnus series [51,52]
Û (t) = exp[Â(t)], where Â(t) = ∑∞

k=1 Âk(t) is a sum of
integrals Âk of (k − 1) nested commutators of the Hamiltonian
with itself at different times [see Eq. (A5) for an explicit
expression]. The Magnus series does not always converge for
all times, but is guaranteed to converge at short times and
often provides an efficient and accurate means to construct
effective Hamiltonians over experimental time scales in the
high-driving-frequency limit [17].

If we truncate the Magnus series generated by Eq. (16) at
second order, we find

Â(t) ≈
∑

μ

∑
j

gμj

[
â†

μ

( ∑
ν=z,y

αν
μ(t)σ̂ ν

j

)
− H.c.

]

+
∑
μ,μ′

∑
j

gμ,j gμ′,j σ̂
x
j [â†

μâ
†
μ′α

++
μμ′;j (t)

+ (1 − δμ,μ′)â†
μâμ′α+−

μμ′;j (t) − H.c.]

− i
∑
j �=j ′

[
J̃ zz

j,j ′ (t)σ̂ z
j σ̂ z

j ′ + J̃
yy

j,j ′ (t)σ̂
y

j σ̂
y

j ′ + J̃
yz

j,j ′ (t)σ̂
y

j σ̂ z
j ′
]

− i
∑

μ

∑
j

g2
μjBeff;μ(t)σ̂ x

j (2n̂μ + 1), (22)

as is detailed in Appendix A, where expressions for all
coefficients may be found. The identification of the model
Eq. (22) is one of our key results. In what follows we discuss
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each of the terms in the model, as well as the qualitative
behavior of its parameters with time, drive strength, transverse
field strength, and driving frequency.

While we use the notation of the boson-mediated Ising
simulator in a transverse field in what follows, we remind
the reader that the same model applies for the single-beam
MS scheme following the mapping of parameters discussed
following Eq. (21). We also note that this Magnus expansion
applies in rotating frames which are different for our two phys-
ical realizations. Namely, the Schrödinger picture evolution for
the spin-boson Ising simulator in a transverse field is

|ψ(t)〉 = exp

⎡
⎣i

⎛
⎝B

2

∑
j

σ̂ x
j −

∑
μ

ωμn̂μ

⎞
⎠t

⎤
⎦ exp[Â(t)]|ψ(0)〉,

(23)

and the evolution for the single-beam MS gate is

|ψ(t)〉 = exp

⎡
⎣−i

ωbsbt

2

∑
j

σ̂ z
j + i

∑
j

�t

2
σ̂ x

j

⎤
⎦

× exp

⎡
⎣i

⎛
⎝ωbsb

2

∑
j

σ̂ z
j −

∑
μ

ωμn̂μ

⎞
⎠t

⎤
⎦

× exp[Â(t)]|ψ(0)〉. (24)

As noted earlier, the spin rotation incurred by Eq. (24) occurs
with small amplitude �/ωeff and at frequencies well separated
from the frequencies of the dynamical evolution in Â(t). In
contrast, the spin rotation in Eq. (23) occurs at frequencies
that are comparable to the dynamics of Â(t) and has unity
amplitude. Hence, generally speaking, we expect that the
convergence criteria of the Magnus series to the exact solution
for the first case Eq. (23) will be stricter than for Eq. (24).

The first-order terms, given by the first line of Eq. (22),
generate spin-boson entanglement via spin-dependent dis-
placements the spin direction of which rotates in time. Both
αz

μ(t) and α
y
μ(t) are bounded and vanish stroboscopically

at integer multiples of the modified decoupling time t̃d =
2π/(pδμ) when pδμ = Bq for coprime integers p and q. As
B → 0, αy

μ(t) → 0 and αz
μ(t) → αμ(t) so that the exact, finite

Magnus series for the boson-mediated Ising model Eq. (10)
is reproduced, as expected. For finite B, the maximum values
of both αz

μ(t) and α
y
μ(t) scale as max(δμ,B)/(δ2

μ − B2). The
Magnus series also contains terms which couple pairs of
bosons to spins; these are the second and third lines of Eq. (22).
These terms are also bounded and vanish at integer multiples
of t̃d . As an example of their magnitude, the maximum value
of α++

μ,μ(t) scales as max(δμ,B)/[δμ(δ2
μ − B2)].

The fourth line of Eq. (22) contains spin-spin interactions
along the zz, yy, and yz interactions. The couplings J̃

yz

jj ′ (t)
are bounded, and vanish at multiples of t̃d . The zz and yy

couplings are

J̃ zz
j,j ′ (t) =

∑
μ

gμ,jgμ,j ′δμ

8

t + sin(2Bt)/2B

δ2
μ − B2

+ b.t., (25)

J̃
yy

j,j ′ (t) =
∑

μ

gμjgμj ′δμ

8

t − sin(2Bt)/2B

δ2
μ − B2

+ b.t., (26)

where b.t. denotes bounded terms which oscillate at fre-
quencies δμ and B and vanish at t̃d . For times t  1/B,
J̃

z,z
j,j ′ (t) ≈ J̃j,j ′ (t) and J̃

y,y

j,j ′ (t) ≈ 0, and (transforming back out
of the rotating frame) we recover the TFIM Eq. (15) at leading
order in Bt . However, at times t � B, the secular terms in
J̃

z,z
j,j ′ (t) and J̃

y,y

j,j ′ (t) dominate and are of equal strength, leading
to a description directly in terms of a long-range XY spin
model in the spin directions perpendicular to the transverse
field.

In addition to a modification of the operator character
of the spin-spin couplings, we also find a nonperturbative
renormalization of their strength. As B is increased relative
to δμ, the spin-spin couplings change sign and their scaling
changes from ∼1/δμ to ∼δμ/B2. While it appears that the
couplings diverge at the resonant point B = δμ, in fact the
bounded terms regularize this divergence and lead to finite
spin-spin couplings (further discussion of the resonant point
is given in Sec. V A). The final line of Eq. (22) acts as an
effective transverse field in the rotating frame. This field is
proportional to the thermal energy of the boson modes, and
is generally spatially inhomogeneous—even for a spatially
uniform external field B—by virtue of the coupling amplitudes
gμj . The effective field strength is

Beff;μ = Bt

4
(
δ2
μ − B2

) +
(
δ2
μ + B2

)
cos(δμt) sin(Bt)

4
(
δ2
μ − B2

)2

− 2Bδμ cos(Bt) sin(δμt)

4
(
δ2
μ − B2

)2 , (27)

and hence contains a secular term of magnitude Bt/[4(δ2
μ −

B2)]. It is interesting that in both the small B/δμ and large
B/δμ limits Beff;μ vanishes; in the first limit it vanishes as ∼B

and in the latter it vanishes as ∼1/B.
To second order, the Magnus operator Â(t) contains exact

decoupling points t̃d for a single boson mode in a Fock
state, analogous to the decoupling points td of the pure
driving Hamiltonian Eq. (6). However, at third order we find
spin-boson coupling terms

∑
jμ

g3
μj

[
{âμ,(â†

μ)2}
( ∑

ν=z,y

αν(2,1)
μ (t)σ̂ ν

j

)
− H.c.

]
, (28)

in which α
y(2,1)
μ and αz(2,1)

μ contain secular components which
scale as Bδμt/[2(δ2

μ − 4B2)2] and B2t/[4(δ2
μ − B2)2], respec-

tively (Appendix B). These terms lead to nonvanishing spin-
boson entanglement at times t � 1/B, even for Fock states.
For certain limits, e.g., δμ � gμ,j ,B or B � gμ,j ,δμ, the slope
of the third-order secular terms can be made parametrically
small to assuage the buildup of spin-boson entanglement. In
practice, due to the rapid decrease of the spin-spin coupling
constants with B in the limit B � gμ,j ,δμ, only the limit
δμ � gμ,j ,B produces negligible spin-boson entanglement
and non-negligible spin-spin interactions simultaneously in
this model. We mention the term Eq. (28) only to give
an example of a term in the Magnus series which leads
to nonvanishing spin-boson entanglement at the decoupling
points t̃d ; other terms also appear at third order, such as
spin-spin-boson couplings (see Appendix B).
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Following the same analysis that converts the evolution
under the spin-dependent force, Eq. (10), into evolution under
a long-range Ising model by keeping only secular terms we
arrive at the effective spin model corresponding to the Magnus
series of Eq. (22):

ĤXY =
∑
j �=j ′

JXY
j,j ′

[
σ̂ z

j σ̂ z
j ′ + σ̂

y

j σ̂
y

j ′
] +

∑
j

Bj (n)σ̂ x
j . (29)

Here, JXY
j,j ′ = ∑

μ gμ,jgμ,j ′δμ/8(δ2
μ − B2) and Bj (n) =

(2n + 1)
∑

μ g2
μjB/[4(δ2

μ − B2)]. Here, n is a c-number pa-
rameter which approximates the boson operator n̂ (e.g., for the
dynamics of an initial phonon Fock state one can set n to the
initial phonon number). In the next section, we quantitatively
determine the accuracy of this effective description using
numerical simulations.

IV. EFFECTIVE XY MODEL: REGIMES AND VALIDITY

The above Magnus series Eq. (22) is an expansion the
convergence properties of which are difficult to ascertain
analytically. Hence, in this section, we test this model, the
idealized XY spin model Eq. (29) derived from it, and the
perturbative TFIM description Eq. (15), against unbiased
numerical simulations. For simplicity we present results for the
single-mode case, and take the mode amplitude to be uniform:
gμ = g/

√
N with N the number of particles. In this scenario,

all dynamics is restricted to occur in the tensor product of
the completely symmetric Dicke spin manifold and the boson
Hilbert space, with total dimension (N + 1) × (Nmax + 1),
where Nmax is the maximum boson occupation, here taken to
be 50. In addition to being theoretically convenient due to its
small Hilbert space size [53–55], this scenario is also relevant
for trapped ion experiments, corresponding to the case in which
the drive frequency is close to the center-of-mass (COM)
mode [30,36]. The COM mode is the mode with the highest
frequency, and can be well spectroscopically resolved. We
have also confirmed that the same qualitative behavior occurs
in situations with many modes using a recently developed
framework for generic driven spin-boson models [56] based
on matrix product states [57].

Our first characterization of the accuracy of the ef-
fective models is given by the fidelity F (ρeff,ρexact) =
Tr[

√√
ρ̂eff ρ̂exact

√
ρ̂eff] as a function of time starting from all

spins pointing along the y direction (i.e., perpendicular to
both the transverse field and the spin-dependent force) and
the vacuum boson state. For comparisons of the second-order
Magnus series Eq. (22) dynamics with the exact dynamics,
ρ̂eff = |ψeff(t)〉〈ψeff(t)| and ρ̂exact = |ψexact(t)〉〈ψexact(t)| with
both |ψeff(t)〉 and |ψexact(t)〉 consisting of pure states of spins
and bosons, and so F (ρeff,ρexact) = |〈ψeff(t)|ψexact(t)〉|. When
comparing the spin-only XY and TFIM models with the exact
solution, we instead take the spin density matrices ρ̂eff =
|ψeff(t)〉〈ψeff(t)| and ρ̂exact = Trbosons|ψexact(t)〉〈ψexact(t)|, in
which case F 2(ρeff,ρexact) = 〈ψeff(t)|ρ̂exact|ψeff(t)〉.

The results for the fidelities at g/δ = 0.2 andNs = 11 spins
are shown in Fig. 2 as a function of time and transverse field
strength. A few features are immediately apparent. First, the
approximate second-order Magnus series reproduces the exact
dynamics well across the entire range of transverse field except

B/δ

F
2
(ρ

e
ff
,ρ

e
x
a
c
t )

δt/2π

Magnus
XY

TFIM

FIG. 2. Fidelity of approximate models with exact solution. The
fidelity of the second-order Magnus series Eq. (22) (red), the XY

model Eq. (29) (blue), and the TFIM Eq. (15) (green) with the exact
numerical dynamics as a function of time and transverse magnetic-
field strength. The XY and Magnus descriptions have good fidelity
away from the “resonance” at B ∼ δ and small B ∼ 0, while the
TFIM only has good fidelity for small B/δ.

for very small B and a window around B ∼ δ. Additionally, we
see that the XY model description performs reasonably well
when the second-order Magnus series converges, while the
TFIM description only has good fidelity in the small-B region
where the Magnus series performs poorly. Based on this, we
can identify five distinct regimes: (1) B = 0, where the dynam-
ics is known to be an Ising model with spin-dependent boson
displacements [see Eq. (10)]; (2) 0 < B � J with J ∼ g2/δ

the spin-spin coupling constants Eq. (14), where the TFIM per-
forms well and the Magnus series generally does not; (3) J �
B < δ where the Magnus and XY descriptions have reasonable
fidelity and the TFIM performance degrades; (4) B ∼ δ where
no spin model performs well and the Magnus series does not
converge; and (5) δ < B where the Magnus and XY descrip-
tions perform well and the TFIM description approximates
the exact dynamics poorly. We note that the Magnus series
becomes exact when B = 0, but the XY model derived from
it, Eq. (29), performs poorly due to ignoring the sin(2Bt)/2B

terms in the spin-spin couplings Eqs. (25) and (26).
In Fig. 3 we show a comparison of the dynamics of

the fidelities of our approximate approaches with the exact
dynamics. Panel (a) shows the behavior in regime (3), where
both the TFIM and XY descriptions have a reasonable fidelity
with the XY model performing slightly better. A more detailed
study of this regime, including the crossover from TFIM
to XY behavior, will be given in Sec. V B. The dynamics
near the resonant regime 4 are shown in panel (b). Here,
we see that neither the spin model descriptions nor the
Magnus series has good fidelity at long times, though the
Magnus series is reasonable at short times. The resonant
regime is discussed further in Sec. V A. Finally, panel (c)
displays the dynamics in regime 5. Here, the spin dynamics is
governed by an XY model the spin-spin couplings of which
are nonperturbatively renormalized by the transverse field
strength B [see Eq. (29)]. The TFIM description misses this
nonperturbative renormalization, and so fails to provide an
accurate description of the spin dynamics.

The fidelity is quite a stringent criterion for comparing how
accurate a particular model is for quantum simulation. Instead,
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FIG. 3. Dynamics of fidelity in various transverse field regimes. Comparison of the fidelity of the second-order Magnus Eq. (22) (red solid),
the XY model Eq. (29) (blue dotted), and the TFIM Eq. (15) (green dashed) with the exact dynamics as a function of time. In the B ∼ J regime
(a), the TFIM and XY evolutions are comparable, with the XY having slightly higher fidelity. In the resonance regime (b), the Magnus series is
only accurate at short times, and the strong buildup of spin-boson entanglement precludes any spin-only description. In the strong-field regime
(c), the spin-spin evolution becomes XY -like, with nonperturbatively renormalized spin-spin couplings, and the TFIM description fails.

many quantum simulators are focused on measurements
of low-order spin-correlation functions. A key observable
for trapped ion quantum simulators is the depolarization
of the collective spin 〈σ ν〉 = ∑Ns

i=1〈σ̂ ν
i 〉, which signals the

buildup of higher-order spin correlations. For a collective
spin prepared perpendicular to the axis of an Ising coupling
without transverse field, there is no mean-field dynamics, and
the collective spin only depolarizes due to interactions [38].
With a transverse field, the collective spin rotates about the
field in addition to the interaction-induced depolarization.
All models reproduce the single-particle rotation well, and
so for clarity we will remove this trivial rotation by acting
on the state with exp(iĤBt). We show the dynamics of the
y component of the collective spin following this rotation
in Fig. 4, with the thick black solid, thin red solid, blue
dotted, and green dashed curves corresponding to the exact,
Magnus, XY , and TFIM evolutions. In the regimes where the
Magnus series converges [panels (a) and (c)], the XY model
performs well and captures the decay of the magnetization
due to coherent spin-spin interactions. The TFIM, on the
other hand, misses the nonperturbative renormalization of
the spin-spin coupling constants in the strong-field regime,
and so fails to predict the correct demagnetization time
scale [panel (c)]. In the resonant regime [panel (b)], no spin
model correctly reproduces the magnetization dynamics due to
strong spin-boson entanglement, and the Magnus series only
converges at short times.

The effective transverse field that appears in the second-
order Magnus series Eq. (22) is proportional to the thermal
energy of the boson modes, and so is expected to give
rise to thermal dephasing at nonzero boson temperature T

in oscillator units. Figure 5 shows the dynamics of the y

component of the collective spin at B = δ/4 and low and high
boson temperatures, where boson temperature is expressed
in terms of the mean number of quanta n̄. The upper panel
compares the dynamics at zero temperature (which is the case
also given in Figs. 2–4), where the effective spin model is given
by Eq. (29) with n = 0 and performs well. At high temperature,
the exact dynamics (black solid) disagrees with the predictions
of the model Eq. (29) with n = 0 due to thermal dephasing.
However, taking an incoherent, weighted sum of XY dynamics
with different values of n in Eq. (29) and Boltzmann weights
∝e−n/T reproduces the thermal dephasing well, as shown by
the red dashed curve in Fig. 5(b). We also note that the term
causing this thermal dephasing looks like a static field in the

secular approximation, and so its dominant effects can be
removed by performing a spin echo sequence.1 Finally, we note
that this thermal dephasing is expected for the “imbalanced”
MS scheme we propose, as the original balanced MS gate was
designed specifically to remove boson mode dependence from
the spin dynamics [25,26]. However, it is interesting to note
that exactly this same thermal dephasing appears when consid-
ering the boson-mediated Ising simulator in a transverse field.

In general, experiments aiming at simulating the behavior
of quantum spin systems would like to minimize the entangle-
ment between the spins and the bosons, as this entanglement
leads to a loss of fidelity for the simulation of the pure spin
system. In the Ising case, even when the spin-boson coupling
is strong and significant entanglement is built up, there exist
certain decoupling times td where this entanglement vanishes
for a single mode. Such decoupling points also exist in our
approximate Magnus series when B/δ is a rational fraction, but
only up to second order. In Fig. 6 we show the dynamics of the
spin-boson entanglement, characterized by the von Neumann
entropy of entanglement SvN = −∑

j λj log λj , where λj are
the eigenvalues of the reduced density matrix obtained by
tracing out the boson modes. The general structure of the
spin-boson entanglement is captured by the second-order
Magnus series, as is shown by the comparisons in panels (a)
and (b). However, a detailed analysis [panels (c)–(f)] of the
transverse fields marked in panel (a) shows finer-scale structure
which is occasionally missed in this approximation. Panel (c)
shows the Ising case in which B = 0, where the Magnus series
is exact and reproduces the bounded, periodic spin-boson
entanglement which vanishes at multiples of the decoupling
time td . In panel (d) we show the spin-boson entanglement for
B = 0.4δ. Here, the second-order Magnus series (red dashed)
predicts decoupling points at integer multiples of t̃d = 10π/δ,
but the exact dynamics (black solid) shows that the spins and
bosons do not decouple due to higher-order processes. In the

1It should be noted that the spin echo pulse does not generically
commute with the spin part of the interaction picture rotation operator.
For the single-beam MS implementation, the large separation of time
scales between the Magnus and rotation operators makes this fact
irrelevant. For the boson-mediated Ising simulator in a transverse
field, this issue can be averted by applying the spin echo pulse at
integer multiples of the transverse field rephasing time 2π/B, where
the rotating frame rotation operator is proportional to the identity.
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FIG. 4. Dynamics of the collective spin. Dynamics of the y component of the collective spin predicted by the exact solution (thick black
solid), the Magnus series Eq. (22) (thin red solid), the XY model Eq. (29) (blue dotted), and the TFIM Eq. (15) (green dashed). The transverse
field rotation has been taken out for clarity (see text for details). The depolarization of the spin is well captured by either the TFIM or the
XY model in the crossover regime (a). In the resonant regime (b), strong spin-boson entanglement affects the spin dynamics, and the Magnus
series only converges at short times. In the strong-field regime (c), the TFIM misses nonperturbative renormalization of the spin-spin coupling
constants, and so fails to capture the time scale of collective demagnetization.

resonant regime [panel (e)], strong spin-boson entanglement
is present at all times, and this buildup is reasonably captured
at short times by the Magnus series. Finally, in the strong-field
regime [panel(f)], the overall scale of spin-boson entanglement
is reduced compared to the Ising case, and is well captured by
the Magnus approximation. However, the decoupling points
t̃d = 2π/δ predicted by the Magnus series are not exact, and
so deviations can be seen from the exact solution at later times.

V. FAILURE OF THE XY MODEL

The above numerical analysis shows that the approximate
second-order Magnus series captures the full dynamics ac-
curately out to experimental time scales except when the
transverse field strength is very weak or near the “resonant”

FIG. 5. Magnetization dynamics at finite temperature. Compar-
ison of the exact dynamics (solid black) and dynamics predicted
by an incoherent sum of XY spin models’ dynamics (red dashed)
for the y component of the collective spin at low (a) and high (b)
temperatures and B = δ/4. The thin blue dashed line in panel (b)
is the zero-temperature XY prediction for comparison, showing that
an average of XY models’ dynamics captures the thermal dephasing
effect well.

point B ∼ δ. In this section, we look more closely at the
regimes where this approach fails, and what the appropriate
description of the spin physics is.

FIG. 6. Spin-boson entanglement. The entanglement between
spins and bosons, characterized by the von Neumann entropy of
entanglement of the density matrix obtained by tracing out the bosons,
as a function of time and transverse field strength is given for the exact
dynamics (a) and the dynamics predicted by the second-order Magnus
series Eq. (22) (b). At the points indicated by the red lines in panel (a),
we compare the results for the exact (black solid) and Magnus (red
dashed) dynamics in panels (c)–(f). Exact decoupling points are seen
in the Ising case (c), but are no longer exact for nonzero transverse
field (d). In the resonant regime (e), strong spin-boson entanglement
is present at all times, and well captured by the Magnus series at short
times. In the strong-field regime (f), the overall degree of spin-boson
entanglement is reduced with respect to the Ising case.
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A. Resonant regime

For situations in which the coupling gμ,j is comparable to
the resonance parameter (δ2

μ − B2), the Magnus series does
not converge beyond short times, as all terms in the infinite-
order series contribute strongly at longer time scales. However,
near this point it is useful to rewrite the Hamiltonian in the
rotating frame of the transverse field, Eq. (16) in terms of
σ̂±

j = (σ̂ z
j ∓ iσ̂ y)/2 to find

ĤI (t) = −
∑
j,μ

gμj

2
(âμeiδμt + â†

μe−iδμt )(e−iBt σ̂+
j + eiBt σ̂−

j ).

(30)

In particular, if we write B = δ + �, then we have (in the
single-mode case)

ĤI (t) = −
∑

j

gj

2
(âeiδt + â†e−iδt )

×(e−iδt−i�t σ̂+
j + eiδt+�t σ̂−

j ), (31)

=
∑

j

gj

2
(ei�t âσ̂+ + ei(δ+�)t â†σ̂+ + H.c.). (32)

The terms which rotate as � form the Jaynes-Cummings
(JC) model, and the terms with phases (δ + �) are the
counter-rotating terms. On resonance, � = 0, the JC terms are
responsible for the strong buildup of spin-boson entanglement,
and the counter-rotating terms give rise to residual spin-spin
interactions.

Taken together, the JC and counter-rotating terms define
a multispin generalization of the Rabi model [58,59]. For
a single boson with uniform coupling to all spins, this is
also referred to as the Dicke model [60]. At resonance,
we can tune the parameter regime of the Rabi model from
the weak coupling g  δ, where cavity QED experiments
usually operate to the deep strong-coupling regime g � δ

which is extremely difficult to access in QED, and has also
been challenging to reach in superconducting qubits and
other synthetic QED platforms [24,61]. The physics in these
regimes, where keeping only the JC terms is invalid, can be
quite different from the physics of the weak-coupling JC model
[62,63]. We note that many other proposals exist for realizing
Rabi or Dicke models in trapped ions, either for a single ion
[64,65] or for many [66].

It is worth pointing out that in the single-beam MS
realization Eq. (19), the resonance that occurs at B = δ

corresponds to driving a sideband of boson motion exactly
on resonance, i.e., ωeff = ω0. This resonance is similar to
the one in the boson-mediated Ising simulator when δ → 0.
The Jaynes-Cummings-dominated physics of this resonance
has been used to experimentally generate nonclassical phonon
states for a single trapped ion [67].

B. Weak transverse field: Transverse field Ising
model and XY crossover

The other place where the XY model description fails is at
small transverse fields B relative to the Ising spin-spin coupling
constants J . However, this is precisely the regime where one
could expect that a perturbative analysis in ĤB could perform
well. One means to derive a spin model that is perturbative in

ĤB is to generate the Magnus series for the Hamiltonian of
the spin-dependent force and transverse field Eq. (5) without
transforming to the rotating frame of the transverse field. The
first two orders of this B-perturbative Magnus series are

Â(p)
1 (t) = −i

∫ t

0
dt1(ĤI (t1) + ĤB) (33)

=
∑
μj

gμj [αμ(t)â†
μ − H.c.]σ̂ z

j + i
Bt

2

∑
j

σ̂ x
j , (34)

Â(p)
2 (t) = −1

2

∫ t

0
dt ′

[
Â(p)

1 (t ′), − iĤI (t)
]

(35)

=
∑
μj

gμj [γμ(t)â†
μ − H.c.]σ̂ y

j − i
∑
j,j ′

J̃j,j ′ (t)σ̂ z
j σ̂ z

j ′ ,

(36)

where αμ(t) and J̃j,j ′ (t) are the same spin-boson and spin-spin
coupling for the B → 0 case [see Eqs. (13) and (14)], and

γμ(t) = B

4δ2
μ

[δμt(1 − e−iδμt ) + 2i(1 − e−iδμt )]. (37)

In addition to the TFIM that might be naively expected, the
truncated description also contains spin-dependent displace-
ments which depend upon both the z and y components of
the spin. We see that higher-order terms in the Magnus series
which are beyond the TFIM description (namely, the γμ terms)
vanish at the decoupling points td defined above, but also have
a norm which grows as Bt , and so will only be small enough
to be considered perturbations for times scaling as t  1/B.

An alternative approach, which does not suffer from the
restrictions on time scales of the B-perturbative Magnus
series, is to perform a canonical transformation which removes
ĤSB;I (t) from the Hamiltonian, as first introduced in the
time-independent case by Porras and Cirac [27] and in
the time-dependent case by Wang and Freericks [48]. We
can alternately view this procedure by transforming to an
interaction picture rotating with ĤSB;I (t), but approximating
the interaction picture rotation operator by only the first term
in the Magnus series generated by ĤSB;I (t). Since the Magnus
series generated by ĤSB;I (t) exactly terminates, we do not have
to worry about delicate issues of convergence. Noting that
exp[−i

∫ t

0 dt ′ĤSB;I (t ′)] = ÛSB(t), the spin-boson propagator
from the pure driving case above, and writing the propagator
as Û (t) = ÛSB(t)Û(t), the Schrödinger equation becomes

i∂t Û(t) =
⎡
⎣ ∑

μ,j,j ′
gμjgμj ′

1 − cos(δμt)

4δμ

σ̂ z
j σ̂ z

j ′ + ĤB

+
∞∑

n=1

(−1)n

n!
C(n)

(
Â(p)

1 (t),ĤB

)⎤⎦Û(t), (38)

in which C(n)(Â,B̂) denotes the nth nested commutator of Â

with B̂, e.g., C(2)(Â,B̂) = [Â,[Â,B̂]]. As expected, we have
that ∑

μ

gμjgμj ′

∫ t

0
dt ′

1 − cos(δμt ′)
4δμ

= J̃j,j ′ (t), (39)
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FIG. 7. Comparison of orders in the series Eq. (38). The fidelity
of the zeroth-order (dotted), first-order (solid), and second-order
approximate dynamics predicted by the series Eq. (38) with the exact
solution at B = 0.4δ are shown as a function of time. Including more
terms in the series always improves the fidelity at short times, but
may not improve the fidelity at long times.

and so this approach reproduces the exactly terminating
Magnus series given above when ĤB → 0.

If we neglect all of the commutators in Eq. (38), then this
defines an effective Hamiltonian which is a time-dependent
TFIM. Due to the time dependence, operator character beyond
just the TFIM can appear in the evolution operator (Ap-
pendix D). That is to say, one should be cautious about referring
to the effective Hamiltonian Ĥeff , even in the absence of boson
effects, as corresponding to a TFIM with spin-spin couplings
given by J̃j,j ′ (t). In addition, it can be shown (Appendix D) that
the terms in the “correction series” given by the commutators in
Eq. (38)—even though they appear to involve only spin-boson
couplings—lead to effective spin-spin interactions of the same
order in g/δ as the Ising spin-spin interactions. When ĤB

can no longer be considered a perturbation, these corrections
and their virtually mediated spin-spin interactions will become
important.

A natural question to ask is whether the series Eq. (38)
converges, and how it compares with the other approaches con-
sidered in this work. In Fig. 7 we show the fidelity of the exact
solution with the first three orders of Eq. (38), corresponding
to truncating the correction series at n = 0, 1, and 2, again
restricting to the single-mode case with a uniform spin-boson
coupling. The zeroth-order dynamics displays fast oscillations
corresponding to neglecting boson displacements proportional
to the y component of the spin. These displacements are
captured by the higher-order dynamics, and increasing the
order always improves the fidelity at short times. At longer
times, higher-order approximations do not necessarily have a
higher fidelity than lower-order approximations. In part this
is due to the explicit time dependence of the terms in the
correction series, as processes arising from time ordering can
have similar weight to neglected higher-order terms in the
correction series.

We next address how the approaches which are perturbative
in ĤB compare with the nonperturbative Magnus series of
Eq. (22) via the fidelity in Fig. 8. The red solid line is the
B-non-perturbative Magnus series, the green dotted line is
the B-perturbative Magnus series Eqs. (33)–(35), and the
blue dashed line is the second-order canonical transformation
Eq. (38). Here, B = 0.4δ, and so this dynamics is in the

FIG. 8. Comparison of perturbative and nonperturbative ap-
proaches in the crossover regime. The fidelity of the
B-non-perturbative Magnus series (red solid), B-perturbative Mag-
nus series (green dotted), and second-order canonical transformation
(blue dashed) dynamics with the exact dynamics at B = 0.4δ are
given as a function of time. The nonperturbative Magnus series
performs best in this regime, and the perturbative Magnus series
performs worst. The canonical transformation dynamics is the same
as the blue dashed curve in Fig. 7.

crossover regime where both the TFIM and XY descriptions
perform reasonably. We see that the nonperturbative Magnus
series generally performs the best, with the perturbative Mag-
nus series generally performing the worst (worse even than
the zeroth-order canonical transformation, compare Fig. 7).
However, interestingly, the canonical transformation result,
which contains terms that are higher order in the spin-boson
coupling and transverse field than the perturbative Magnus
series, performs worse than the perturbative Magnus series at
later times.

Finally, we discuss the crossover from TFIM-like spin
physics to XY -like spin physics as a function of transverse
field. This crossover can be derived starting from the assumed
validity of the TFIM:

ĤTFIM =
∑
j,<j ′

Jj,j ′ σ̂ z
j σ̂ z

j ′ − B

2

∑
j

σ̂ x
j . (40)

The Ising coupling can be written in terms of the operators
σ̂ x±

j = 1
2 (σ̂ z

j ∓ iσ̂
y

j ) which create excitations along the field
direction as∑
j,<j ′

Jj,j ′ σ̂ z
j σ̂ z

j ′ =
∑
j,<j ′

Jj,j ′
(
σ̂ x+

j + σ̂ x−
j

)(
σ̂ x+

j ′ + σ̂ x−
j ′

)
. (41)

When the field is strong, we expect that the only terms
energetically allowed are those that preserve the number of
excitations along the field direction, and so we ignore products
of two σ̂ x+s or σ̂ x−s, giving∑

j,<j ′
Jj,j ′ σ̂ z

j σ̂ z
j ′ ≈

∑
j,<j ′

Jj,j ′
(
σ̂ x+

j σ̂ x−
j ′ + σ̂ x−

j σ̂ x+
j ′

)
(42)

= 1

2

∑
j,<j ′

Jj,j ′
(
σ̂ z

j σ̂ z
j ′ + σ̂

y

j σ̂
y

j ′
)
, (43)

which is an XY model in the directions perpendicular to the
transverse field with spin-spin coupling constants given by half
the Ising coupling constants [34,35]. Noting that ĤB commutes
with these spin-spin interactions, we can alternatively view this
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δt
/2

π

B/δ

F
2
(ρ

e
ff
,ρ

e
x
a
c
t )

XY
TFIM

FIG. 9. Crossover from TFIM to XY behavior. Also shown is the
fidelity of the XY model (blue) and TFIM (blue) predictions with the
exact solution in the small B regime. When B � J and B  δ, both
models predict spin-spin couplings of XY character with strengths
given by half of the Ising couplings at B = 0. In this region the most
accurate spin model shifts from being the B-perturbative TFIM to
being the B-non-perturbative XY model.

as an XY model in a frame rotating with the transverse field,
up to corrections scaling as 1/B. These are exactly the same
spin-spin interactions predicted by the effective XY model
Eq. (29) in the limit that B  δ.2 The above analysis suggests
that the crossover from TFIM to XY behavior occurs in the
regime B � J but B  δ where both models predict the same
spin-spin coupling physics, and numerical analysis confirms
this picture (Fig. 9).

VI. CONCLUSIONS

In summary, we analyzed the dynamics of a boson-mediated
Ising quantum spin simulator in the presence of an effective
transverse field of strength B that does not commute with
the spin-boson coupling, and identified regimes in which the
spin dynamics are captured by pure spin models. For small
transverse field on the order of the Ising spin-spin coupling
constants, the dynamics are well described by the TFIM, while
for larger fields the dynamics has the character of an XY model
with possible nonperturbative renormalization of the spin-spin
couplings from their Ising values. While for moderate fields
the XY description coincides with the strong-field limit of
the TFIM, the XY model becomes the more fundamental
description at stronger field, as evidenced, e.g., by a larger
fidelity with respect to the true dynamics. In contrast to the case
of pure driving (no transverse field) where spins and bosons
stroboscopically decouple from each other, we show that
the noncommutativity of the transverse field and spin-boson
coupling causes spin-boson entanglement which does not
strictly vanish at any time, but can be made parametrically
small for experimentally relevant time scales in certain limits.
Our emergent XY model performs well except near B ∼ δ,

2The effective transverse field in Eq. (29) arises due to bosons, and
so can not come about starting from an assumed TFIM description.
However, in the limit B  δ where the crossover occurs, it is small
and can be neglected.

where spin rotation resonantly drives boson excitations and no
pure spin description performs well. In addition, our approach
identifies that the XY description also contains an effective
transverse field the strength of which depends on the boson
mode energy, and that thermal dephasing can be captured
by considering an incoherent, thermally weighted sum of
XY model dynamics. We substantiated our analysis with
analytical calculations based on truncated Magnus series and
numerical calculations. In addition, we showed that this same
analysis applies to a single-beam Mølmer-Sørensen scheme
corresponding to off-resonant driving of a single sideband of
boson excitation in an appropriate rotating frame.
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APPENDIX A: DERIVATION OF THE
NONPERTURBATIVE MAGNUS SERIES TO SECOND

ORDER

In this Appendix, we detail the derivation of the first
two orders in the Magnus series of the interaction picture
Hamiltonian:

ĤI (t) = −1

2

∑
μj

gμj (âμeiδμt + â†
μe−iδμt )

× [
cos(Bt)σ̂ z

j − sin(Bt)σ̂ y

j

]
. (A1)

The first-order term is

Â1(t) = −i

∫ t

0
dt1ĤI (t1)

=
∑
μj

gμj

[
αz

μ(t)â†
μσ̂ z

j + αy
μ(t)â†

μσ̂
y

j − H.c.
]
, (A2)

where

αz
μ(t) = i

2

∫ t

0
dt1e

−iδμt1 cos(Bt1)

= 1

2

δμ − e−iδμt [δμ cos(Bt) + iB sin(Bt)]

δ2
μ − B2

, (A3)

αy
μ(t) = − i

2

∫ t

0
dt1e

−iδμt1 sin(Bt1)

= 1

2

iB + e−iδμt [δμ sin (Bt) − iB cos (Bt)]

δ2
μ − B2

. (A4)
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Using the recursion

Ân =
n−1∑
j=1

Bj

j !

∑
k1 + · · · + kj = n − 1

k1 � 1, . . . ,kj � 1

∫ t

0
dt ′

[
Âk1 (t ′),

[
Âk2 (t ′), . . . ,

[
Âkj

(t ′), − iĤI (t ′)
]
. . .

]]
, (A5)

with Bj the Bernoulli numbers, the second-order term is Â2(t) = − 1
2

∫ t

0 dt ′Ǎ2(t ′), where for future convenience we have defined
Ǎ2(t) = [Â1(t), − iĤI (t)]. Ǎ2 may be written as

Ǎ2(t) = i

2

∑
μμ′

∑
jj ′

gμ′j ′gμj

{[
αz

μ(t)â†
μ − ᾱz

μ(t)â†
μ

]
σ̂ z

j + [
αy

μ(t)â†
μ − ᾱy

μ(t)â†
μ

]
σ̂

y

j

(eiδμ′ t âμ′ + e−iδμ′ t â
†
μ′)

[
cos(Bt)σ̂ z

j ′ − sin(Bt)σ̂ y

j ′
]}

. (A6)

Using the commutator identity [AB,CD] = AC[B,D] + [A,C]DB, valid when A commutes with D and B commutes with C,
we find

Ǎ2(t) = i

2

∑
μμ′

∑
jj ′

gμjgμ′j ′
{[

αz
μ(t)â†

μ − ᾱz
μ(t)âμ

]
(eiδμ′ t âμ′ + e−iδμ′ t â

†
μ′ )

[
σ̂ z

j ,
[

cos(Bt)σ̂ z
j ′ − sin(Bt)σ̂ y

j ′
]]

+ [
αy

μ(t)â†
μ − ᾱy

μ(t)âμ

]
(eiδμ′ t âμ′ + e−iδμ′ t â

†
μ′)

[
σ̂

y

j ,
[

cos(Bt)σ̂ z
j ′ − sin(Bt)σ̂ y

j ′
]]

+ [[
αz

μ(t)â†
μ − ᾱz

μ(t)âμ

]
,(eiδμ′ t âμ′ + e−iδμ′ t â

†
μ′)

][
cos(Bt)σ̂ z

j ′ − sin(Bt)σ̂ y

j ′
]
σ̂ z

j

+ [[
αy

μ(t)â†
μ − ᾱy

μ(t)âμ

]
,(eiδμ′ t âμ′ + e−iδμ′ t â

†
μ′)

][
cos(Bt)σ̂ z

j ′ − sin(Bt)σ̂ y

j ′
]
σ̂

y

j

}
, (A7)

which, upon collecting terms and using commutation relations, gives

Ǎ2(t) =
∑
μμ′

∑
j

gμjgμ′j σ̂
x
j {â†

μâ
†
μ′ α̌

++
μμ′(t) − âμâμ′ ¯̌α++

μμ′(t) + [â†
μâμ′ α̌+−

μμ′(t) − âμâ
†
μ′ ¯̌α+−

μμ′(t)](1 − δμ,μ′)}

− i
∑
j,j ′

[
J̌ zz

j,j ′ (t)σ̂ z
j σ̂ z

j ′ + J̌
yy

j,j ′ (t)σ̂
y

j σ̂
y

j ′ − (1 − δj,j ′ )J̌ zy

j,j ′ (t)σ̂ z
j σ̂

y

j ′
] − i

∑
μ

∑
j

g2
μj B̌eff;μσ̂ x

j (2â†
μâμ + 1). (A8)

Here, we have defined

βμ(t) = [
αz

μ(t) sin (Bt) + αy
μ(t) cos (Bt)

]
, (A9)

α̌+±
μμ′(t) = −βμ(t)e∓iδμ′ t = −[

αz
μ(t) sin (Bt) + αy

μ(t) cos (Bt)
]
e∓iδμ′ t , (A10)

J̌ zz
j,j ′ (t) =

∑
μ

gμj ′gμj

2

[
ᾱz

μ(t)e−iδμt + αz
μeiδμt

]
cos (Bt), (A11)

J̌
yy

j,j ′ (t) = −
∑

μ

gμj ′gμj

2

[
ᾱy

μ(t)e−iδμt + αy
μeiδμt

]
sin (Bt), (A12)

J̌
zy

j,j ′ (t) =
∑

μ

gμj ′gμj

2

{[
ᾱy

μ(t)e−iδμt + αy
μeiδμt

]
cos (Bt) − [

ᾱz
μ(t)e−iδμt + αz

μeiδμt
]

sin (Bt)
}
, (A13)

B̌eff;μ = − i

2
[βμ(t)eiδμt − β̄μ(t)e−iδμ′ t ]. (A14)

With this, we have that the second-order term in the Magnus expansion is

Â2 =
∑
μμ′

∑
j

gμjgμ′j σ̂
x
j {â†

μâ
†
μ′α

++
μμ′(t) − âμâμ′ ᾱ++

μμ′(t) + [â†
μâμ′α+−

μμ′(t) − âμâ
†
μ′ ᾱ

+−
μμ′(t)](1 − δμ,μ′)}

− i
∑
j,j ′

[
J̃ zz

j,j ′ (t)σ̂ z
j σ̂ z

j ′ + J̃
yy

j,j ′ (t)σ̂
y

j σ̂
y

j ′ + (1 − δj,j ′)J̃ zy

j,j ′ (t)σ̂ z
j σ̂

y

j ′
] − i

∑
μ

∑
j

g2
μjBeff;μσ̂ x

j (2â†
μâμ + 1) (A15)

where O(t) = − 1
2

∫ t

0 dt ′Ǒ(t ′) and J̃ μν(t) = − 1
2

∫ t

0 dt ′J̌ μν(t ′). Explicitly evaluating the integrals, we find

J̃
z,z
j,j ′ =

∑
μ

gμ,jgμ,j ′

8
δμ

(
t + t sinc(2Bt)

δ2
μ − B2

+ 2
B cos(δμt) sin(Bt) − δμ cos(Bt) sin(δμt)(

δ2
μ − B2

)2

)
, (A16)

J̃
z,y

j,j ′ =
∑

μ

gμjgμj ′

4

t sinc(Bt)[B sin(δμt) − δμ sin(Bt)]

δ2
μ − B2

, (A17)
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J̃
y,y

j,j ′ =
∑

μ

gμjgμj ′

8

(
δμ[t − t sinc(2Bt)]

δ2
μ − B2

+ 2B
δμ sin(Bt) cos(δμt) − B sin(δμt) cos(Bt)(

δ2
μ − B2

)2

)
, (A18)

α++
μ,μ = i

4

e−iδμt [δμ sin(Bt) − B sin(δμt)]

δμ

(
δ2
μ − B2

) , (A19)

Beff;μ = Bt

4
(
δ2
μ − B2

) +
(
B2 + δ2

μ

)
cos(δμt) sin(Bt) − 2Bδμ cos(Bt) sin(δμt)

4
(
δ2
μ − B2

)2 . (A20)

APPENDIX B: THIRD-ORDER TERMS

The recursion relation for third order reads

Ân = B1

1!

∫ t

0
dt ′[Â2(t ′),−iĤI (t ′)] + B2

2!

∫ t

0
dt ′[Â1(t ′),[Â1(t ′), − iĤI (t ′)]] (B1)

= −1

2

∫ t

0
dt ′[Â2(t ′), − iĤI (t ′)] + 1

12

∫ t

0
dt ′[Â1(t ′),Ǎ2(t ′)] (B2)

= 1

2

∫ t

0
dt ′

(
[−iĤI (t ′),Â2(t ′)] + 1

6
[Â1(t ′),Ǎ2(t ′)]

)
. (B3)

Both commutators take the form

∑
μj

gμj

⎛
⎝cμâ†

μσ̂ z
j − c̄μâμσ̂ z

j + dμâ†
μσ̂

y

j − d̄μâμσ̂
y

j , − i
∑
j ′ �=j ′′

[
J̃ zz

j ′,′j ′ (t)σ̂ z
j σ̂ z

j ′′ + J̃
yy

j ′,′j ′(t)σ̂
y

j ′ σ̂
y

j ′′ + J̃
zy

j ′,j ′′ (t)σ̂ z
j ′ σ̂

y

j ′′
]

+
∑
μ′μ′′

∑
j ′

gμ′j ′gμ′′j ′ σ̂ x
j ′ {â†

μ′ â
†
μ′′α

++
μ′μ′′ (t) − âμ′ âμ′′ ᾱ++

μ′μ′′(t) + [â†
μ′ âμ′′α+−

μ′μ′′(t) − âμ′ â
†
μ′′ ᾱ

+−
μ′μ′′(t)](1 − δμ′,μ′′ )}

−i
∑
μ′

∑
j ′

g2
μ′j ′Beff;μ′ σ̂ x

j ′ (2â
†
μ′ âμ′ + 1)

⎞
⎠. (B4)

We will break this into three pieces, and further specialize to the single-mode case, by defining

I = −i
∑
j ′ �=j ′′

[
J̃ zz

j ′,′j ′ (t)σ̂ z
j σ̂ z

j ′′ + J̃
yy

j ′,′j ′(t)σ̂
y

j ′ σ̂
y

j ′′ + J̃
zy

j ′,j ′′ (t)σ̂ z
j ′ σ̂

y

j ′′
]
, (B5)

II =
∑
j ′

gμj ′g2
μj ′[(â†

μ)2α++
μμ (t) − (âμ)2ᾱ++

μμ (t)], (B6)

III = −i
∑

μ

∑
j ′

g2
μj ′Beff;μσ̂ x

j ′ (2n̂μ + 1). (B7)

In this notation, we have∑
j

gμj

[
cμâ†

μσ̂ z
j − c̄μâμσ̂ z

j + dμâ†
μσ̂

y

j − d̄μâμσ̂
y

j ,I
] = 2

∑
j �=j ′

gμj

{
σ̂ x

j σ̂ z
j ′
[
2J̃ zz

j,j ′ (t)(dμâ†
μ − d̄μâμ) − J̃

zy

j,j ′ (t)(cμâ†
μ − c̄μâμ)

]

−σ̂ x
j σ̂

y

j ′
[
2J̃

yy

j,j ′ (t)(cμâ†
μ − c̄μâμ) − J̃

zy

j,j ′ (t)(dμâ†
μ − d̄μâμ)

]}
, (B8)∑

j

gμj

[
cμâ†

μσ̂ z
j − c̄μâμσ̂ z

j + dμâ†
μσ̂

y

j − d̄μâμσ̂
y

j ,II
]

= 2i
∑

j

g3
μj

{
(â†

μ)3α++
μμ (t)

(
cμσ̂

y

j − dμσ̂ z
j

) + (âμ)3ᾱ++
μμ (t)

(
c̄μσ̂

y

j − d̄μσ̂ z
j

)}

−i
{
[âμ(â†

μ)2 + (â†
μ)2âμ]α++

μμ (t)
(
c̄μσ̂

y

j − d̄μσ̂ z
j

) + [â†
μ(âμ)2 + (âμ)2â†

μ]ᾱ++
μμ (t)

(
cμσ̂

y

j − dμσ̂ z
j

)}
+2

∑
j �=j ′

g2
μj ′gμj

{
σ̂ x

j ′ σ̂
z
j (ᾱ++

μμ âμcμ − α++
μμ â†

μc̄μ) + σ̂ x
j ′ σ̂

y

j (ᾱ++
μμ âμdμ − α++

μμ â†
μd̄μ)

}
, (B9)
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∑
j

gμj

[
cμâ†

μσ̂ z
j − c̄μâμσ̂ z

j + dμâ†
μσ̂

y

j − d̄μâμσ̂
y

j ,III
]

= 2
∑
j,j ′

g3
μjBeff;μ

{(
σ̂

y

j cμ − σ̂ z
j dμ

)
[âμ(â†

μ)2 + (â†
μ)2âμ] − (

σ̂
y

j c̄μ − σ̂ z
j d̄μ

)
[â†

μ(âμ)2 + (âμ)2â†
μ]

}

+ 2i
∑

μ

∑
j �=j ′

g2
μj ′Beff;μgμj

[
(cμâ†

μ + c̄μâμ)σ̂ x
j ′ σ̂

z
j + (dμâ†

μ + d̄μâμ)σ̂ x
j ′ σ̂

y

j

]
. (B10)

Putting all terms together, we find that the single-mode third-order term reads

Â3 =
∑
j �=j ′

gμj

(
J̃ xz

μ,j,j ′ σ̂
x
j σ̂ z

j ′ â
†
μ + J̃

xy

μ,j,j ′ σ̂
x
j σ̂

y

j ′ â
†
μ − H.c.

) +
∑

j

g3
μj

[
(â†

μ)3
(
αy(3)

μ σ̂
y

j + αz(3)
μ σ̂ z

j

) − H.c.
]

+
∑

j

g3
μj

{
[âμ(â†

μ)2 + (â†
μ)2âμ]

(
αy(2,1)

μ σ̂
y

j + αz(2,1)
μ σ̂ z

j

) − H.c.
}

(B11)

where

J̃ xz
μ,j,j ′ (t) = 2

(
2J̃ zz

j,j ′dμ − J̃
zy

j,j ′cμ

) − 2g2
μj ′α

++
μμ c̄μ + 2ig2

μj ′Beff;μcμ, (B12)

J̃
xy

μ,j,j ′ (t) = −2
(
2J̃

yy

j,j ′cμ − J̃
zy

j,j ′dμ

) − 2g2
μj ′α

++
μμ d̄μ + 2ig2

μj ′Beff;μdμ, (B13)

αy(3)
μ = 2iα++

μμ cμ, (B14)

αz(3)
μ = −2iα++

μμ dμ, (B15)

αy(2,1)
μ = −iα++

μμ c̄μ + 2Beff;μcμ, (B16)

αz(2,1)
μ = iα++

μμ d̄μ − 2Beff;μdμ. (B17)

Now, in order to find the coefficient of the form q in Â3, we replace

q → 1

2

∫ t

0

[
q/.

{
c → i

2
cos(Bt)e−iδμt ,d → − i

2
sin(Bt)e−iδμt ,J μν → J̃ μν,α++ → α++,Beff → Beff

}

+ 1

6
q/.{c → αz,d → αy,J̃ μν → J̌ μν,α++ → α̌++,Beff → B̌eff}

]
, (B18)

where the notation E/.{} means to apply the replacement rules in braces to the expression E. Using this, the coefficients of the
(â†

μ)3 terms are

αy(3)
μ = 1

2
2i

∫ t

0
dt ′

(
i

2
α++

μμ (t ′) cos(Bt ′)e−iδμt − 1

6
βμ(t ′)e−iδt ′αz

μ(t ′)
)

, (B19)

αz(3)
μ = −1

2
2i

∫ t

0
dt ′

(
− i

2
α++

μμ (t ′) sin(Bt ′)e−iδμt − 1

6
βμ(t ′)e−iδt ′αy

μ(t ′)
)

. (B20)

These terms are bounded and have the same decoupling points as the first- and second-order terms. The expressions for the terms
proportional to [âμ(â†

μ)2 + (â†
μ)2âμ] are

αy(2,1)
μ = − i

2

∫ t

0
dt ′

[
α++

μμ (t ′)
(

− i

2

)
cos(Bt ′)eiδμt ′ − 1

6
βμ(t ′)e−iδt ′ ᾱz

μ(t ′)
]

+
∫ t

0
dt ′

(
Beff;μ(t ′)

i

2
cos(Bt ′)e−iδμt ′ − i

12
[βμ(t)eiδμt − β̄μ(t)e−iδμ′ t ]αz

μ(t ′)
)

, (B21)

αz(2,1)
μ = i

2

∫ t

0
dt ′

[
α++

μμ (t ′)
(

i

2

)
sin(Bt ′)eiδμt ′ − 1

6
βμ(t ′)e−iδt ′ ᾱy

μ(t ′)
]

−
∫ t

0
dt ′

[
Beff;μ(t ′)

(
− i

2

)
sin(Bt ′)e−iδμt ′ − i

12
[βμ(t)eiδμt − β̄μ(t)e−iδμ′ t ]αy

μ(t ′)
]
. (B22)
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The secular terms from these expressions read

αy(2,1)
μ ≈ − Bt

8
(
δ2
μ − B2

)2 {δμ + e−iδμt [δμ cos(Bt) + iB sin(Bt)]}, (B23)

αz(2,1)
μ ≈ iBt

8
(
δ2
μ − B2

)2 {B + e−iδμt [B cos(Bt) + iδμ sin(Bt)]}. (B24)

APPENDIX C: AGREEMENT OF THE PERTURBATIVE AND NONPERTURBATIVE MAGNUS SERIES AT LOWEST ORDER

In this Appendix we check that the perturbative and nonperturbative expansions agree to second order in g but first order in
B. That is to say, if we ignore all terms of higher order than O(B) in the second-order nonperturbative result, we should recover
the second-order perturbative result. The second-order nonperturbative Magnus propagator is

ei B
2 t

∑
j σ̂ x

j eÂ1+Â2 ≈ ei B
2 t

∑
j σ̂ x

j +Â1+Â2+ 1
2 [i B

2 t
∑

j σ̂ x
j ,Â1]. (C1)

The ≈ is an equality up to the order we require, as follows from the Baker-Campbell-Hausdorff (BCH) formula. The commutator
appearing in the exponential is

1

2

⎡
⎣i

B

2
t
∑

j

σ̂ x
j ,Â1

⎤
⎦ = B

2
t
∑
μj

gμj

[
αz

μ(t)â†
μ − H.c.

]
σ̂

y

j + O(B2), (C2)

and, noting that Beff;μ, α+±
μ,μ′ , J̃

z,y

j,j ′ , and J
y,y

j,j ′ are all at least O(Bg2) and so beyond the second-order perturbative result, and that
J̃

z,z
j,j ′ = J̃j,j ′ (t) + O(B2), we find that

ei B
2 t

∑
j σ̂ x

j eÂ1+Â2 ≈ exp

⎛
⎝i

B

2
t
∑

j

σ̂ x
j − i

∑
j,j ′

J̃j,j ′ (t)σ̂ z
j σ̂ z

j ′ +
∑
μj

gμj [αμ(t)â†
μ − H.c.]σ̂ z

j +
∑
μj

gμj [γμ(t)â†
μ − H.c.]σ̂ y

j

⎞
⎠, (C3)

where we have used the fact that limB→0 αz
μ(t) = αμ(t). The spin-boson coupling γμ(t) is the first-order coefficient of α

y
μ(t) plus

the factor of Btαz
μ(t) from the BCH commutator above. To wit, we find

γμ(t) = B

2δ2
μ

[i + e−iδμt (δμt − i)] + Bt

4δμ

(1 − e−iδμt ) = B

4δ2
μ

[δμt(1 − e−iδμt ) + 2i(1 − e−iδμt )], (C4)

as was found for the perturbative result. Hence, the two expansions agree to the specified order.

APPENDIX D: TIME-ORDERED DYNAMICS OF THE EFFECTIVE HAMILTONIAN EQ. (38) RESULTING
FROM THE CANONICAL TRANSFORMATION APPROACH

Working through the first two orders of the Magnus expansion of Eq. (38) without any of the terms in the correction series,
we find

Û(t) ≈ exp

⎛
⎝−i

∑
j �=j ′

J̃j,j ′ (t)σ̂ z
j σ̂ z

j ′ − iĤBt + Â(c)
2

⎞
⎠, (D1)

where the second-order term is

Â(c)
2 (t) = −

∑
j �=j ′

1

2

∫ t

0
dt ′

[
−iJ̃j,j ′ (t ′)σ̂ z

j σ̂ z
j ′ , − i

B

2

∑
k

σ̂ x
k

]
= i

B

2

∑
j �=j ′

∫ t

0
dt ′J̃j,j ′ (t ′)σ̂ y

j σ̂ z
j ′ .

Hence, even in the absence of boson effects, the effective Hamiltonian Ĥeff does not strictly correspond to a TFIM with spin-spin
couplings given by J̃j,j ′ (t).

Let us now look at the first two terms in the “correction series” given by the commutators in Eq. (38). The first-order correction
Ĉ1(t) = −[Â(p)

1 (t),ĤB] is

Ĉ1(t) =
∑

μ

⎡
⎣∑

j

gμj [αμ(t)â†
μ − H.c.]σ̂ z

j ,B
∑

k

σ̂ x
j

⎤
⎦ = −i

∑
μ

∑
j

B

2
gμj [αμ(t)â†

μ − H.c.]σ̂ y

j ,
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which gives a spin-dependent force along the σ̂ y direction. The next-order term is

Ĉ2(t) = −1

2

⎡
⎣∑

μ′

∑
j ′

gμ′j ′ [αμ′(t)â†
μ′ − H.c.]σ̂ z

j ′ ,
∑

μ

∑
j

B

2
gμj [αμ(t)â†

μ − H.c.]σ̂ y

j

⎤
⎦

= i
∑
μ,μ′

∑
j

Bgμjgμ′j

4
σ̂ x

j [αμ′(t)â†
μ′ − H.c.][αμ(t)â†

μ − H.c.]. (D2)

Here, we note that the second-order term in the Magnus series generated from Ĉ1(t), i.e., − 1
2

∫ t

0 dt ′
∫ t ′

0 dt ′′[Ĉ1(t ′),Ĉ1(t ′′)], gives
spin-spin interactions along the yy direction, and the first-order term in the Magnus expansion of Ĉ2(t), i.e., −i

∫ t

0 dt ′Ĉ2(t ′), gives
rise to the thermally dependent effective magnetic field, denoted Beff in the frame of the nonperturbative calculation. Hence,
while the correction series appears to only involve spin-boson couplings, the time ordering of its terms can also produce effective
spin-spin interactions at the same order in g/δ as the Ising spin-spin interactions.
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