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Phase control of photon-echo dynamics with overlapping pulse pairs
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We report on the dynamics of two-pulse photon echoes in a two-level system. We consider two different types
of excitation pulse pairs: pulses with the same carrier envelope phases (CEP pulse pairs) and pulse pairs cut from
the same carrier wave train (labeled as normal pulse pairs). We show that for CEP pulse pairs when the pulses
overlap somewhat the photon-echo emission time is strongly sensitive to the relative phase (i.e., delay time)
between the two pulses. We also show how the photon-echo emission time for such CEP pulse pairs depends on
the dephasing time of the polarization (T2) and the pulse width of the applied pulses. This phase sensitivity can
be utilized to control the emission time of the photon echo which may prove useful in storing and retrieving light
signals from an atomic ensemble. Our results also inform the interpretation of photon-echo signals at short delay
time when used to measure fast coherence decay rates.

DOI: 10.1103/PhysRevA.95.013416

I. INTRODUCTION

Spin echoes, also known as Hahn echoes [1], were first
detected by Erwin Hahn in 1950. These echoes originate
from the rephasing of spin coherence after the application
of a pair of radio frequency excitation pulses delayed by time
τd . A photon echo is similarly the rephasing of the optical
polarization after optical excitation by a pulse pair. Echoes
have important applications in many fields including spec-
troscopy [2,3], quantum information processing [4], studying
magnons and phonons in single crystals [5], and measurement
of spin-spin or polarization relaxation times (T2) [6]. The
photon echo is one potential candidate for quantum storage
of light in an atomic ensemble and photon echoes are being
investigated for application in long-term optical quantum
memories [7–9]. Conventional photon echoes have low signal
retrieval efficiency [10] and the time of the echo appearance
after the second pulse is fixed near to the interpulse delay.
Techniques for on-demand retrieval of the photon echo would
be beneficial [11,12] and techniques like controlled reversible
inhomogeneous broadening (transverse as well as longitu-
dinal) are being developed to increase the signal retrieval
efficiency of such systems [13]. Even after 65 years, the
interest in echo phenomena is still rising as further applications
emerge; therefore it is imperative that we study and understand
all aspects of photon-echo dynamics.

In this paper, we study the echo dynamics for two different
kinds of pulse pairs. For pulse pairs that each have the same
carrier envelope phase, denoted CEP pulse pairs, the electric
field can be written as

E(t) =
∑
j=1,2

Ej (t) =
∑
j=1,2

Ej e
−(t−tj )2/2δ2

cos[ω(t − tj )],

where Ej is the pulse peak amplitude, tj locates the pulse
Gaussian envelope in time, ω is the driving laser frequency,
and δ is the temporal pulse width. Typically E1,E2 and δ are
chosen to yield π/2 and π pulse areas respectively but this is
not crucial to the photon echo phenomenon. For pulse pairs
that are cut out from the same carrier wave train, denoted here

as normal pulses, the electric field can be written as

E(t) =
∑
j=1,2

Ej e
−(t−tj )2/2δ2

cos[ω(t − t1)].

Figure 1 illustrates these two different kinds of pulse pairs.
We see that the phasing of the envelope and the carrier wave
of both pulses in a CEP pulse pair is identical, whereas for
normal pulse pairs this is not the case. Most of the studies
(and applications hitherto) of photon and spin echoes consider
only nonoverlapping pulses. By exploring the regime where
pulses partially overlap, we found that the photon-echo signal
is very sensitive to the relative phase (i.e., interpulse delay,
τd ) between the pulses when a CEP pulse pair is used.
Unsurprisingly the absolute value of the carrier envelope phase
has no influence on the echo dynamics other than defining
the phase of the underlying polarization oscillations. Using
numerical simulations and approximate analytic solutions to
the optical Bloch equations we find that large shifts in the echo
emission time are possible by controlling parameters such as
the delay between the pulses, the inhomogeneous broadening
of the two-level ensemble, the pulse widths of the applied
pulses, and the polarization dephasing time.

Results from this study show that we can achieve control
over the emission time of the echo signal while using the
same pulse sequence (π/2-π ) as the conventional echoes. This
wasn’t possible before in a two-level system. Therefore, just
by overlapping the pulses we can increase the storage time of
the signal (limited by T2) by a significant amount as shown in
the numerical simulations in Sec. III.

Photon-echo experiments which attempt to measure de-
phasing times which are close to the available pulse durations
will naturally make some measurements with partially overlap-
ping excitation pulses. Our results show that, depending on the
relative phase difference between the pulses, strongly shifting
(in time) photon echoes will arise. This may be misinterpreted
as jitter or noise when, as we show, it is in fact a consequence
of interference.

We next distinguish our results from previous pub-
lished results where the phase difference between pairs of
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FIG. 1. Illustration of a CEP pulse pair (top panel) and a normal
pulse pair (bottom panel). The Gaussian envelope (dotted line)
highlights the difference between CEP and normal pulses.

excitation pulses have proven useful in nonlinear spec-
troscopy. Reference [2] shows how the real and imaginary
parts of the nonlinear response function can be measured
independently using nonoverlapping phase-locked pulses by
changing the phase between the two pulses to be in-phase
and in-quadrature. Using heterodyne-detected phase-locked
femtosecond stimulated photon-echo and phase-locked, pump-
probe techniques [14,15] it has been shown that the relative
phase between two initial pulses and the relative phase between
the last two pulses are both important individually rather
than only their difference. Here again the second and third
pulses never overlap in time. A shift in echo maximum with
delay between the pulses is plotted and a quantum beatlike
pattern is shown on the scale of 1 ps with a pulse width of
14 fs, i.e., much longer than the frequency and therefore not
an interference phenomenon. A deformation of pulses when
overlapped in the time domain is not considered here, which
is the distinguishing feature in the present paper. The paper of
Yano and Shinojima [16] considers a comparison between CEP
and normal pulses for photon echoes and coherent population
control using a perturbative approach which neglects any pulse
overlap. Their results predict a shift in echo temporal position
with respect to pulse widths when the dephasing and decay
times differ, but this shift does not arise from the changing
overlap between the pulses (as this is neglected from the
start).

In coherent photon-echo simulations, there are five indepen-
dent energy and time quantities which come into play: (i) the
interpulse delay, (ii) the pulse widths, (iii) the inhomogeneous
linewidth, (iv) the detuning of the excitation from the center
of the inhomogeneous line, and (v) the dephasing time.
In this large phase space there is no natural scaling, so
we choose to present simulations for physical parameters
corresponding to the 1s-2p+ transitions of phosphorus-doped
silicon (Si:P) which has potential for quantum information
processing [17,18]. The behavior we report however is generic
and can be easily applied with appropriate scaling to other
materials and systems.

II. PHOTON-ECHO BLOCH EQUATIONS

The Bloch equations for a single two-level system in the
rotating frame of the driving field E(t) can be written [19] as

dng

dt
= i

∑
j

�j (t)

2
[Pgee

iφj − P ∗
gee

−iφj ] + ne

T1
, (1)

dne

dt
= −i

∑
j

�j (t)

2
[Pgee

iφj − P ∗
gee

−iφj ] − ne

T1
, (2)

dPge

dt
= i

∑
j

�j (t)

2
e−iφj (ng − ne) + iPge(ω0 − ω) − Pge

T2
,

(3)

where the summation over j covers multiple pulses, ng is
the population of the ground state, ne is the population of
the excited state, ω0 is the transition frequency, Pge is the
polarization, �j (t) = dEj (t)/h̄ quantifies the effect of the
driving pulses on the transition dipole d, φ is the phase
difference between the two pulses of the pair, and T1 and
T2 are, respectively, the population and polarization radiative
relaxation times with T1 = 2T2. In the case of normal pulses,
φ = 0, and for CEP pulses φ = ωτd , where τd is the delay
between the pulses.

To include the influence of different local environments
(i.e., inhomogeneous broadening) we simply solve the Bloch
equations for two-level systems having a distribution of
transition frequencies. Integrating over this distribution yields
the total polarization, Ptotal, for an ensemble of systems with
the chosen inhomogeneous broadening, i.e.,

Ptotal =
∫ �′

Pge(�′) g(�′) d�′, (4)

where �′ is the detuning between transition and driving
frequencies and g(�′) is the normalized inhomogeneous
distribution of two-level atoms with

g(�′) = G e−(�′−�)2/(2σ 2). (5)

In all our simulations the center frequency of the pulses is
chosen to coincide with the center of the inhomogeneous
distribution.

III. NUMERICAL SIMULATIONS

Here we present numerical simulations of Eqs. (1)–(5)
to investigate the dependence of the photon-echo emission
dynamics on parameters such as the relative phase between the
pulse pair, pulse duration, and dephasing. All the simulations
in this paper are for CEP pulses unless otherwise noted.

A. Photon-echo dynamics for partially overlapping pulses

In Fig. 2 we show the absolute value of the polarization
for a case where the two pulses partially overlap in time
for different pulse interference conditions, i.e., when pulses
interfere constructively or destructively. We see a large shift
(≈13 ps) in the arrival time of the echo even when the delay
between the pulses is changed by only 0.05 ps, a very small
fraction of the interpulse delay of around 33.4 ps.
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FIG. 2. (Upper panel) Absolute value of the polarization vs time
for different delays (τd ) between the CEP pulses. The solid blue line
is the destructive interference, τd = 33.4057 ps. The dashed red line
is the constructive interference, τd = 33.3531 ps. The dotted magenta
line is the quarter of an oscillation, τd = 33.3794 ps. The transition
frequency is 9.504 37 THz, the detuning is zero, and the first pulse has
an area of π/2 and the second an area of π . The intensity full width
at half maximum (FWHM) pulse width of both pulse envelopes is
17 ps, the FWHM inhomogeneous broadening is 0.028 THz, and the
dephasing time T2 is infinite. t = 0 corresponds to the arrival of the
peak of the first pulse. (Lower panel) Illustration of net driving electric
field from overlapping π/2 and π pulses under constructive red (light)
and destructive blue (dark) interference conditions. Individual pulse
envelopes are shown as the solid yellow lines and the fast carrier
frequency oscillation is not resolved. The amplitude of the destructive
interference case has been reduced by 10% for clarity.

To get the full picture of how the echo signal is changing
with respect to the delay between the pulses we solved the
Bloch equations numerically for many different delays and
plotted the echo signal as a heat map as shown in Fig. 3. This
shows that the echo peak position and to a lesser extent the
echo strength are very sensitive to the relative phase between
the pulses.

When pulses do not overlap in the time domain we do not
observe this phase sensitivity of the echo signal emission time
whether the pulses used are CEP or normal. So the observed
delay sensitivity is only seen for partially overlapping CEP
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FIG. 3. Heat map of absolute value of polarization versus time for
different delays (τd ) between the pulses for photon echo using CEP
pulses. The green dotted line indicates the time τd after the second
pulse peak. Parameters are as in Fig. 2.

pulses. This indicates that the origin of the phase sensitivity
lies in the interference between the electric fields of the pulses
and not between the polarization oscillation induced by the
first pulse interfering with the second pulse. The result of such
interference is seen in the lower panel of Fig. 2; the constructive
interference case (red, light shading) resembles a single pulse
with an amplitude modulation while the nodal structure in the
destructive interference case (blue, dark shading) produces two
slightly shorter but sequential pulses. We use this observation
to construct an analytical model of the system in Sec. IV.

This phase sensitivity has implications for the use of
photon-echo techniques to measurements of dephasing (T2)
times. If the dephasing times are similar to the pulse length,
care must be taken to either use normal pulse pairs or to account
for the phase difference between the pulses in the analysis.

B. Influence of pulse overlap area

We next investigate how the area of overlap between the
pulses quantitatively affects the photon-echo emission time
and its dependence on the relative phase between the two
pulses. This overlap area can be changed by either (i) changing
the pulse width keeping the delay between the applied pulses
constant or (ii) changing the delay between the applied pulses
while keeping the pulse width constant.

Figure 4 shows the effect of changing the pulse width
while keeping all other parameters, including the pulse areas,
fixed. For destructive interference, around τd = 33.4 ps, as we
increase the pulse width the shift in the echo peak position
in time increases by over 15 ps. Also interesting are the
qualitative changes that increasing the pulse width brings
midway between constructive and destructive interference
conditions around a delay of τd = 33.43 ps; the echo peak
position is not even monotonic with the pulse width. For

013416-3



JOSHI, PIDGEON, MURDIN, AND GALBRAITH PHYSICAL REVIEW A 95, 013416 (2017)

interpulse delay, τd (ps)
33.41 33.42 33.43 33.44 33.45

Ec
ho

 p
ea

k 
po

si
tio

n 
(p

s)

60

65

70

75

80

85

90

t=2τd

destructive interference

constructive
 interference

FIG. 4. Echo peak position in time vs delay between the pulses
for different (intensity) pulse durations: dotted blue line, FWHM =
12 ps; dashed black line, FWHM = 17 ps; and red line, FWHM =
23.5 ps. Across the figure the interference condition passes from
destructive (left) to constructive (right). The horizontal green dotted
line indicates the time τd after the second pulse peak. Other parameters
are as in Fig. 2.

constructive interference the shifts seen are rather small,
indicating an insensitivity to pulse width in this regime.

Figure 5 shows the photon-echo peak position in time
versus delay between the pulses for a fixed (intensity) pulse
duration of 17 ps (FHWM). We show scans from destructive
interference through to constructive interference for three
different delays around (a) τd = 40 ps, (b) τd = 33.4 ps, and
(c) τd = 25.1 ps. The change in overlap area of the two pulses
is negligible within one scan but appreciable between the three
subplots. We can see that here also the qualitative nature of
the echo signal changes as we increase the delay; for shorter
delays constructive interference echoes are emitted at times
later than those for mixed quadrature excitation. Overall, for
all interference conditions, longer pulse excitation tends to
bring the emission back towards the t = 2τd line.

We conclude from these simulations that it is the specific
combination of pulse width and interpulse delay that deter-
mines the qualitative behavior of echo, not simply the area
of overlap between the pulses. We have also run simulations
where by changing both the pulse duration and the interpulse
delay we hold the pulse overlap constant and find no universal
dependence on the overlap area.

IV. ANALYTICAL FORMULAS FOR PHOTON-ECHO
SIGNALS

In this section we describe three special cases where we
can derive an analytical formula for the shifts in the position
of photon echo in the CEP case. The electric field of the
pulses are assumed to be top hat in time and have the same
amplitude. The second pulse is twice as long as the first and
thus has the required area for a π pulse. The three cases are (i)
when the applied pulses do not overlap, (ii) when the applied
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FIG. 5. Echo peak position in time vs delay between the pulses
for different delays around (a) τd = 40.1 ps, (b) τd = 33.4 ps, and
(c) τd = 25 ps. Across the figure the interference condition passes
from destructive (left) to constructive (right). The green dotted line
indicates the time τd after the second pulse peak. Other parameters
are as in Fig. 2.

pulses interfere destructively, and (iii) when the applied pulses
interfere constructively.

A. Nonoverlapping pulses

For comparison in the case where pulses do not overlap in
time there is an existing result [19],

P (t4) = −2P0 e−σ 2(t43−t21−1/�1)2/2 sin (ωt4), (6)

where P (t4) is the polarization after the application of the
second pulse, P0 is a constant, and �1 is the Rabi frequency
of the initial π /2 pulse. t21 is the time interval between the
two pulses and t43 is the time coordinate relative to the end of
the second pulse. The echo appears when these two are almost
equal, with a small correction due to the finite pulse width.

B. CEP pulses: Destructive interference

In this case the total electric field can be written as a
piecewise constant field of varying amplitude [see Fig. 6(a)].
When the pulses overlap the electric field is zero so instead
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FIG. 6. The envelope of two top hat pulses interfering (a)
destructively and (b) constructively. The destructive interference
provides a region of zero field when the pulses are overlapping which
allows an interval of free polarization oscillation and rephasing. For
the constructive case, interference in the interval (t1, t2) causes the
amplitude of the electric field to double at those times. In effect this
results in three consecutive finite field regions.

of overlapping π/2 and π pulses we have two pulses with
smaller area and a period of free nutation in between. This
gives rise to a modified echo which is the origin of the phase
control of the photon-echo dynamics we report here. In each
section of the pulse sequence, we can write the solution in the
Rabi form and by multiplying the matrices together an analytic
solution for the polarization can be found. This only works for
perfectly constructive or destructive interference but still we
can gain some insight by studying these limits. Following the
same calculation as in Ref. [19] but with CEP pulses, we derive
the result for destructively interfering pulses:

P (t4) = P0[cos A(e−σ 2(t43+t21−C)2/2 − e−σ 2(t43−t21−C)2/2)

− cos2 A(e−σ 2(t43+t21+D)2/2 + e−σ 2(t43−t21+D)2/2)

+ 2 sin2 Ae−σ 2(t43+E)2/2] sin (ωt4), (7)

with

C = (1 + sin 2A)/�1,

D = (sin A sec2 A − sec2 A − tan A)/�1,

E = (cot A + csc A)/�1,

where A is the area of overlap between the pulses (between 0
and π/2), ω is the applied laser frequency, and t21 = t2 − t1
and t43 = t4 − t3 are the times as shown in Fig. 6. As area A

is always less than π/2, C and E are always positive, while D

is always negative. Superposition of the first four terms in the
formula defines the echo profile and the arrival time, while the
last term doesn’t actually contribute to the echo signal after
time t3 because E is always positive, which implies that the
peak of the Gaussian lies before t3 and hence does not affect
the echo that comes at times later than t3. The shift in the
position of echo depends on the area of overlap (A) between

the pulses and the Rabi frequency of the applied pulses. For
A = 0 this result reduces to Eq. (6) as it must.

Equation (7) describes well the observed behaviors for
destructive interference. Increasing the pulse duration for a
fixed delay, or decreasing the delay time for a fixed pulse
duration, increases the pulse overlap area A. As A increases,
C becomes larger and D more negative and both these trends
lead to an increase in the shift of the echo emission time.
Both these trends are seen in the full numerical simulations of
Figs. 4 and 5.

The FWHM of each term is inversely related to the FWHM
of the inhomogeneous broadening distribution, i.e., the broader
the ensemble linewidth (larger σ ), the narrower the Gaussians
in each term of the formula. Therefore, the superposition
between these four terms will change if we change the
inhomogeneous broadening distribution. This implies that the
echo position also depends on the ensemble linewidth. Now
by controlling the area of overlap between the pulses as well
as the pulse width, we can have control over the emission time
of the echo, which might be important in storing light using
atomic ensembles.

C. CEP pulses: Constructive interference

For constructive interference between the CEP pulses [see
Fig. 6(b)], we find

P (t4) = −P0 e−σ 2(t43−1/�1)2/2 sin (ωt4).

This result is independent of the overlap between the pulses,
which is consistent with the rather weak shifts seen for
constructive interference in Figs. 4 and 5. This formula is
only valid when A �= 0 and therefore it is not equivalent to
Eq. (6). Effectively within this analytic model there is no real
echo emitted. This can be understood by noting that there is no
free precession interval (the electric field in the interval t21 is
not zero) between the two pulses. This means the macroscopic
polarization does not have time to freely unphase; therefore
we do not get a distinct photon-echo signal from the rephasing
of oscillators after the excitation pulses are gone.

V. THE INFLUENCE OF DEPHASING

In Fig. 7 we show the effect of introducing a finite
polarization dephasing time, T2 = 120 ps, on the echo peak
position in time. For destructive interference we find that the
finite dephasing time shifts the curve to earlier times while
for constructive interference we find essentially no effect. For
shorter pulses (not shown) there is also a shift for constructive
interference to earlier times too, but a full exploration of this
phase space is beyond the scope of this paper.

Photon-echo decay with a nonoverlapping (π
2 ,π ) pulse

sequence is the conventional technique to measure the po-
larization relaxation times (T2). The echo signal strength is
measured for a range of interpulse delays, and an exponential
decay in strength (with the rate of decay depending on T2) is
observed. Such measurements are most easily done when the
dephasing time is considerably longer than the pulse duration,
allowing for time discrimination over a decade or more in
signal decay. Our results on the strong phase sensitivity of
the echo arrival time inform such measurements in two ways.
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FIG. 7. Echo peak position in time vs delay between the pulses
for different dephasing times. The solid line is the infinite dephasing
time, and the dashed line is the dephasing time T2 = 120 ps. The
green dotted line indicates the time τd after the second pulse peak.
Other parameters are as in Fig. 2.

First at early times when the pulses overlap to some degree,
unless care is taken over the precise interpulse phase at each
delay selected, there will appear in the data some scatter
reflecting the spread of excitation phases used. Without an
appreciation of the source of this scatter it may be wrongly
interpreted as due to some other source of noise. Second, often
it is desirable to push the techniques to measure dephasing
times which approach the pulse duration and hence the phase
sensitivity reported here would come into play. To explore
if new information could be gained with knowledge of the
interference condition, we show in Fig. 8 the echo signal
for constructive and destructive interference using a range
of T2 values. The FWHM pulse duration is 17 ps, which
corresponds to around 24 ps in the field, so with an interpulse
delay of 56 ps there is still appreciable overlap between the
CEP pulses. The echo signal for destructive interference is
distinct and remains identifiable (but reduced in intensity)
even for dephasing times similar to the field pulse duration. At
constructive interference and for the longest dephasing times
the echo peak positions are close to the expected location,
whereas for shorter dephasing times the echo signal is mixed
in a complex way with the driven polarization of the system.
Unraveling what is echo signal and what is driven polarization
is impossible, preventing a T2 determination. This suggests that
to measure a fast dephasing time one should measure it using
CEP pulses at delays corresponding to destructive interference.
In essence one receives an advantage by using the destructive
interference to shape the overlapping pulses into two shorter
bursts of the electric field.
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FIG. 8. Polarization amplitude vs time for constructive interfer-
ence (dotted) and destructive interference (solid lines) delays with
T2 = ∞ (blue), T2 = 120 ps (red), and T2 = 25 ps (black). The
interpulse delay is 56 ps, the (intensity) FWHM pulse duration is
17 ps, and other parameters are as in Fig. 2.

VI. CONCLUSIONS

To conclude, we have shown numerically and analytically
that when carrier-envelope-phase pulses overlap we see a
strong phase dependence of the echo position (in time).
Shifts of over 10 ps have been seen. The qualitative nature
of this phase (delay) dependence changes depending on the
pulse overlap area, the pulse width of the applied pulses,
the dephasing time, and the inhomogeneous linewidth of the
system. In the case of well-separated carrier-envelope-phase
pulses, the echo peak position (in time) is independent of the
phase difference between the applied pulses. For all normal
pulses, the echo peak position (in time) is insensitive to
wavelength-scale changes of the delay between the applied
pulses. In all cases, there is an inherent small shift in the
echo peak position in time due to the finite pulse width of the
applied pulses. Our results inform both the interpretation and
design of ultrafast polarization relaxation measurements using
photon-echo techniques as they guide the interpretation of the
measured signals when the pulses overlap. Making photon-
echo measurements in the destructive interference condition
should allow the resolution of dephasing times shorter than
those in the constructive interference configuration.
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