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multicenter distorted-wave method
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The calculation of triple-differential cross sections for the electron-impact ionization of 10a′ and 2a′′ orbitals of
the formic acid (HCOOH) molecule has been carried out by the multicenter distorted-wave method. The coplanar
asymmetric kinematics is considered at incident energies of 100 and 250 eV, where previous experiments
and theories are available for comparison. The present calculations reproduce the experimental measurements
satisfactorily and the results suggest that the nuclear distribution has important contributions on the cross sections
at large momentum transfers.
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I. INTRODUCTION

The probability of electron-impact single ionization is
characterized by the triple-differential cross section (TDCS),
which is sensitive to both the electronic structure of the
target and the dynamics of the ionization process. It remains
to be one of the biggest challenges to find a systematic
theoretical description of TDCS for complex atomic and
molecular systems, especially for the case of molecules, for
which the anisotropic multicenter nature and the complexity of
the electronic structure become big obstacles. The anisotropic
nature, together with the fact that molecules are oriented
randomly in experiments, forces one to do the spherical
average in the calculation, and the complex molecular structure
makes it hard to describe the interaction between the bound
electrons and the free ones.

Different kinds of theoretical methods have been developed
in the past years, including perturbative treatments, such as the
distorted-wave impulse approximation [1], the distorted-wave
Born approximation [2], and the Brauner-Briggs-Klar model
[3,4], and nonperturbative treatments, such as the B-spline
R-matrix approach [5], the time-dependent close-coupling
(TDCC) method [6], the converged close-coupling (CCC)
method [7], as well as the exterior complex scaling (ECS)
method [8]. We note that the nonperturbative TDCC, CCC,
and ECS methods have been applied to some simple diatomic
molecules [9–15], but their extension to more complex molec-
ular targets is very difficult. The main task for the perturbative
methods is the modeling of the continuum electrons in the
final channel of the ionized system, according to which we
can separate those perturbative methods into two groups: one
was built to treat small (two-center or three-center) molecules
only, and the other was aimed to be general. In the first type,
much attention was paid to include the multicenter nature
in the continuum wave functions. For small molecules one
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would use either the effective approximation [16,17] or the
production of continuum wave functions at each center [18–
22]. For the simplest molecular ion, H+

2 , the prolate spherical
coordinate method [23] provides an elaborate description for
the real two-center continuum wave function. In the second
type, in order to build a general method, Champion and
coworkers [24–26] modeled the ejected electron as moving
under the spherically averaged potential of the molecular ion.
More elaborately, in their molecular three-body distorted-wave
(M3DW) approximation, Madison and coworkers [27–33]
solved the incident, scattered, and ejected continuum wave
functions under the spherically averaged potentials, and in
addition they introduced the orientation averaged molecular
orbital (OAMO) approximation to cancel the anisotropic
multicenter nature of the ionized molecular orbital. Recently
Chaluvadi et al. [34] and Ali et al. [35] adopted the proper
average method to the M3DW method. In the new approach,
they spherically averaged the differential cross sections for
all molecular orientations. Another approach based on the
complex Kohn variational method was developed by Lin et al.
[36,37], where the wave function of the ejected electron was
solved by the close-coupling method.

Recently we have developed a general method [38], treating
the electron-impact single ionization of molecules under
asymmetric kinematics, where the energy of the scattered
electron is much higher than the ejected one. While the incident
and scattered electrons are described by plane waves due
to the fact that they are fast, our multicenter distorted-wave
(MCDW) method solves the motion for the ejected electron
in the anisotropic potential of the molecular ion. Then a
spherical average is taken after calculating differential cross
sections for all molecular orientations. Former application
to the water molecule showed a good agreement with the
experimental measurements, thus validating the treatment
for the ejected electron and underlying the importance of
properly taking into account molecular orientation. Owing to
the separate treatment of the bound electrons and continuum
electron, the MCDW method can readily be applied to larger
molecules.
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In the present paper, we focus on the study of the
dynamics in (e,2e) processes of the formic acid (HCOOH)
molecule. Recently, Colyer et al. [39] measured the TDCSs
of formic acid for the electron-impact ionization from its
valence orbitals at 100- and 250-eV incident energies under
coplanar asymmetric kinematics. In their paper, comparisons
with the M3DW and M3DW with the Correlation-Polarization
and Exchange-distortion potentials (M3DW-CPE) calcula-
tions were made, and there were significant discrepancies
between the calculations and the measurements. In the present
work, the MCDW calculations are carried out under the same
kinematical arrangements. We compare the calculations where
the nuclear term in the scattering potential is either fully
included or approximated simply by the Coulomb tail. As will
be shown later, the present MCDW calculations reproduce the
experimental data more satisfactorily. The paper is organized
as follows: in the next section, the theory of the MCDW method
is briefly described. In Sec. III, discussions and comparisons
are made. In the last section conclusions are presented.

Atomic units are used throughout the paper unless explicitly
stated otherwise.

II. THEORETICAL METHOD

Since the details of the MCDW method have been given
in [38], here we will only briefly outline its formulation.
The MCDW method is developed within the framework of
the first Born approximation (FBA), with special attention to
the modeling of the continuum wave function of the ejected
electron to include the anisotropic multicenter nature. Its main
idea is to calculate differential cross sections for all molecular
orientations and then do the average. This is applicable since
the collision process is much faster than the rotation of
molecules. In practice, the symmetry property of molecular
targets is employed to simplify the calculation.

A. General formulation

In usual scattering theory, the wave function of the initial
state of the N + 1-electron system is the product of a bound
molecular state wave function and a plane wave describing the
incident electron. If the whole interaction between the incident
electron and the molecular target is taken as the scattering
potential, then within the FBA framework, the final state can
also be written as a product of the wave function describing a
molecule in the ionized state and a plane wave representing the
scattered electron. The nonrelativistic eightfold-differential
cross section for a given molecular orientation reads [40]

d8σ

d�ed�sd�dEs

= 1

(2π )5

keks

ki

|Tf i(�)|2, (1)

where �s and �e represent the solid angles of detections for
the scattered and ejected electrons, respectively. The momenta
ki , ks , and ke are for the incoming, scattered, and ejected
electrons, respectively. The molecular orientation is defined
by Euler angle � = (α,β,γ ). The FBA transition amplitude in
the laboratory reference reads

Tf i(�) = 〈
ks�

(−)
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(
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� {r})|V |ki�i

(
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� {r})〉, (2)

where the operator R−1
� represents the rotation of the target.

|�i〉 is the initial bound wave function, and {r} refers to the
set of electron coordinates. |�(−)

f 〉 describes the ionized state
of the molecule in the final channel. Furthermore, the incident
and scattered electrons are described by plane waves |ki〉 and
|ks〉. The scattering potential V includes the whole interaction
between the incident electron and the molecular target:

V =
N∑
e

1

|re − r i | −
∑

n
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|Rn − r i | , (3)

where Rn is the position of the nth nucleus, and Zn indicates
its charge. The vectors re and r i refer to the positions of
the eth bound electron of the target and the incident electron,
respectively.

With the help of the Bethe integral
∫
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Eq. (2) can be simplified as
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where K = ki − ks is the momentum transfer.
Under the frozen core approximation, the N -electron

problem can be reduced to a one-active-electron problem,
which gives rise to the following expression:

Tf i(�) = 4π

K2
〈F (−)(ke;R−1

� r)|ei K ·re −
∑

n Zne
i K ·Rn

N

× |φα(R−1
� r)〉, (6)

where |F (−)〉 is the continuum wave function of the ejected
electron, and |φα〉 is the wave function of the ionized bound
orbital. The first term in Eq. (6) represents the scattering
by the active electron, and the second term refers to the
scattering by the nuclei. This nuclear term is dropped if one
assumes the orthogonality between the initial bound and the
final continuum states. However, in the present model, the
ejected wave function is solved under the one-active-electron
approximation, and is generally not orthogonal to the bound
orbital |φα〉. In our previous study [38], we further assumed
that the nuclei are localized within a small region, enabling
us to substitute the nuclear term by 1, which is known as
the Coulomb tail. In this case, the transition amplitude is
approximated by

Tf i(�) ≈ 4π

K2
〈F (−)(ke;R−1

� r)|ei K ·re − 1|φα(R−1
� r)〉. (7)

This approximation was applied for the water molecule in
our previous study [38], and it was reasonable since both the
mass and nuclear charge concentrate mainly on the O atom.
However, it is not the case for the formic acid molecule, which
is composed of more atoms, and the distributions of which of
the mass and nuclear charge are more dispersive. In the present
paper, the calculations are carried out employing both models,
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where the nuclear term is either approximated by the Coulomb
tail (MCDW) or fully included (MCDW-NT).

Finally, the fivefold differential cross section, or the
commonly termed TDCS, is obtained by averaging over all
possible molecular orientations:

d5σ

d�ed�sdEs

= 1

(2π )5

keks

ki

1

8π2

∫
|Tf i(�)|2 d�. (8)

B. Multicenter distorted wave

In the single ionization process, one bound electron is
excited to continuum orbitals, which have no preferable
orientation. However, in the experiment we detect electrons
with a specific momentum, thus a linear combination of all
possible continuum orbitals must be applied to produce a wave
function corresponding to that specific momentum.

It is formidable to solve this continuum wave function ex-
actly, and we will limit ourselves to the single-active-electron
approximation instead: the ejected electron is regarded as
moving in the anisotropic field of the molecular ion, while the
scattered electron is too fast to affect its motion. To include the
response of the bound electrons in the ion and the exchange
effect, a model potential is adopted [41]:

V m = V st + V cp + V model exc, (9)

where V st includes the static potentials between the incident
electron and the electrons and nuclei in the residual molecular
ion. V cp and V model exc are the correlation-polarization poten-
tial and the model exchange potential, respectively.

The Schrödinger equation with the model potential is[− 1
2∇2 + V m − Eke

]
F (−)(ke; r) = 0, (10)

where F (−)(ke; r) indicates the continuum wave function of
the ejected electron. Clearly the anisotropic multicenter nature
of F (−)(ke; r) is inherited from V m. To solve the model
Schrödinger equation, the single-center expansion technique
[41–43] is employed, where the wave function and potential
are expanded over symmetry-adapted angular functions. Note
that the anisotropy of the model potential V m will cause
the coupling between terms of different angular momenta,
resulting in a set of radial coupled equations. As in our previous
work [38], the diagonal terms in the potential matrix are
considered dominant. Thus in practice, we will ignore the
off-diagonal elements and solve the decoupled partial wave
equations. For the calculation details, one can refer to Ref. [38].

III. RESULTS AND DISCUSSION

The formic acid molecule belongs to the Cs sym-
metry point group, and its ground-state configuration is
(core)64a′25a′26a′27a′28a′21a′′29a′22a′′210a′2. In the present
paper, we will consider the ionization of its two outermost
molecular orbitals (MOs) 10a′ and 2a′′, for which experimen-
tal data are available in Ref. [39]. The orbital maps of the two
MOs are illustrated in Fig. 1, showing that 10a′ is of sp type
and 2a′′ is of p type.

The experiments of Colyer et al. [39] were performed under
coplanar asymmetric kinematics for two incident energies of
100 and 250 eV. In both cases the ejected electron energy
was chosen to be 10 eV. The TDCSs for Ei = 100 eV were

FIG. 1. Illustrations of molecular orbital 10a′ (left) and 2a′′

(right).

measured at scattering angles (θs) of −10 and −15◦, and the
TDCSs for Ei = 250 eV were measured at θs = −5, −10, and
−15◦. According to Colyer et al. [39] the binding energies
for 10a′ and 2a′′ are 11.6 and 12.5 eV, respectively. The
coincidence energy resolution of their work is approximately
1.2 eV in FWHM, thus the two orbitals cannot be resolved.
We need to sum over the individual TDCSs of the two orbitals
to produce data comparable to the measurements.

In our calculation, the geometry of formic acid is optimized
and the wave functions of the MOs are calculated using the
GAUSSIAN 03W [44] program with the density functional theory
method employing B3LYP hybrid functional [45,46] and the
DGauss triple zeta valence polarized basis set [47]. Then
the MOs are expanded into the symmetry-adapted angular
functions. Let lbmax and lcmax denote the upper limits of angular
momentum in the partial wave expansions for the bound orbital
and continuum wave function, respectively. Convergence is
achieved in our calculation with lbmax = 10 and lcmax = 18. In
the single-center expansion, the r ranges from 0 to 8.47 a.u.
with increasing step size from 0.01 to 0.128 a.u. The numerical
spherical average reaches its convergence with the Euler angle
mesh Nα = Nβ = Nγ = 16, where Nα , Nβ , and Nγ denote the
number of points for Euler angle α, β, and γ , respectively.

Figure 2 shows the results of summed TDCSs of 10a′
and 2a′′ orbitals at the incident energy of 100 eV. Both
the MCDW-NT and MCDW calculations are included and
compared with the experimental data and the calculations by
the M3DW and M3DW-CPE method [39]. The measurements
are visually normalized to the binary peaks of the MCDW-NT
calculations, while the M3DW and M3DW-CPE results are
kept in absolute scale as in Ref. [39]. It should be noted that the
M3DW calculations are based on the OAMO approximation,
which is not valid for the 2a′′ orbital since the average is
zero for this symmetry (as shown in Fig. 1). Meanwhile, the
10a′ orbital is also partially canceled due to the orientation
average. Consequently, only the results for the 10a′ orbital are
valid in the M3DW and M3DW-CPE calculations. For both
scattering angles, our results show broad binary peaks and
broad recoil peaks with no finer structure. The MCDW and
MCDW-NT calculations reproduce the experiments reason-
ably, especially for the binary peaks. For the recoil peaks, the
MCDW calculations reproduce the experiments well, while the
MCDW-NT calculations predict lower intensities. On the other
hand, the M3DW and M3DW-CPE calculations both produce
sharp and intense binary peaks. This is the consequence of the
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FIG. 2. The summed TDCSs for 10a′ and 2a′′ orbitals at incident
energy of 100 eV and ejected energy of 10 eV. Both the MCDW-NT
calculations (thick red solid lines) and the MCDW calculations (blue
solid lines) are included. Comparisons are made with the experimental
data (solid square), the M3DW (dark yellow dash-dotted lines), and
M3DW-CPE (dark green dashed lines) calculations. The scattering
angles and the corresponding magnitudes of the momentum transfers
are (a) −10◦, |K | = 0.55 a.u. and (b) −15◦, |K | = 0.74 a.u.

OAMO approximation, which transforms the 10a′ orbital into
a spherically symmetric atomiclike effective orbital.

In order to have better insight into the characters of the
(e,2e) process, it is worthwhile to investigate the individual
TDCSs for each orbital. In Fig. 3 the TDCSs for 10a′ and
2a′′ orbitals and their sum, calculated by the MCDW-NT and
MCDW methods, are presented. In principle, under coplanar
asymmetric kinematics, the binary peak contains a strong
signature of the orbital shape. For the atomic s orbital, there
should be a single peak along the direction of momentum
transfer, while for the atomic p orbital the binary peak should
split into two. For the 10a′ orbital, both s-type and p-type
features are involved, producing a broad peak with a sharp
top. For the p-type 2a′′ orbital, a double-peak structure is
expected. However, the distortion on the ejected electron from
the molecular ion makes it a flat top at both scattering angles.
It is clear that the broadness of the binary peaks is the result
of a p-type component that is contained in both orbitals.

In Fig. 4, we present the summed TDCSs of 10a′ and
2a′′ orbitals by the MCDW-NT and MCDW calculations
at the incident energy of 250 eV and the ejected energy of
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FIG. 3. Individual and summed TDCSs for 10a′ and 2a′′ orbitals
at incident energy of 100 eV and ejected energy of 10 eV. The thick
red lines refer to the MCDW-NT calculations: summed TDCSs (thick
solid lines), TDCSs for 10a′ orbital (thick dashed lines), and TDCSs
for 2a′′ orbital (thick dash-dotted lines). The blue lines refer to
the MCDW calculations: summed TDCSs (solid lines), TDCSs for
10a′ orbital (dashed lines), and TDCSs for 2a′′ orbital (dash-dotted
lines). The scattering angles and the corresponding magnitudes of
the momentum transfers are (a) −10◦, |K | = 0.55 a.u. and (b) −15◦,
|K | = 0.74 a.u.

10 eV for the three scattering angles of −5, −10, and −15◦.
The experimental data and the results of the M3DW and
M3DW-CPE calculations [39] are also plotted in the figure
for comparison. The normalization procedure is similar to that
adopted in Fig. 2. At this incident energy, the MCDW-NT
calculations reproduce the measurements to a reasonable level,
while the MCDW calculations overestimate the experiments
at the scattering angle of −15◦. At θs = −5 and −15◦, the
binary peaks of our calculations shift to the lower ejection
angle by about 10–15◦ with respect to the experiment data.
The shape of the measured binary peak at the scattering angle
of −15◦ is considerably different from the other two. Both the
MCDW-NT and MCDW results reproduce such difference,
presenting one sharp peak at the center with two shoulders at
both sides. It is worthy to note that our MCDW-NT calculations
successfully reproduce the rapid decrease of the intensity of
the recoil peaks with increasing scattering angle. In fact, at
θs = −15◦, there is a valley rather than a peak in the recoil
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FIG. 4. Same as in Fig. 2 but at incident energy 250 eV. The
scattering angles and the magnitudes of corresponding momentum
transfers are (a) −5◦, |K | = 0.41 a.u., (b) −10◦, |K | = 0.76 a.u., and
(c) −15◦, |K | = 1.11 a.u.

region. This suggests the importance of considering the nuclear
distribution in the scattering potential.

The summed and individual TDCSs of the MCDW-NT and
MCDW calculations for 10a′ and 2a′′ orbitals at Ei = 250 eV
are presented in Fig. 5. It can be found that the features of
the results at scattering angles of −5 and −10◦ are similar
to those at θs = −10 and −15◦ in Fig. 3, respectively. This
is due to the fact that the magnitudes of momentum transfers
in the corresponding cases are similar. From the individual
TDCSs we find two facts accounting for the rapid change
in the binary peak shape: First, the TDCS for the 10a′ orbital
gradually surpasses the one for the 2a′′ orbital as the scattering
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FIG. 5. Same as in Fig. 3 but at incident energy 250 eV. The
scattering angles and the magnitudes of corresponding momentum
transfers are (a) −5◦, |K | = 0.41 a.u., (b) −10◦, |K | = 0.76 a.u., and
(c) −15◦, |K | = 1.11 a.u.

angle increases. The same tendency can be found for the
Ei = 100 eV case. Second, at the scattering angles of −10
and −15◦, a small peak appears in addition to the flat structure
at the center of the binary peak of the 2a′′ orbital. It becomes
more significant with increasing scattering angle. The second
feature may be due to the distortion effect: the bigger the
scattering angle is, the closer the incident electron reaches
the inner region of the target, and as the ejected electron
is kicked out, it suffers more distortion from the residual
ion. Finally, we note that there are additional structures in
the individual TDCSs at the scattering angle of −15◦. The
MCDW-NT calculations predict an oscillatory structure with
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flat minimum around 250◦ in the recoil region for the TDCSs of
both orbitals, while the 10a′ TDCS of the MCDW calculations
shows a maximum which is slightly dominant. This results in
summed TDCSs, which are different for the MCDW-NT and
MCDW calculations in the recoil region.

IV. CONCLUSION

The multicenter distorted-wave method has been applied
in calculating the TDCSs of (e,2e) processes of formic acid
at the incident energies of 100 and 250 eV under coplanar
asymmetric kinematics. The results are compared with the
measurements of Colyer et al. [39] and the M3DW and
M3DW-CPE calculations provided by the same authors.
In the present work, both the MCDW-NT and MCDW
calculations are performed, where the nuclear term in the
scattering potential is fully included in the former and simply
approximated by the Coulomb tail in the latter. At the incident
energy of 250 eV, the MCDW-NT calculations reproduce the
measurements reasonably in both binary and recoil regions
for all three scattering angles, while at the lower incident
energy of 100 eV it predicts lower recoil peak intensities.
This is to be expected since the multicenter distorted-wave
method is built within the FBA framework and should be
more legitimate for higher incident energy. On the other hand,

the MCDW calculations reproduce the measurements at lower
incident energy of 100 eV, but the agreement become poorer at
Ei = 250 eV. Its agreement at lower incident energy is more
likely to be a coincidence. And the failure of the MCDW-NT
calculations in describing the recoil peaks at Ei = 100 eV is
probably due to the approximations made in our method, i.e.,
ignoring the off-diagonal terms and the lack of orthogonality,
and high-order effects beyond the FBA.

Based on our calculations, the main features of the
TDCSs can be explained. The broad binary peaks reflect the
contributions from p-type components in both 10a′ and 2a′′
orbitals. The significant change in the binary peak shape as the
scattering angle varies is a result of the intensities’ behavior of
individual TDCSs, as well as the distortion effect on the ejected
electron. However, the angular range of the ejected electron
and the data statistics in the experiments are quite limited,
preventing us from having a thorough understanding of the
dynamics. New experiments are highly desired for further
study.
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