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Control of quantum localization and classical diffusion in laser-kicked molecular rotors
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We experimentally study a system of quantum kicked rotors—an ensemble of diatomic molecules exposed to
a periodic sequence of ultrashort laser pulses. In the regime where the underlying classical dynamics is chaotic,
we investigate the quantum phenomenon of dynamical localization by means of state-resolved coherent Raman
spectroscopy. We examine the dependence of the exponentially localized angular momentum distribution and
of the total rotational energy on the time period between the pulses and their amplitude. The former parameter
is shown to provide control over the localization center, whereas the latter one controls the localization length.
Similar control of the center and width of a nonlocalized rotational distribution is demonstrated in the limit of
classical diffusion, established by adding noise to the periodic pulse sequence.
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I. INTRODUCTION

The periodically kicked rotor is one of the simplest systems
whose classical motion exhibits chaotic dynamics, leading to
an unbounded diffusive growth of its energy with the number
of kicks. In contrast, the energy growth of a quantum kicked
rotor (QKR) is determined by the interference of quantum
interaction pathways [1]. In the quantum limit, the rotational
excitation is either enhanced due to quantum resonances [2]
or suppressed due to the effect of dynamical localization
(DL) [3,4], which has been linked to Anderson localization in
solids [5]. Similarly to the localization of a quantum particle
in a disordered one-dimensional lattice, the QKR localizes in
a “rotational lattice” of angular momentum states.

Experimental work has mostly been conducted in substitute
systems, imitating the QKR behavior with Rydberg atoms
in microwave fields [6–9] or ultracold atoms in optical lat-
tices [10–15]. In a series of recent articles [16–20], Averbukh
and coworkers proposed a strategy to study a number of QKR
phenomena in an ensemble of diatomic molecules exposed to
a periodic sequence of ultrashort laser pulses. In this system
of true quantum rotors, the effects of a quantum resonance
[21–23] and DL [24–26] have recently been demonstrated.
The recovery of classical diffusion under the influence of
noise and decoherence has also been shown experimentally
with atoms [8,11,27–29] and molecules [25].

The discreteness of the QKR spectrum results in periodic
dynamics with a revival time Trev = (2cB)−1, determined by
the rotational constant B of the molecule, with c being the
speed of light. Matching the period T of a pulse sequence
with the so-called quantum resonance at T = Trev enables
an efficient excitation of multiple rotational states with
growing (from kick to kick) rotational energy. On the other
hand, away from all full and fractional quantum resonances
(T/Trev �= p/q, where p and q are integers) DL suppresses
the rotational energy growth. This quantum suppression of
classical diffusion is accompanied by the exponential line
shape of the kicked rotor’s quasienergy eigenstates in the
angular momentum space. The shape of the observable
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distribution depends on the overlap between these quasienergy
states, whose spectrum is dictated by the pulse train period and
the initial rotational distribution of molecules [17]. In a recent
experimental demonstration of DL in laser-kicked molecules,
we showed an exponentially localized wave function near
the (initially most populated) rotational ground state [25].
We also demonstrated a shifting of the localization center
towards higher energies by applying a periodic pulse train
to a previously prepared coherent superposition of rotational
states and controlling the relative phases between states [26].

Here, we study an alternative route to control the final
rotational distribution by varying the period of the applied
sequence of laser pulses. Oxygen molecules, cooled down to
25 K in a supersonic expansion, are exposed to a series of 13
laser pulses. We measure the distribution of the molecular
angular momentum by means of state-resolved coherent
Raman spectroscopy. An exponentially localized distribution
is observed in the case of periodic excitation, while a Gaussian
line shape, characteristic of classical diffusion, is found for
periodic pulse sequences subject to timing noise. In both
cases, we investigate the effect of the pulse train period on
the rotational distribution: its center, width and shape. We
demonstrate a controlled shift of the quantum localization
center and, similarly, the center of the classical distribution,
which depends on the time separation between the pulses in a
sequence and the nearest fractional quantum resonances. The
control mechanism is associated with the finite duration of the
laser pulses, which results in a partially resonant excitation of
molecules away from their ground rotational state.

II. THEORY

The interaction of a diatomic molecule with a periodic train
of N linearly polarized laser pulses, not resonant with any
electronic transition, is described by the Hamiltonian

Ĥ = Ĵ 2

2I
− �P cos2(θ )

N−1∑
n=0

δ(t − nT ), (1)

where θ is the angle between the molecular axis and the vector
of laser polarization, Ĵ is the angular momentum operator,
I = �(4πcB)−1 is the molecular moment of inertia, and � is
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the reduced Planck constant. The degree of stochasticity in the
dynamics of a kicked rotor is governed by a single parameter
K = τP , where τ = �T/I is the effective Planck constant
and P = �α/(4�)

∫
E2(t)dt is the kick strength, �α is the

molecular polarizability anisotropy, and E(t) is the temporal
envelope of the pulse. All experiments discussed in this report
satisfy the condition of K > 5, for which the phase space of
the underlying classical motion is fully chaotic and supports
an unbounded diffusive growth of rotational energy [30].

For the periodically driven quantum system described
by Hamiltonian (1), the solutions of the time-dependent
Schrödinger equation are the well-known Floquet states χα ,
which are periodic in time, χα(t + T ) = exp(−iEαT /�) χα(t),
up to a phase factor determined by the quasienergy Eα . Finding
quasienergy states of the quantum kicked rotor is equivalent to
solving a one-dimensional tight-binding model of a solid-state
lattice whose sites correspond to the rotational states J [3].
Owing to the selection rules for a rotational Raman process,
laser kicks couple only states of the same parity, resulting in an
effective “rotational lattice” with a lattice constant |�J | = 2.
The on-site energy of the lattice is [17]

TJ = tan(φJ ) = tan

(Eα − EJ

2�
T

)
, (2)

where EJ = hcBJ (J + 1) is the energy of a molecule, which
can be approximated by a rigid rotor due to the low degree of
rotational excitation considered here. The coupling between
different lattice sites is defined by the kick strength P , as
described in detail in Ref. [17].

The solution of the rotational tight-binding model critically
depends on the site-to-site energy variation, which in turn is
determined by the period of the pulse train. It is instructive to
express φJ through the molecular revival time T/Trev:

φJ = π

2

( Eα

hcB
− J (J + 1)

)
T

Trev
. (3)

On quantum resonance (T = Trev), the on-site energy does not
depend on the site number, TJ = tan(π

2
Eα

hcB
). All quasienergy

states in this periodic lattice are extended states. The rotational
population will therefore spread along the lattice until it
is stopped by the centrifugal distortion which destroys the
periodicity [18,20]. The same phenomenon persists in a weaker
form at fractional resonances (T/Trev = p/q) [19], i.e., the
on-site energies of the rotational lattice remain periodic, with
a period proportional to q. If, however, all resonances are
avoided, the argument of the tangent function in Eq. (2)
changes from site to site in a way that makes the energy TJ a
pseudorandom function of J . The quasienergy states of such
a disordered lattice are localized states [3].

The molecular kicked rotor is unique in the way the disorder
strength depends on the rotational quantum number J . While
Anderson localization in real space is typically studied in a
lattice with a spatially uniform disorder, the randomness of
the rotational lattice depends on the site number. Importantly,
this dependence can be controlled by the excitation period
T through its proximity to quantum resonances, as we
demonstrate in this work.

FIG. 1. Top: Diagram of the pump and probe sources. Sequences
of 13 pulses are generated by a pulse shaper; their energy is then
boosted by a multipass amplifier (MPA). Another pulse shaper is used
to narrow the spectral bandwidth of the probe pulse, whose central
wavelength is shifted by means of second harmonic generation (SHG)
in a nonlinear crystal. Bottom: Scheme of the experimental setup.
A train of strong femtosecond pulses (pump) and a delayed weak
probe pulse are focused on a supersonic jet of oxygen molecules in a
vacuum chamber. The change in probe polarization is analyzed as a
function of the wavelength by means of two crossed polarizers and a
spectrometer.

III. EXPERIMENT

A. Setup and detection

A high-intensity train of femtosecond pulses is generated
in an optical system [31], shown schematically at the top of
Fig. 1. We use a Ti:sapphire laser system producing pulses with
a 130-fs full width at half-maximum (FWHM) at a central
wavelength of 800 nm, 1-kHz repetition rate, and 2 mJ per
pulse. Part of the beam (40% in energy) is sent through a
standard “4f ” pulse shaper [32], which generates a sequence
of 13 pulses of equal amplitudes separated by arbitrary time
intervals in a total window of 50 ps. The revival time of
oxygen, Trev ≈ 11.67 ps, is long enough for a 130-fs pulse
to act as a δ kick, yet short enough to generate sufficiently
many pulses within the maximum time window accessible
by the pulse shaper. The pulse sequence is amplified by a
home-built multipass amplifier to reach a kick strength of up
to P = 8 per pulse (∼3×1013 W/cm2) at a 10-Hz repetition
rate. The standard deviation of the pulse energy fluctuations
is about 15%. The remaining part of the 800-nm beam is used
as a probe. Its spectrum is narrowed down in a separate pulse
shaper, before its central wavelength is shifted to ≈400 nm by
means of second harmonic generation in a nonlinear optical
crystal.

The experimental setup is illustrated at the bottom of Fig. 1.
The probe pulse of 0.15-nm spectral width (FWHM) is linearly
polarized at 45◦ with respect to the pulses in the pump train.
Both beams are focused into a vacuum chamber, where they are
combined on a dichroic beamsplitter and intersect a supersonic
jet of oxygen molecules. The pump pulses produce coherent
molecular rotation, which modulates the refractive index of the
gas. As a result, Raman sidebands appear in the narrow-band
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spectrum of the weak probe pulse, polarized orthogonally to its
initial polarization [33,34]. Each Raman peak is shifted from
the central probe frequency by an amount that depends on the
rotational quantum number J , while its intensity IJ allows
the retrieval of the corresponding population PJ [25]. Special
care is taken to avoid detrimental effects of spatial averaging
by making the probe beam significantly smaller than the pump
(FWHM beam diameters of 20 and 60 μm, respectively). We
use a 500-μm-diameter pulsed nozzle, operating at a repetition
rate of 10 Hz and a stagnation pressure of 33 bar, to lower the
rotational temperature of oxygen to 25 K at a distance of 2 mm
from the nozzle.

B. Population retrieval

Let us assume that only a single rotational state,
|J ≡ J ′,M ≡ M ′〉, is initially populated, where M is the
projection of the molecular angular momentum on the vector
of the pump polarization. The linearly polarized pump field
will create a coherent superposition of rotational states,
|ψ〉(t) = ∑

J cJ,M e−iEJ t/� |J,M〉 via multiple two-photon
Raman transitions. Here, cJ,M are the complex amplitudes.
From the selection rules for a two-photon process, �J =
0,±2 and �M = 0, it follows that J = J ′ ± 2k and M = M ′,
where k is an integer. The probe field will scatter off all
the pump-induced coherences between |J 〉 and |J + 2〉 (the
quantum number M has been omitted, as it does not change)
and will acquire Raman sidebands, shifted in frequency by
�ωJ = (EJ+2 − EJ )/h = 2Bc(2J + 3). The intensity of the
Raman peaks is proportional to the modulus squared of the
induced coherences, IJ ∝ |c∗

J cJ+2|2 = PJ PJ+2.
For the localized dynamics of a QKR, we expect an

exponential population distribution [35]. In this case, PJ ∝
PJ+2 and the rotational population can be directly calculated
as PJ = a

√
IJ , with the coefficient a found from normalizing

the total population to unity. For the nonlocalized dynamics of
a QKR, we expect a Gaussian population distribution [27], in
which case PJ PJ+2 ∝ (PJ+1)2. Without affecting the Gaussian
shape, we neglect the small shift in the distribution and obtain
PJ ≈ a

√
IJ .

Instead of having a single initial state populated, we conduct
our experiment in a thermal molecular ensemble. The intensity
of the observed Raman peaks will then be proportional to
the modulus squared of the induced coherences summed over
the degenerate M sublevels and averaged over the initial
thermal mixture, IJ ∝ ∑

M〈|c∗
J,McJ+2,M |2〉

J ′ ,M′ . At 25 K, the
population is distributed almost exclusively among states
with J ′ = 1,3. The smallness of |M ′| � 3 with respect to
the angular momentum of the majority of states in the final
wave packet results in an interaction Hamiltonian which, to
a good degree of approximation, does not depend on M ′.
Consequently, all molecules respond to the laser field in an
almost-identical way and the approximation PJ = a

√
IJ still

holds (see Fig. 3 and discussion below).

IV. RESULTS

A. Dynamical localization

Observing the effect of dynamical localization relies on
avoiding fractional quantum resonances. Figure 2 shows the
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FIG. 2. Rotational resonance map for 16O2. Markers indicate the
pulse train periods (divided by Trev) for which the relative phase
between the two neighboring sites J and J + 2 of the rotational
lattice is equal to an integer multiple of π . Two sets of 10 vertical
lines each indicate the experimental values: (a) 0.26 � T/Trev � 0.29
and (b) 0.315 � T/Trev � 0.325.

location of resonances (crosses) and illustrates our strategy in
choosing the appropriate pulse train periods (vertical lines).
Each cross represents the value of T , for which the relative
phase between the two neighboring sites, J and J + 2, of
the rotational lattice, �φJ = φJ+2 − φJ = π (2J + 3)T/Trev,
is equal to an integer multiple of π , meaning that the two
on-site energies are the same. (Equivalently, these are also the
times when a rotational wave packet, consisting of states |J 〉
and |J + 2〉, completes an integer number of half-rotations.)
We start by choosing a set of 10 evenly spaced values of T

in the interval 0.26 � T/Trev � 0.29 in Fig. 2(a). Here, all
resonances belonging to low-lying J states, which are initially
populated, are far off-resonant. Note, that only odd rotational
states are allowed because of the nuclear spin statistics of 16O2.

Figure 3(a) shows the average Raman spectrum (solid line)
obtained after the excitation with these 10 periodic trains of
13 pulses each with a kick strength of P = 4 per pulse. The
Raman frequency shift (horizontal axis) has been converted to
the rotational quantum number J . The spectral resolution of
the measurement is sufficient to reveal the intensity of all odd
rotational states, which decay exponentially across four orders
of magnitude. We observe a good agreement between our
experimental data and the numerical calculations of the Raman
intensities IJ (filled circles, connected by a dashed line to guide
the eye). The latter simulations are carried out by solving
the Schrödinger equation with Hamiltonian (1) for oxygen
molecules interacting with a sequence of δ kicks. We calculate
the complex amplitudes cJ,M of all rotational states in the wave
packet created from each initially populated state |J ′,M ′〉.
Averaging over the initial thermal mixture, we simulate the
expected Raman signals IJ ∝ ∑

M〈|c∗
J,McJ+2,M |2〉

J ′ ,M′ .
The exact populations PJ = ∑

M〈|cJ,M |2〉
J ′ ,M′ in Fig. 3(b)

demonstrate the anticipated exponential decay (filled circles,
connected by a dashed line). The same quantitative behavior
is found in the experimental population distribution (solid
line), which was extracted from the average Raman signal
according to PJ = a

√
IJ . As discussed in Sec. III B, such

population retrieval is approximate and results in a systematic
underestimation of the amount of molecules at low J ’s,
yielding a slightly less steep exponential decay [25].
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FIG. 3. (a) Rotational Raman spectrum of oxygen molecules
excited with a periodic train of 13 pulses at a kick strength of
P = 4 and averaged over 10 pulse trains with the periods indicated in
Fig. 2(a). The experimental distribution (solid line) and the numerical
simulation (dots with dashed line) are compared. (b) Exact calculated
populations (dots with dashed line) and approximate populations
(solid line) retrieved from the experimental Raman signal as discussed
in the text.

We analyze the rotational distributions obtained from three
values of the kick strength, P = 4, 6, and 8 in Figs. 4(a), 4(b),
and 4(c), respectively. We fit the extracted distributions starting
from J � 4 and up to the level containing more than 1%
of the total population. In Fig. 4(a), the angular momentum
distribution (solid red line) decays exponentially away from the
initially populated states centered at J = 1 down to the noise
floor around PJ ≈ 5 × 10−3. It can clearly be distinguished
from the initial Boltzmann distribution (dotted gray line),
which was recorded after a single weak pulse. The evident
exponential shape (fit indicated by the dashed green line),
with localization length (1/e width) Jloc = 3.4 ± 0.3, is a
hallmark of DL. Note that an unavoidable (due to the finite
pulse length) overlap with higher fractional resonances J � 9
[Fig. 2(a)] not only is weak, but also averages out between
different pulse trains and, hence, does not distort the overall
exponential line shape. For stronger kicks, P = 6 in Fig. 4(b)
and P = 8 in Fig. 4(c), the localization length increases to
Jloc = 4.8 ± 0.5 and 5.6 ± 0.6, respectively. The distributions
become subexponential at higher values of angular momentum
due to the finite duration of the laser pulses (130-fs FWHM).
Beyond the limit of Jlim = 21 (i.e., to the right of the solid
vertical line), an oxygen molecule rotates by �90◦ during the
length of the pulse, which lowers its effective kick strength
and suppresses further rotational excitation. Each exponential
fit only includes experimental values up to Jlim.

To demonstrate the control over the localized distribution
and its localization center, we now select a set of 10
evenly spaced pulse train periods in the second interval,
0.315 � T/Trev � 0.325, shown in Fig. 2(b). Although the
selected periods are again nonresonant, as required for DL,
the proximity of all pulse trains to the two low-lying fractional
resonances associated with J = 3 at T/Trev = 1/3 and J = 5
at T/Trev = 4/13 alters the shape of the localized distribution.
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FIG. 4. Localized angular momentum distributions of oxygen
molecules excited with a periodic train of 13 pulses for three kick
strengths: (a, d) P = 4, (b, e) P = 6, and (c, f) P = 8. Shown are
the average distributions (solid lines) obtained from 10 pulse trains
with a mean period of (a–c) T̄ = 0.275 Trev and (d–f) T̄ = 0.32 Trev;
see Fig. 2. The populations are fitted with exponential functions
(dashed green lines) and compared to the initial thermal distribution at
T = 25 K (dotted gray line). The vertical line represents the excitation
limit due to the finite pulse duration.

In oxygen, the separation between these two resonances is
about 300 fs, such that the finite pulse duration results in a
partial overlap with both resonances for all chosen periods.
Therefore, a population transfer to higher rotational states
is facilitated before the QKR dynamically localizes. This
mechanism is unique to finite pulse durations and could not be
replicated in our numerical simulations with δ kicks.

In Figs. 4(d)–4(f), the localization center Jc is significantly
shifted away from the edge, with its position being indepen-
dent of the kick strength. An exponential fit of the form
PJ ∝ exp(−|J − Jc|/Jloc) yields Jc = 6.2 ± 0.5, 6.2 ± 0.7,
and 5.8 ± 1.3 for P = 4, 6, and 8, respectively (dashed
green lines). In comparison to the far off-resonant case in
Figs. 4(a)–4(c), the different localization lengths, Jloc = 3.5 ±
0.4, 4.8 ± 0.6, and 7.2 ± 1.3, remain the same, as they are
solely determined by the kick strength of the pulse train. Only
for P = 8 in Fig. 4(f) do we observe a larger localization length
than in Fig. 4(c), caused by a local flattening of the distribution
around J = 11−15. This deviation reflects the proximity of the
train period to the next-higher-lying resonances [see Fig. 2(b)].
The effect is more pronounced for stronger kicks when such
higher rotational states become populated.

B. Classical diffusion

Dynamical localization relies on quantum coherences. Both
timing and amplitude noise were shown to destroy localization
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FIG. 5. Same resonance map as in Fig. 2. Here, 120 vertical
lines indicate the random periods of 10 different pulse sequences,
13 pulses each, following a Gaussian distribution with a mean and a
standard deviation of (a) T̄ /Trev = 0.34 and 35% and (b) T̄ /Trev =
0.32 and 43%, respectively. In case (a), no period is within 150 fs
of any fractional resonance associated with J = 1, 3, or 5. No such
restriction was imposed in case (b). Dashed red lines mark the two
mean periods.

and recover classical diffusion of the QKR angular momen-
tum [25]. Here, we investigate how fractional resonances affect
the noise-induced classical diffusion. To make the proper
comparison with the localized scenario, we left the effective
Planck constant τ , the kick strength P , and, accordingly, the
stochasticity parameter K = τP the same.

We introduce timing noise by randomly varying the time
intervals between the 13 pulses in each train (using the pulse
shaping technique, described earlier) with a standard deviation
of σT around the mean period T̄ , which is chosen to be similar
to its value in the case of periodic trains. Figure 5(a) shows
the first set of 120 random periods (for 10 pulse trains), which
follow a Gaussian distribution, with T̄ = 0.34 Trev and σT =
35%, but are engineered to avoid all quantum resonances with
low-lying rotational states J = 1, 3, or 5. In Fig. 5(b), the
distribution is truly random with no restrictions, T̄ = 0.32 Trev,
and σT = 43%.

Figure 6 presents the population distributions (solid lines)
obtained from the average over 10 nonperiodic pulse trains,
for the same six cases as illustrated in Fig. 4. We observe
a qualitatively different nonexponential shape, expected for
a classical kicked rotor. In contrast to the exponential line
shapes of DL, now destroyed by noise, the angular momenta
follow a Gaussian distribution (dashed green lines), which is
characteristic of classical diffusion. Its 1/e width Jdiff is wider
than the corresponding localized counterpart Jloc for all six
sets of experimental parameters.

In Figs. 6(a)–6(c), when the random periods are designed to
avoid low-lying resonances [according to Fig. 5(a)], a Gaussian
fit yields the distribution center at Jc = 4.4 ± 1.6, 6.5 ± 1.2,
and 6.7 ± 1.6 and a width of Jdiff = 8.2 ± 1.1, 8.8 ± 1.0, and
10.9 ± 1.7 for P = 4, 6, and 8, respectively. The distribution
becomes broader with increasing kick strength. In comparison,
when the train periods randomly overlap with fractional
resonances [according to Fig. 5(b)], we detect a noticeable
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FIG. 6. Angular momentum distribution of oxygen molecules
excited by nonperiodic trains of 13 pulses for three kick strengths:
(a, d) P = 4, (b, e) P = 6, and (c, f) P = 8. Shown are the average
distributions (solid lines) obtained from 10 pulse trains with a mean
and a standard deviation of (a–c) T̄ = 0.34 Trev and 35% and (d–f)
T̄ = 0.32 Trev and 43%, respectively; see Fig. 5. In the first case, (a–c),
no period is within 150 fs of any fractional resonance associated with
J = 1, 3, or 5. The populations are fitted with Gaussian functions
(dashed green lines) and compared to the initial thermal distribution at
T = 25 K (dotted gray line). The vertical line represents the excitation
limit due to the finite pulse duration.

shift of the Gaussian center towards higher rotational states
Jc = 6.2 ± 1.2, 8.7 ± 1.2, and 9.5 ± 1.3, which becomes
larger with increasing kick strength P [see Figs. 6(d)–6(f)].
However, the distribution widths, Jdiff = 7.7 ± 0.8, 9.3 ± 1.3,
and 11.4 ± 2.2, remain similar, within the errors of the fit, as
defined primarily by the kick strengths.

C. Rotational energy

The ability to resolve individual rotational states allows us
to determine the rotational energy, absorbed by the molecules,
as

∑
J EJ PJ . The absorbed energy is plotted in Fig. 7 as

a function of the number of kicks N for all the excitation
scenarios discussed. In the case of nonresonant periodic pulse
trains [Fig. 7(a)], the rotational energy ceases to grow after as
few as three pulses, after which DL sets in. Larger localization
lengths for increasing kick strength, from P = 4 (red circles)
to P = 6 (blue triangles) to P = 8 (black squares), are
reflected in a higher saturation level of the rotational energy.
Periodic pulse trains that promote the initial population transfer
via the J = 3 and 5 resonances lead to a greater absorption of
energy [Fig. 7(c)]. It takes more pulses for DL to occur and the
total energy to saturate. To observe a completely suppressed
energy growth one would need a sequence of more than 13
pulses.
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FIG. 7. Rotational energy as a function of the number of kicks N

with a kick strength P = 4 (red circles), P = 6 (blue triangles), and
P = 8 (black squares). Compared are the energies for (a, c) periodic
and (b, d) nonperiodic sequences, with periods that (a, b) avoid or
(c, d) allow overlap with low-lying quantum resonances, as shown in
Figs. 2 and 5.

In contrast, nonperiodic sequences result in a continuous
increase in rotational energy, exceeding the energy achieved
by the corresponding periodic sequences. The growth rate
is faster for truly random periods [Fig. 7(d)] compared to
random periods that are tailored to avoid fractional resonances
[Fig. 7(b)]. The continuous absorption of energy and the
Gaussian line shape are both manifestations of classical
diffusion. The sublinear growth rate is due to the finite
duration of the laser pulses, discussed earlier.

V. CONCLUSIONS

We have investigated how the period of a pulse train
affects the shape of the angular momentum distribution of

a molecular rotor. Off-resonant excitation, which can be
mapped onto pseudorandom on-site energies in a rotational
lattice, is shown to lead to dynamical localization. Due to
the finite duration of the experimental pulses, the shape of
the localized distribution is affected by the partial overlap
of the train period with fractional quantum resonances. The
average distribution obtained from 10 periodic sequences
with different nonresonant periods reveals an exponentially
localized spectrum with a localization length Jloc that depends
only on the kick strength P . We have measured Jloc = 3.4,
4.8, and 5.6 for values of P = 4, 6, and 8, respectively.
On the other hand, by matching the periodicity of the pulse
train to low-lying resonances, we transfer the population to
higher rotational states before it dynamically localizes. We
demonstrateda localized distribution centered around J ≈ 6
with the anticipated localization length according to different
kick strengths.

Breaking the periodicity by introducing timing noise
destroys the localization of the quantum rotor’s wave function
and leads to classical diffusion. We have shown that the
resulting Gaussian population distribution becomes wider with
the number of pulses as well as their kick strength. The
distribution center is equally affected by the relative position
of the random periods with respect to fractional resonances.
Omitting resonances results in a slower spread to higher J

states. The rotational energy of the QKR has been studied as
a function of the number of kicks. It reflects both processes:
dynamical localization, where energy growth is shown to cease
completely after as few as three pulses, and classical diffusion,
with an unbounded increase in energy.
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