
PHYSICAL REVIEW A 95, 012506 (2017)

Two-photon exchange correction to 2S-2P splitting in muonic 3He ions
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We calculate the two-photon exchange correction to the Lamb shift in muonic 3He ions within the dispersion
relations framework. Part of the effort entailed making analytic fits to the electron-3He quasielastic scattering
data set, for purposes of doing the dispersion integrals. Our result is that the energy of the 2S state is shifted
downwards by two-photon exchange effects by 15.14(49) meV, in good accord with the result obtained from a
potential model and effective field theory calculation.
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I. INTRODUCTION

Lamb-shift measurements in muonic helium are under way
to measure the nuclear radius of the helium isotopes [1]. The
motivation comes from the proton radius puzzle, where the
reported proton radii from measurements involving electrons
and measurements involving muons have been different, with
the difference exceeding five standard deviations [2,3]. For
reviews, see Refs. [4,5]. One can hope to learn more about the
root cause of the discrepancy by seeing if it persists, and how
large its effect may be, with nuclei heavier than the proton.
To this end, experiments have been performed to measure the
2S-2P Lamb-shift energy splitting in muonic deuterium, 3He,
and 4He [6,7].

The experiments obtain the radius from the deviation of the
energy splitting measured from the energy splitting calculated
for a pointlike nucleus. To isolate the nuclear radius-dependent
term, it is crucial to know all the theory corrections that are
large enough to affect the answer. The Lamb shift 2S-2P

energy splitting is given as

�ELamb = �EQED + m3
rZ

4α4

12
R2

E + �ETPE. (1)

The accuracy of the QED term is not in question; reviews may
be found in Refs. [8,9]. The second term will yield the charge
radius [10,11]. The reduced mass mr is the usual

mr = mMT

m + MT

, (2)

where m is the mass of the lepton and MT is the mass of
the nucleus. The third term is the two-photon exchange (TPE)
correction, the subject of this paper for the case of muonic 3He
and given diagrammatically in Fig. 1.

An important question to consider at the outset is how
accurately the two-photon correction needs to be calculated.
An answer can be obtained from the uncertainty of the
O(α4) charge radius term as predicted using the charge radius
measured in electron scattering. An analysis of world data for
electron scattering on 3He [12] quoted RE(3He) = 1.973(14)
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fm. One can obtain a slightly better uncertainty limit by using
the more extensive and more precise 4He electron-scattering
data together with isotope shift measurements from atomic
spectroscopy. The charge radius of 4He is [12]

RE(4He) = 1.681(4) fm. (3)

The isotope shift measures δR2
E = R2

E(3He) − R2
E(4He). Un-

fortunately, the three existing measurements are not in agree-
ment:

δR2
E =

⎧⎨
⎩

1.066(4)fm2 (Ref. [13]),
1.074(4)fm2 (Refs. [14, 15]),
1.028(11)fm2 (Ref. [16]).

(4)

These yield RE(3He) = 1.9728(36), 1.9748(36), and
1.9631(44) fm, respectively, adding uncertainties in
quadrature. To exclude either of the above determinations
by three respective standard deviations via a Lamb-shift
measurement, the second term in Eq. (1) should be
determined with an accuracy of about 1.5 meV. Hence, we
have the requirement to the precision of the third term of
that equation: the TPE correction is to be below 1.5 meV. Its
size, as we see, is about 15 meV, so as a fraction one needs
an accuracy better than 10%. One should bear in mind that,
even when this precision goal is met, the accuracy of the
TPE calculation will remain by far the main limitation of the
charge radius extraction, since an experimental accuracy of
order 0.07 meV or better [1] is expected.

An additional numerical benchmark follows from what may
happen if beyond-standard-model (BSM) explanations of the
proton radius are correct [17–19]. In this scenario, the muonic
2S-2P energy deficit that was attributed to a smaller proton
radius is instead attributed to a muon-specific BSM force. For
purposes of benchmarking, consider a beyond-standard model
where the new exchange particle couples on the hadron side
in proportion to the electric charge, like a dark photon that is
muon specific on the lepton side (for an alternative scenario
where its couplings to the proton and the neutron allowed
arbitrary values, see Ref. [20]). Also consider, at least at the
outset, that the new force is short ranged for both μ-H and
μ-3He. This requires that the new exchange particle is heavy
enough, and a few tens of MeV will suffice. Then the 330-μeV
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FIG. 1. The diagram showing the two-photon exchange correc-
tion in muonic 3He.

energy deficit for muonic hydrogen scales to

�E
μ 3He
BSM = 6.0 meV (5)

for the 2S-2P splitting. The bulk of the scaling comes from a
Z4 factor and the remainder from differences in the reduced
mass. Thus, also from considering the scale of possible BSM
effects, a 5–10 % calculation of the TPE correction is useful
and relevant. (A lower-mass BSM exchange particle will

reduce the value obtained for �E
μ 3He
BSM .)

An accurate potential model calculation of the TPE is
already available [21,22], so one may ask why another estimate
is useful. The answer is that the result is very important for the
study of the proton radius puzzle, so another calculation using a
very different technique is worth doing and reporting. Our fully
relativistic calculation is directly phenomenological, using
dispersion theory to connect electron-3He elastic and inelastic
scattering data to quantities that enter the evaluation of the
TPE effect. The already available calculation is nonrelativistic
with relativistic corrections and is based on nuclear potential
models. The potential is either a classical one, the AV18
potential abetted with three-nucleon forces, or a chiral effective
field theory (EFT) potential, also with three-nucleon forces
added to the two-nucleon ones. We see that the dispersive
and the nuclear potential model calculations corroborate each
other.

Dispersive evaluations of the TPE correction have been car-
ried out for muonic hydrogen [23–27] and muonic deuterium
[28]. For μ-H they represent the state of the art and are accepted
as such [3]. Other methods evaluating TPE in μ-H [29–31]
are not yet equivalent in accuracy. The deuterium situation
is different. The deuteron is loosely bound, easily polarized,
and can be broken up with just a bit over 2 MeV energy
transfer. The relevant integrals for the dispersive evaluation
are weighted toward low-energy transfer and low-momentum
transfer. Electron-deuteron scattering data are currently sparse
in these regions, and the outcome is a not-very-stringent 35%
uncertainty in the dispersive result [28]. One must rely instead
on nuclear potential model evaluations [32–35] (we refer the
reader to a summary of theoretical calculations in Ref. [36]).
Helium nuclei are tightly bound compared to the deuteron,
and more than 5 MeV energy transfer is required for 3He
disintegration. It is enough to make a significant difference.
There are more data points than for the deuteron in the range
where the necessary integrals have their main support, and
the higher threshold for the low energy weighting makes the
numerical results smaller. We find that for 3He we can meet
the accuracy goal.

II. CALCULATION

The diagram that contains the nuclear and hadronic
structure-dependent O(α5) correction to the Lamb shift is
shown in Fig. 1. The lower part of the diagram, the blob
containing nuclear and hadronic structure dependence, is
encoded in the forward virtual Compton tensor,

T μν = i

8πMT

∫
d4x eiqx〈p|T jμ(x)jν(0)|p〉

=
(

−gμν + qμqν

q2

)
T1(ν,Q2) + p̂μp̂ν

M2
T

T2(ν,Q2), (6)

where p̂μ = pμ − p·q
q2 qμ, Q2 = −q2, ν = (pq)/MT and MT

is the 3He mass. A target spin average is implied. Following
Ref. [25], we can write the contribution of the two-photon
exchange diagram to the n� energy level as

�En� = 8α2m

π
φ2

n�(0)
∫

d4Q

×
(
Q2 + 2Q2

0

)
T1(iQ0,Q

2)−(
Q2 − Q2

0

)
T2(iQ0,Q

2)

Q4(Q4 + 4m2Q2
0)

,

(7)

where a Wick rotation q0 = iQ0 was made, and φ2
n�(0) =

μ3
r (Zα)3/(πn3)δ�0. The amplitudes T1,2(ν,Q2) are even func-

tions of ν and their imaginary parts are related to the spin-
independent structure functions of lepton-3He scattering,

ImT1(ν,Q2) = 1

4MT

F1(ν,Q2),
(8)

ImT2(ν,Q2) = 1

4ν
F2(ν,Q2).

Before writing the dispersion relation, we give the Born terms,
which are obtained from the elastic box and crossed box
version of Fig. 1 and 3He electromagnetic vertex,

	μ(q) = FD(Q2)γ μ + FP (Q2)iσμα qα

2MT

, (9)

with FD,P the Dirac and Pauli form factors of 3He and q the
momentum of an incoming photon. To disambiguate, we use
F

p,n

D,P notation for the proton and neutron Dirac and Pauli form
factors, respectively. The Born terms are

T B
1 (q0,Q

2) = Z2

4πMT

{
Q4G2

M (Q2)

(Q2 − iε)2 − 4M2
T q2

0

− F 2
D(Q2)

}
,

T B
2 (q0,Q

2) = Z2MT Q2

π (1 + τT )

G2
E(Q2) + τT G2

M (Q2)

(Q2 − iε)2 − 4M2
T q2

0

. (10)

Nuclear electric and magnetic Sachs form factors are defined
in the standard way:

GE = FD − τT FP ,
(11)

GM = FD + FP ,

and τT = Q2/(4M2
T ). The Born terms are useful for correctly

obtaining the imaginary parts of the nucleon pole terms but
are not reliable in general, since the given vertex assumes the
incoming and outgoing nucleons are both on shell.
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We also define

T 1,2(ν,Q2) = T1,2(ν,Q2) − T
pole

1,2 (ν,Q2), (12)

where T
pole

1,2 are the pole parts of the Born amplitudes. For
future use, the nonpole T 1(0,Q2) amplitude can be written as
a term visible in the Born term plus a term proportional to Q2

at small Q2,

T 1(0,Q2) = −Z2F 2
D(Q2)

4πMT

+ Q2

e2
β

3He
M (Q2), (13)

where β
3He
M (0) = β

3He
M is the magnetic polarizability of 3He.

Given the known high-energy behavior of the structure
functions, the two amplitudes obey the following form of
dispersion relation:

Re T 1(q0,Q
2) = T 1(0,Q2) + q2

0

2πMT

∫ ∞

νth

dνF1(ν,Q2)

ν
(
ν2 − q2

0

) ,

Re T 2(q0,Q
2) = 1

2π

∫ ∞

νth

dνF2(ν,Q2)

ν2 − q2
0

, (14)

where the integrals are evaluated in the principle value sense,
and νth is the inelastic threshold.

We divide the contribution to the energy shift of the
S state into three physically distinct terms that originate
from the subtraction term T 1(0,Q2), the nucleon pole, and
finally all excited intermediate states that may couple to γN ,
respectively:

�EnS = �Esubt
nS + �Eel

nS + �Einel
nS , (15)

with

�Esubt
nS = 4πα2

m
φ2

n0(0)
∫ ∞

0

dQ2

Q2

γ1(τl)√
τ l

× [T 1(0,Q2) − T 1(0,0)], (16)

�Eel
nS = α2Z2φ2

n0(0)
∫ ∞

0

dQ2

Q2

{
16mMT

(MT + m)Q
G′

E(0)

− m

MT

(
M2

T − m2
)
[(

γ1(τT )√
τT

− γ1(τl)√
τ l

)(
G2

M − 1
)

−
(

γ2(τT )√
τT

− γ2(τl)√
τ l

)
G2

E − 1 + τT

(
G2

M − 1
)

τT (1 + τT )

]}
,

(17)

�Einel
nS = − 2α2

mMT

φ2
n0(0)

∫ ∞

0

dQ2

Q2

∫ ∞

νth

dν

ν

×
[
γ̃1(τ,τl)F1(ν,Q2) + MT ν

Q2
γ̃2(τ,τl)F2(ν,Q2)

]
.

(18)

We introduced τl = Q2/(4m2), τ = ν2/Q2, and the auxiliary
functions,

γ1(τ ) ≡ (1 − 2τ )
√

1 + τ + 2τ 3/2,

γ2(τ ) ≡ (1 + τ )3/2 − τ 3/2 − 3

2

√
τ ,

γ̃1(τ,τl) ≡
√

τ lγ1(τl) − √
τγ1(τ )

τl − τ
,

γ̃2(τ,τl) ≡ 1

τl − τ

(
γ2(τ )√

τ
− γ2(τl)√

τ l

)
. (19)

Furthermore, we have subtracted two-photon exchange terms
in �Eel that are already included in a bound-state calculation.
The “−1”s come from iterations within the basic wave
equation calculation that gives the bound state, which is done
for a pointlike nucleus, and the G′

E term removes the iteration
of the lowest-order nuclear radius term seen in Eq. (1). Recall
that, by definition,

R2
E = −6G′

E(0). (20)

A. Elastic contribution

Using the form factor parametrization obtained by Amroun
et al. [37] and Sick [38] in the sum-of-Gaussians form, we
obtain

�Eel
2S = −10.93 meV (21)

in an excellent agreement with a dedicated extraction of the
Zemach radius in Ref. [12] from scattering data, which leads
to the energy shift

�Eel
2S = −10.87(27) meV, (22)

where we note a significant ∼3% uncertainty, and we use it as
an uncertainty estimate for our evaluation.

Krutov et al. [39] used an exponential form factor GE =
exp[−R2

EQ2/6], leading to an estimate of the elastic contribu-
tion,

�Eel
2S = −10.28 meV, (23)

considerably smaller than what one obtains by using phe-
nomenological form factors which fit the data better. Similarly,
the elastic contribution obtained using the He-3 form factors of
Ref. [40] is also notably smaller than the value we quote above,
but Ref. [40] did not have available the later data obtained by
Amroun et al. [37].

B. Inelastic contribution

We separate the inelastic contributions into two regions,
the quasielastic or nuclear region, where the final states are
either three nucleons or a deuteron plus a proton, and the pion
production or nucleon region. In practice, we separate these
regions at the pion production threshold. Thus, we write the
inelastic contributions as two parts,

�Einel
nS = �Enuclear

nS + �Enucleon
nS , (24)

which we treat in the next two sections.

1. Nuclear polarizability contribution

The bulk of the data in this region was tabulated by Benhar
et al. [41,42]. This tabulation has 83 data sets categorized by
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FIG. 2. Parametrization defined in Eqs. (A2)–(A7) compared to the experimental data in forward (top panels) and backward (bottom panels)
kinematics. Data are from Ref. [43] (empty squares), Ref. [48] (solid circles), and Ref. [49] (empty circles). Dotted curves in all four panels
indicate the 10% uncertainty band. The spectrum in the lower left panel is shown as a function of excitation energy Ex in units of MeV, and as
a function of photon energy in units of GeV otherwise.

incoming electron energy and electron scattering angle. To this
tabulation, we add the three 180◦ data sets [43,44].

For purposes of evaluating the integrals, we make analytic
fits to these data. Details are given in the Appendix. In brief,
we started with functional forms motivated by a Fermi gas
model of the nucleus, which was called to our attention by
superscaling studies of electron-nucleus scattering [45–47].
We modified the forms with additional parameters so that we
could fit the lower energy and lower momentum transfer data
crucial to the present calculation. We paid special attention
to the photoproduction (Q2 = 0) and near-photoproduction
data, and added extra terms to ensure these regions were well
represented.

Samples of the fits are shown in Fig. 2, with ±10% error
bands indicated. At the ±10% level, the fits are overall good,
and if the uncertainties in both the data and the fits are purely
statistical, the uncertainty in the integrals is much less than
10%.

The result for the quasielastic or nuclear part of the inelastic
contributions is

�Enuclear = −5.50 (40) meV. (25)

The uncertainty on this number is explained in the Appendix.

2. Intrinsic nucleon polarizability contribution

The contributions from the nucleon region, where we have
energy sufficient for nucleon breakup, are separable from other
contributions, and the results of this section can be taken and
combined with calculations where the other contributions are
calculated in ways different from what we have done.

We use modern 3He virtual photoabsorption data that
were parametrized in terms of resonances plus nonresonant
background [46,47] that capitalizes on the free proton and
neutron fits of Refs. [50,51] with a Fermi-smearing effect
built in. Since the integration over the energy extends beyond
the validity of the fit of Refs. [50,51], we supplement the
correct high-energy behavior by adopting a Regge-behaved
background, specified in our previous work for the deuteron
case [28] and adjusted for the case of the helium target. The
result of the integration is

�Enucleon
2S = −0.306(15) meV. (26)

Summing the nuclear and nucleon polarizability contributions
leads to

�Einel
2S = −5.81(40) meV, (27)

with the uncertainties added in quadrature.
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C. Subtraction contribution

The subtraction function T1(0,Q2) is generally unknown.
We need it at non-negative Q2. Excepting Q2 = 0, this is
unphysical kinematics and not directly related to scattering
data. Instead we obtain it from a sum rule [52] based on the
dispersion relation for T1 and several additional observations.

The sum rule is fully explained in Ref. [52]. The dispersion
relation for T1 is analyzed and approximated after observing
that, first, the imaginary part Im T1(ν,Q2) ∝ F1(ν,Q2) in the
quasielastic region becomes quite small beyond a certain value
of ν for a given Q2, creating a “gap region” between it and
the onset of the pion production region. Second, there is a
separation of scales, in that the gap region is quite broad.
Third, for high energies, the binding effects are relatively
small and we can, at least within integrals, treat the 3He
structure functions as just that for two protons plus one neutron.
Then combining the dispersion relation for 3He with the
corresponding dispersion relations for the proton and neutron,
one can obtain

T 1(0,Q2) = 1

2πMT

∫ νmax(Q2)

νmin(Q2)

dν

ν
F1(ν,Q2)

+Q2

e2

(
2β

p

M (Q2) + βn
M (Q2)

) − 2F
p 2
D + Fn 2

D

4πMp

.

(28)

Here, νmax(Q2) is the upper limit of the region where the
quasielastic structure function is large, and β

p,n

M (Q2) are the
nucleon analogs of β

3He
M (Q2) described earlier, normalized at

Q2 = 0 to the experimentally determined magnetic polariz-
abilities of the proton and neutron, respectively. Finally, Mp

stands for the proton mass.
A test of the sum rule is to evaluate its Q2 = 0 limit, using

the known result for T 1(0,0) to obtain

NZ = 2 = 2
∫ νmax

νmin

dν

ν
F1(ν,0), (29)

which is the Bethe-Levinger sum rule [53]. Using the structure
function fits described in the Appendix and integrating to 30
MeV above threshold gives

2
∫ νmin+30MeV

νmin

dν

ν
F1(ν,0) = 1.65. (30)

Integrating to 60 MeV above threshold gives 1.78. The sum
rule appears to work at the 15% level or better.

Using the sum rule to obtain T1(0,Q2) and T1(0,0) for the
subtraction term energy, Eq. (16), leads to

�Esubt
2S = (1.39 + 0.21) = 1.60 meV, (31)

where the separated terms are for the nuclear and nucleon
contributions, respectively. We took the nucleon polarizabili-
ties from the Particle Data Group (PDG) average [54],

β
p

M = 2.5(0.4) × 10−4 fm3, βn
M = 3.7(2.0) × 10−4 fm3,

(32)

and took the Q2 dependence for β
p,n

M (Q2) following Ref. [26].

The uncertainty in the subtraction term contribution to the
Lamb shift comes from two sources which we refer to as
statistical and systematic. The statistical one is due to the
finite precision and kinematical coverage of the data used
for evaluating the sum rule integral. This uncertainty should
be considered jointly with the uncertainty of the inelastic
contribution because the same parametrization of the data
enters there. An important effect is a partial cancellation of
the subtraction term and the inelastic F1 contribution, which
leads to a reduced uncertainty. We address this uncertainty in
detail in the Appendix.

The systematic uncertainty is due to the use of the
approximate sum rule for the subtraction function. To assess
its uncertainty, we note that the derivation of the sum rule [52]
relies on the assumption of the large gap between the nuclear
and nucleon excitation spectra, and of the dominance of the
nuclear contributions over the hadronic ones. A comparison of
the nuclear and nucleonic contributions to Eq. (28) reveals that
they become of similar size starting from Q2 ≈ (0.3 GeV)2.
We assign a conservative 100% uncertainty to the contribution
coming from Q2 beyond this value, and find

(
�E

subt,nuclear
2S

)
Q2>0.1 GeV2 = 0.11 meV, (33)

which leads us to the final estimate of the subtraction term,

�Esubt
2S = 1.60(12) meV, (34)

where we added the uncertainty of the nucleon and nuclear
contributions in quadrature.

Of palpable interest is the numerical value of the 3He
polarizability β

3He
M , which can be obtained from the derivative

of the sum rule at Q2 = 0 and the relation in Eq. (13). This
leads to

β
3He
M = 2α

MT

∫ νmax

ν0

dν

ν

dF
3He
1

dQ2
(ν,0) − Z2α

3MT

(
R

3He
E

)2

+ α

3Mp

[
2R2

Ep + R2
En

] + 2β
p

M + βn
M. (35)

Using the F1 parametrizations from the Appendix, the 3He
charge radius of 1.971 fm obtained from Eq. (3) and an average
from Eq. (4), the known nucleon radii, and the values for β

p,n

M

from Ref. [55], we obtain

β
3He
M = 5.7 × 10−3 fm3. (36)

Since the value of the 3He magnetic polarizability is unknown,
we stress that this is a prediction to be tested in the future, either
experimentally or in an EFT calculation. Using the spread in
the values of β

p,n

M from different analyses and the uncertainty
in the Q2 -slope of F1 at low Q2, we conjoin an uncertainty
estimate,

β
3He
M = 5.7(0.5) × 10−3 fm3. (37)

In contrast, a recent lattice calculation [56] gives a much
smaller value β

3He
M = 5.4(2.2) × 10−4 fm3, obtained in con-

junction with a pion mass of about 806 MeV. The same
reference also suggests βd

M = 4.4(1.5) × 10−4 fm3, more than
two orders of magnitude smaller than the EFT prediction of
about 0.07 fm3 [57,58].
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TABLE I. Individual contributions to �E2S from two-photon
exchange in μ-3He, in units of meV.

Contribution This work Refs. [21,22]

Elastic −10.93(27) −10.49(24)
δN

Zem −0.52(3)
Inelastic −5.81(40) −4.45(21)

Nuclear −5.50(40) −4.17(17)
Nucleon −0.31(2) −0.28(12)

Subtraction 1.60(12)
Nuclear 1.39(12)
Nucleon 0.21(3)

Total TPE −15.14(49) −15.46(39)

In view of this inconclusive situation with the value
of βM , we wish to emphasize that as far as the nuclear
polarizability contribution to the Lamb shift is concerned, it
is practically insensitive to the value of βM . The reason for
that is the cancellation between the inelastic and subtraction
contributions, both coming from the transverse Compton
amplitude T1. The sum rule that we use here ensures that
whenever the parametrization of the transverse quasielastic
(QE) data changes, this change is also propagated in the
subtraction function, so that the net effect is small. This is
in accord with the general expectation of smallness of the
magnetic polarizability effect on Lamb shift, e.g., in potential
model calculations.

III. RESULTS AND DISCUSSION

The result of our phenomenological, dispersion-relation-
based calculation is summarized in Table I. The overall result
is that the 2S state has its energy shifted due to two-photon
exchange by an amount

�E2S = −15.14(49) meV. (38)

The uncertainty limit is small enough, exceeding the criterion
set out in the introduction by a factor of 3.

To facilitate the comparison with other work, we included
in Table I results from the recent work of Ref. [21]. We make
some comparison, even though that calculation is very different
from ours, so comparisons of any but the total may be inexact.
There, the nuclear elastic contribution,

�Eel
2S = −10.52(24) meV, (39)

is somewhat lower than our full elastic contribution, but once
the nucleon Zemach correction δN

Zem listed in the rightmost
column in Table I is added to it, their full result,

�E
el, tot
2S = −11.01(25) meV, (40)

is close to ours.
The same reference calculated the nuclear polarizability

contribution using potential models and effective field theory.
For a reasonable comparison, we should confront the sum
of nuclear, nucleon polarizabilities with the sum of the total
inelastic and total subtraction contributions obtained in this
work:

− 4.45(21) (Refs. [21,22]) vs −4.21(40) (this work), (41)

TABLE II. The impact of possible 5% measurements of dσ/d�

in the quasielastic kinematics at MESA with laboratory energy E =
110 MeV and scattering angle 20◦ � θ � 30◦ for constraining the
parameter a2 and the nuclear polarizability and full TPE contributions
to the Lamb shift in muonic 3He. The upper row shows the current
situation with the available data.

δ(�Enuclear
2S ) δ(�ETPE

2S )
Kinematics δa2 (meV) (meV)

E = 110 MeV
θ = 54◦ ±0.014 0.40 0.49
θ = 30◦ ±0.0075 0.21 0.35
θ = 25◦ ±0.0055 0.16 0.33
θ = 20◦ ±0.0040 0.11 0.30

where various uncertainties were added in quadrature. The two
results closely agree.

We conclude by noting that the main limitation of our
calculation of the TPE effect on the Lamb shift in muonic
3He is the availability and precision of the quasielastic data at
low Q2 and forward angles. To assess the improvability of our
result, we study the impact of possible measurements of the
inclusive differential cross section for electron-3He scattering
in the quasielastic regime with the new MESA accelerator in
Mainz. We assume a generic 5% accuracy of the data, feasible
for MESA with the laboratory energy E = 110 MeV and
scattering angle 20◦ � θ � 30◦, and list the projected accuracy
in determining the parameter a2 entering the parametrization
of Eq. (A5), as well as that of the nuclear polarizability and
the full TPE contributions to the Lamb shift in μ-3He atoms
in Table II. At the moment, the lowest available momentum
transfer at forward angles is Q2 = 0.0091 GeV2 from the 110
MeV, 54◦ data set of Ref. [49], shown in Table II. We notice
from Table II that a future 5% measurement of dσ/d� at
MESA around θ ≈ 30◦ (20◦) will reduce the total uncertainty
of the polarizability contribution by a factor of 2 (4). The
resulting TPE contribution will then be mainly limited by the
present knowledge of the elastic contribution, which can also
be improved by such future measurements.
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APPENDIX: FITTING THE QUASIELASTIC DATA

We make use of the quasielastic data collected in Ref. [41].
The specific data that have the biggest impact on this
calculation are from Refs. [43,48,49,59] and extend from the
quasielastic threshold to above the pion production threshold,
and for 0.005 � Q2 � 0.7 GeV2.
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The full nuclear structure functions are parametrized here
in two parts,

F1,2(ν,Q2) = F
QE
1,2 (ν,Q2) + F real

1,2 (ν,Q2). (A1)

We use the superscaling parametrization of quasielastic
data according to Refs. [45–47] with additional adjustments
to provide a better description of the data with an emphasis
on the low-energy and low-Q2 region. For the single-nucleon
structure functions we use the following representation:

F
QE
1 = Q2

|�q |Ḡ
2
MS1(ν,Q2)

F
QE
2 = νQ4

MT |�q |5
Ḡ2

E + τpḠ2
M

1 + τp

(2Mp + ν)2S2(ν,Q2), (A2)

where Ḡ2
E,M = 2(Gp

E,M )2 + (Gn
E,M )2, and the functions

Si(ν,Q2) are defined as

Si(ν,Q2) = F (ψ ′)FP (|�q |)
[

1 −
(νthr

ν

)3
]αi

√
νQE

ν
f

QE
i (Q2),

(A3)

which contain the superscaling variable ψ ′, the superscaling
function F (ψ ′), and the Pauli suppression factor FP , all as de-
scribed in Ref. [47]. Above, �q 2 = ν2 + Q2, τp = Q2/(4M2

p),
νthr = εT + Q2/(2MT ), νQE = εT + Q2/(2Mp), with

εT = Sp + S2
p

2MT

= Md + Mp − MT + S2
p

2MT

= 5.493 MeV, (A4)

the 3He breakup threshold. The parameters αi are α1 = 1 and
α2 = 1/2. The functions f

QE
i are obtained from a fit to the QE

data in the vicinity of the QE peak, in the form

f
QE
1 (Q2) = a1 + b1 Q2

1 + b1 Q2
,

(A5)

f
QE
2 (Q2) = a2 + b2 Q2

1 + b2 Q2
f

QE
1 (Q2).

The fit returned values a1 = 0.31(6), b1 = 54.4(7.0) GeV−2,
a2 = 0.014(14), and b2 = 52(2) GeV−2, and the numbers in
the parentheses indicate the uncertainty.

The structure functions defined above vanish at the real
photon point, so we need to supplement a description at and
near the real photoabsorption. This is done by fitting the real
photon data first, and then extending this fit to finite values of
Q2. The real photon fit was done in the functional form

σ tot
γ (ω) = e−A(ω−εT )[B(ω − εT ) + C(ω − εT )2], (A6)

with the values of the parameters

A = 0.200257 MeV−1,

B = 0.153202 mb/MeV, (A7)

C = 0.125848 mb/MeV2,

and is shown with the available data from Refs. [60–62] in
Fig. 3. Note that the most recent two-body data of Ref. [62]
exceed the older data from Ref. [61] at low energies. In Fig.
3 we combine the two data sets into one. Along with the

5 10 15 20 25 30
ω (MeV)

0

0.5

1

1.5

2

σγ
 (

m
ba

rn
)

Total
2 body
3 body

FIG. 3. Parametrization of the 3He photodisintegration (p,d) data
from Refs. [61,62] (red circles) and three-body data from Ref. [60]
(blue diamonds) are shown along with their sum (magenta squares)
and the respective fits defined in Eqs. (A6) and (A7).

exponential form in Eq. (A6) we tried a slower dropping
powerlike behavior but found the exponential form to give a
better fit quality over the energy range where data are available.

The structure functions are obtained according to

F real
1 (ν,Q2) = MT ω

4π2α
σ tot

γ (ω)f real
1 (Q2),

(A8)

F real
2 (ν,Q2) = νQ2

MT �q 2
F real

1 (ν,Q2).

A relation between F1 and F2 of this form is equivalent to
a vanishing of the respective contribution to the longitudinal
cross section. Above, ω = ν − Q2/2MT , and the function of
Q2 obtained from a fit to QE data is

f real
1 (Q2) = 1 + a3 Q2

(1 + b3 Q4)c3
, (A9)

with a3 = 167(6) GeV−2, b3 = 94(16) GeV−4, and c3 =
2.5(2).

The uncertainties of the parameters were obtained in the
following way. At the first step, we fixed f

QE
2 = f

QE
1 and

f real
2 = f real

1 , and fitted 180◦ data by Jones et al. [43], 144.5◦
data by Marchand et al. [48], 134.5◦ data by Dow et al. [49],
as well as the transverse part of the L-T separated data by
Retzlaff et al. [59]. Because our fits were designed, in the first
place, to provide a reliable input to the Lamb-shift calculation
where the integrals are weighted heavily towards low values of
Q2, we aimed at ensuring that we describe the data at lowest
Q2 values in the best possible way. In particular, the real
photon data and the low-energy 180◦ data by Jones et al. [43]
at Q2 ≈ 0.005 GeV2 and slightly above fix the parameters a1

and a3, while they are not sensitive to other parameters. Fixing
a1,3 from a low-energy fit, we determined other parameters
including other backward data. After the transverse part was
determined, we turned to forward data at 36◦ and 60◦ by
Marchand et al. [48] and 54◦ data by Dow et al. [49], as
well as data on the longitudinal response function by Retzlaff
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et al. [59]. While no further modification was necessary for
f real

2 , an additional adjustment of f
QE
2 at low values of Q2

was required. The fit via the function f
QE
2 is, however, only

determined for Q2 � Q2
min ≈ 0.009 GeV2; no data below that

value are available at forward angles.
The behavior of f

QE
2 at lower virtualities, governed by the

parameter a2, is crucial for evaluating the Lamb shift. We
proceeded as follows. Setting a2 = 0 first, we obtained the
reference value of the parameter b2 = 54.0(2.0) GeV−2 from
a fit at Q2 � 0.02 GeV2, the value chosen to lie above Q2

min. As
the second step, we studied the extrapolation of f

QE
2 (a2 = 0)

to 0 � Q2 � Q2
min by means of a third-order polynomial,

g
(
Q2,Q2

min

) =
3∑

n=0

(
Q2 − Q2

min

)n

n!
gn. (A10)

We fixed its value and first two derivatives at Q2 = Q2
min, i.e.,

g0,1,2, to those of the function f
QE
2 (a2 = 0,Q2 = Q2

min) and
treated g3 as a free parameter with constraints:

|g3| � 3
∣∣[f QE

2 (a2 = 0,Q2 = Q2
min)

]′′′∣∣,
(A11)

g
(
Q2,Q2

min

)
� 0 for Q2 � 0.

The latter constraint is due to the fact that F
QE
2 is a cross

section that is positive definite. This gives us the upper and
lower value of g(Q2,Q2

min) evaluated at Q2 = 0 which we now
identify with the parameter a2. We also studied the dependence
of choosing the matching point 0.009 � Q2

min � 0.017 GeV2,
and obtained after averaging a2 = 0.014 ± 0.014. The uncer-
tainty is a combined systematical and statistical one, but it
is dominated by the systematical uncertainty, the one due to
the extrapolation. Statistical uncertainty obtained from that of
the parameter b2 which fixes [f QE

2 (a2 = 0,Q2 = Q2
min)]

′′′
only

contributes a couple percent.
Finally, we used parameter a2 as fixed, and refit of f

QE
2 ,

allowing once again the parameter b2 to vary. The resulting
value b2 = (52.0 ± 2.0) GeV−2 nicely agrees with the previ-
ously obtained b2 = (54.0 ± 2.0) GeV−2, which serves as an
a posteriori test of validity of this procedure.

To address the respective uncertainty for the Lamb-shift
calculation, we study the saturation of the dispersion integrals
in Eqs. (16) and (18) as function of the lower limit of the
Q2 integral, while the integral over energy is carried out over
the full allowed range in the quasielastic region. In doing so,
we consider the sum of the subtraction term and the inelastic
contribution due to F1, and separately contributions of F real

2

and F
QE
2 to Eq. (18) as function of the lower limit of integration

Data above Q² = 0.0057 GeV²

0

20

40

60

80

Δ
E

(Q
²0

)/
Δ

E
(0

) 
(%

)

F2: real [100% = -1.36 meV]

0 0.002 0.004 0.006 0.008 0.01
Q²0 (GeV²)

40
50
60
70
80
90

100 F2: QE [100% = -3.06 meV]

65
70
75
80
85
90
95 F1 (real + QE) + Subtraction [100% = +0.31 meV]

FIG. 4. Saturation of the dispersion integrals for �Esubt +
�Einel[F QE

1 + F real
1 ] contribution (top panel), �Einel[F real

2 ] (middle
panel), �E.inel[F QE

2 ] (bottom panel) as a function of the lower limit of
integration Q2

0, in percent of the full result corresponding to Q2
0 = 0.

In each panel, the absolute value of each contribution to the Lamb
shift in μ-3He in meV is indicated. Shaded areas indicate the regions
where experimental data are available.

Q2
0 in the range 0 � Q2

0 � Q2
min and take the value of each

of these integrals with Q2
0 = 0 for 100%. Results are shown

in Fig. 4. We observe that the sum �Esubt + �Einel, F1 is not
very sensitive to the details of the extrapolation below Q2

min ≈
0.005 GeV2: only about 20% of the total of that contribution
to the Lamb shift comes from Q2

0 � Q2
min, which in absolute

values is a mere 0.06 meV.
Instead, both F2 contributions are very sensitive to the lower

limit of the integration: for F real
2 about 94% comes from Q2

0 �
Q2

min, whereas for F
QE
2 about 40% comes from that range. We

recall that the former contribution is fixed at the extremes of
the explored range, by real photon data at Q2 = 0 and by the
QE data at Q2 = Q2

min. We conclude that the uncertainty of
�Einel, real is given by the uncertainties of the data. However,
this is not the case for the QE contribution that is only fixed
at Q2 � Q2

min. The fit to data above that value is consistent
with the function f

QE
2 vanishing at Q2 = 0, but it going to

a finite small positive number instead is also not excluded.
We expect the extrapolating function to be smooth because the
point Q2

min ≈ 0.009 GeV2 corresponds roughly to a distance of
2 fm, on the exterior of the charge distribution of 3He that has a
radius of 1.97 fm, so we expect no structure beyond this point.
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