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Hadronic vacuum polarization in true muonium
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In order to reduce the theoretical uncertainty in the prediction, the leading-order hadronic vacuum polarization
contribution to the hyperfine splitting of true muonium is reevaluated in two ways. A more complex pionic form
factor and better estimates of the perturbative QCD contributions are used to study the model dependence of
the previous calculation. The second, more accurate method directly integrates the Drell ratio R(s) to obtain
C1,HVP = −0.04874(9). This corresponds to an energy shift in the hyperfine splitting (HFS) of �E

μ

HFS,HVP =
−8202(16) MHz and represents a factor-of-50 reduction in the theoretical uncertainty from hadronic sources.
We also compute the contribution in positronium, which is too small at present to detect.
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I. INTRODUCTION

True muonium is the yet unidentified (μμ̄) bound state.
The bound states have lifetimes from picoseconds to nanosec-
onds [1]. QED dominates the characteristics of true muonium,
while QCD effects appear at O(mμα5) [2,3]. Electroweak
effects appear at O(mμα7) [4]. Measurements of Lamb shift,
1s-2s splitting, and hyperfine splitting (HFS) will occur in
the future. These experiments are motivated by the existing
discrepancies in muon physics [5–9]. Numerous models
of new physics have been suggested to explain these dis-
crepancies [10–31]. True muonium can produce competitive
constraints on most models if standard model predictions are
known to the 100-MHz level, corresponding to O(mμα7) [32].

Beyond new physics, a further motivation for considering
true muonium comes from the anomalous magnetic moment
of the muon (aμ). There exists a discrepancy between the
measurement at BNL and theory, �aμ = aμ,expt − aμ,th =
288(80) × 10−11 [5,33]. Hadronic contributions dominate the
theoretical uncertainty, and hadronic vacuum polarization
(HVP) is the largest term. One way to reduce the theoretical
uncertainty would be consistency checks from other systems.
By its particle and antiparticle nature, the annihilation channel
contributes to true muonium, leading to an enhancement
of HVP contributions to the HFS. These contributions are
measurable in true muonium, unlike positronium where they
are mass suppressed.

The theoretical expression for the HFS corrections to true
muonium from QED can be written
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where Cij indicate the coefficient of the term proportional to
(α)i lnj (1/α). All dependence on mass scales other than mμ

is in Cij . The coefficients of single-flavor QED bound states,
used in positronium, are known up to O(meα

6) and partial
results for O(meα

7). (For an updated review of the coefficients
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see Refs. [34,35].) The exchange me → mμ translates these
results to true muonium.

True muonium has extra contributions that must be con-
sidered. The lighter electron allows for large loop contribu-
tions. The relative smallness of mτ/mμ ≈ 17 and mπ/mμ ≈
1.3 produces contributions to true muonium much larger
than analogous contributions to positronium. Of these true
muonium-specific contributions, which we denote by C

μ

ij ,
only a few terms are known. The O(mμα5) contributions
from electron loops were found to be C

μ

1,e = 1.684 [2]. The
O(mμα6) contribution from leptonic loops to the two-photon
annihilation channel C

μ

20,2γ = −2.031092873 was recently
computed exactly [35], and the electron loop in three-photon
annihilation at O(mμα7) is C

μ

30,3γ = −5.86510(20) [36]. For a
O(mμα7) prediction of the HFS, contributions from Z-bosons
must be considered [4].

The HVP first contributes at O(mμα5) through the
single-photon annihilation channel. It was previously
calculated to be C1,HVP = −0.047(5) [2]. The reported
error is an estimate of model dependence. We refer to this
result as JSIK throughout, after the authors of that paper
(Jentschura, Soff, Ivanov, and Karshenboim). This result
mixed a Gounaris-Sakurai form factor for the π and ρ

contributions, a simple-pole approximation for the ω and φ,
and a two-constant perturbative contribution above 1 GeV.

Together, these contributions predict �E1s
HFS =

42329730(800)(700) MHz where the first, dominant,
uncertainty is from hadronic model dependence and the
second is an estimate of uncalculated O(mμα6) contributions.
If an estimate via quadrature is made, the theoretical
uncertainty is O(1000 MHz). This value is an order of
magnitude too large to allow discrimination between new
physics models. The goal of this work is to recalculate C1,HVP

via different approaches to reduce the model dependence and
the theoretical uncertainty.

The O(mα5) HVP contribution is given by

�E1,HVP =
[
m2

μ

∫ ∞

4m2
π

ds
ρ(s)

4m2
μ − s

]
mμα5

n3π

= C1,HVP
mμα5

n3π
, (2)

where ρ(s) is the spectral function.
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II. JSIK CALCULATION

Before discussing our improved calculations, it is useful
to briefly review the JSIK calculation. This allows us to
highlight the differences between the methods and introduce
some notation. CJSIK

1,HVP is given by the sum of four terms [2]:

CJSIK
1,HVP = C1,π + C1,ω + C1,φ + C1,>, (3)

where C1,π is the contribution from the pion form factor, C1,ω

and C1,φ are simple-pole terms, and C1,> is the contribution
from E > 1 GeV where they neglect resonances and use only
perturbative QCD (pQCD).

The main contribution is from the pionic loop, given
by [2,37]

ρ(s) = (s − 4 m2
π )3/2

12 s5/2
|Fπ (s)|2 . (4)

JSIK chose to use the simple Gounaris-Sakurai (GS) form
factor [38]. This choice of Fπ (s) is

Fπ (s) = Fρ,GS(s) = N

D1 + D2 − i D3
. (5)

In this decomposition, N , D1, D2, and D3 are given by
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with the parameter d defined via

d = 3

π
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≈ 0.48. (7)

The functions k(s) and h(s) are defined as
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(8)
where h′ denotes the derivative of h(s) with respect to s and
the subscript ρ indicates evaluation of the function at m2

ρ . This
form factor includes only ρ-meson contributions. The values
used by JSIK were 
ρ = 150.7(1.2) MeV and mρ = 768.5(6)
MeV. Integrating these expressions yields C1,π = −0.032.

To include other meson resonances, a simple-pole approx-
imation was taken. The spectral function contribution from
a vector meson is given by ρ(s) = 4π2/f 2

V δ(s − m2
V ) [39],

where fV are coupling constants. These were estimated in
Ref. [39] to be f 2

ω/4π = 18(2) and f 2
φ /4π = 11(2). The

masses of the vector mesons are mω = 782.71(8) MeV and
mφ = 1019.461(19) MeV. JSIK obtained C1,ω = −0.004 and
C1,φ = −0.003.

The final contribution, C1,>, was obtained by applying the
relation between the spectral function and the Drell ratio,

ρ(s) = R

3s
, where R = σ (e+e− → h)

σ (e+e− → μ+μ−)
. (9)

In pQCD, the leading order (LO) is given by RLO = Nc

∑
q2

i ,
where Nc is the number of colors and qi is the charge of quark

i. Below the c threshold at ≈4 GeV, RLO = 2. Between 4 and
10 GeV, the value rises to RLO = 10/3. Above 10 GeV the
b quark becomes relevant, yielding RLO = 11/3. At present,
perturbative calculations exist up to O(α4

s ). JSIK estimated
from the experimental results in Ref. [40] that R2<s<4 GeV ≈ 2
and Rs>4 GeV ≈ 4 (see Fig. 1 for a comparison to experiment).
With these values, they obtained C1,> = −0.008.

Putting these together and including an 11% estimate of the
model-dependent uncertainties, their final result was CJSIK

1,HVP =
−0.047(5).

III. INVESTIGATING THE PIECES

One way to reduce the uncertainty in C1,HVP would be
to improve the calculations of the pieces of the JSIK value.
Since JSIK, experimental measurements of the pion form
factor led to the development of an improved Gounaris-
Sakurai parametrization. We improve the estimate of C1,> by
computing the numerical averages of R(s) in the regimes and
accounting for nonconstant terms.

A. Improved Gounaris-Sakurai parametrization

Instead of the simple Gounaris-Sakurai form factor, a
more complex form exists that features two improvements.
The improved form [46] includes ρ-ω mixing. Additionally
this improved parametrization takes into account the wide
ρ ′ and ρ ′′ states which cannot be treated by simple-pole
approximations. The form factor is given by

Fπ,IGS = 1

1 + β + γ

[
Fρ,GS(s)

(
1 + δ

s

m2
ω

Fω,BW(s)

)

+βFρ ′,GS(s) + γFρ ′′,GS(s)

]
(10)

where Fi,GS(s) are given by Eq. (5) with the additional
masses and decay constants: mρ ′ = 1409(12) MeV, 
ρ ′ =
501(37) MeV, mρ ′′ = 1740(21) MeV, 
ρ ′′ = 235(1) MeV,
and 
ω = 8.68 MeV [46]. Furthermore. the parameters δ =
2.03(10)e0.2269(401)i , β = −0.166(6), and γ = 0.071(6) deter-
mine the mixing and relative strengths [46]. For the ω meson,
a Breit-Wigner (BW) form factor is used:

Fω,BW(s) = m2
ω

m2 − s + i
ωmω

. (11)

Integrating, we compute a coefficient C1,IGS = −0.0377(5)
which should include the same physics as C1,π + C1,ω as well
as the previously uncalculated higher-order terms from ρ ′,ρ ′′.
The error on C1,IGS is estimated from parameter variation.

B. pQCD regime

Interest in using experimental cross sections to obtain
both aμ,had and the running of α has led to a number of
groups to compile R(s) data. These data can be used to
improve the estimates of C1,>. For this work, we use the
data for R(s) compiled by Jegerlehner in 2012 and available
with the software packages ALPHAQED [41–44]. In the ranges
(27.25,88.55) and (132.5,∞) GeV2, data are sparse and
supplemented by O(α4

s ) pQCD calculations via RHAD [45].
These packages may be found in Ref. [47]. In Fig. 1, one
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FIG. 1. R(s) vs s. The solid line indicates the compilation of experimental data produced by Jegerlehner available with the ALPHAQED

package [41–44]. This compilation is the weighted average of many experiments through different ranges for the years up to 2012. These are
supplemented by O(α4

s ) pQCD calculations from RHAD [45] for the ranges (27.25,88.55) GeV2 and (132.5,∞) GeV2. The dotted lines are the
estimates used in the JSIK calculations of C1,> [2], and the dashed line indicates the estimates of this work.

sees that the JSIK value of C1,> leaves something to be
desired. For (1.2,2.3) GeV2, the JSIK estimate overestimates
the contribution and ignores the s dependence. We find that
R(s) here is well fit to R(s) = 0.0895(9)s3.43(11) + 0.63(2). We
integrate from 1.2 GeV2 instead of 1 GeV2 like JSIK because
the φ resonance appears relevant up to 1.2 GeV2, and the wide
ρ ′ and ρ ′′ are included in the form factor. Above this, we take R

to be a constant, and fit to the average value without resonances.
Between s = 2.3 GeV2 and s = 16 GeV2, R ≈ 2.15(1). In the
region s = [16,120] GeV2, we find R ≈ 3.71(1) and above
this we take R ≈ 3.95(1). Together, these choices give a value
of C1,> = −0.00574(4).

IV. HIGHER RESONANCES

We can improve the piecewise calculations by includ-
ing higher resonances not treated by JSIK. Continuing to
use the simple-pole approximation, we include charmo-
nium states. We use mJ/ψ(1S) = 3096.916(11) MeV, mψ(2S) =
3686.09(4) MeV, f 2

J/ψ(1S)/4π = 11.5(1.4), and f 2
ψ(2S)/4π =

31.2(4.5), where the masses are from Ref. [48] and the
coupling constants are from Ref. [39]. These yield a new
contribution C1,ψ = −0.00039(4).

The ϒ(nS) states n = 1,2,3 are also narrow and therefore
can be included as simple poles. We estimate these by three
contributions at mϒ = 2mb ≈ 10 GeV and f 2

ϒ/4π = O(10).
These yield C1,ϒ = −0.00012(12). We neglect the higher
n states, which are much wider and will be approximately
accounted for by the constant fits.

Adding our values of C1,IGS, C1,>, Cψ , and Cϒ to the
JSIK value of C1,φ , our final result for the improved piecewise
coefficient is C

imp
1,HVP = −0.0472(5). This value represents an

improvement on the JSIK value, but we note that it still has
model dependence, which is difficult to estimate and does not
encapsulate the full effect of resonances.

V. NUMERICAL INTEGRATION OF R(s)

Another way to obtain C1,HVP is numerically integrating
R(s) with Simpson’s method. This method has negligible
model dependence and theoretical uncertainties. We numer-
ically integrate the full R(s) data from Refs. [41–45,47] seen
in Fig. 1 using Eqs. (2) and (9). The results for C1,HVP are
found in Table I, split into energy ranges. Summing these, we
obtain our final results of C1,HVP = −0.04874(9). To obtain an
uncertainty, we take 1 × 105 samples of each data point with
a Gaussian distribution given by the sum of its statistical and
systematic uncertainty. By replacement of mμ → me we can
also compute the correction to positronium. We find that value
to be C

R,e
1,HVP = −1.027(2) × 10−6, which is too small to be

relevant in the near future.
Integrating Eqs. (2) and (9) only above s = 1.2GeV2, we

obtain a more exact value for CR
1,> = −0.00623(6). Compar-

ing this to the value obtained from pQCD, C
imp
1,> + C1,ψ +

C1,ϒ = −0.00625(13), we see that our improved piecewise
calculation has reproduced well the high-energy region, albeit
with larger uncertainty. Comparing to CJSIK

1,> = −0.008, it can
be seen that the integration down to 1 GeV2 with the value
R ≈ 2 leads to a larger prediction of C1,HVP.

If we instead consider only a range below s = 1.2 we see
that C1,< = −0.04251(9), which is slightly larger than the
results from JSIK and our improved method, indicating the
small discrepancy between the piecewise methods and direct
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TABLE I. CR
1,HVP from directly integrating R(s) for both true

muonium and positronium.

States Range (GeV) C
R,μ

1,HVP × 10−2 C
R,e
1,HVP × 10−6

ρ,ω (0.00,0.98) −3.943(8) −0.814(2)
φ (0.98,1.06) −0.283(2) −0.0633(3)
Hadronic (1.06,3.05) −0.477(5) −0.109(2)
J/ψ (3.05,3.15) −0.0422(6) −0.0098(2)
Hadronic (3.15,3.63) −0.021(2) −0.0049(3)
ψ(2S) (3.63,3.73) −0.0126(3) −0.00294(7)
Hadronic (3.73,5.22) −0.0452(5) −0.0105(2)
pQCD (5.22,9.41) −0.034393(7) −0.008036(2)
ϒ(1S) (9.41,9.51) −0.000623(5) −0.000146(1)
Hadronic (9.51,9.95) −0.00125(2) −0.000293(4)
ϒ(2S) (9.95,10.07) −0.00043(3) −0.000102(6)
Hadronic (10.07,10.30) −0.00057(1) −0.000133(3)
ϒ(3S) (10.30,10.40) −0.000315(4) −0.0000737(9)
Hadronic (10.40,11.50) −0.00245(3) −0.000572(7)
pQCD (11.50,∞) −0.01094(1) −0.002559(3)

Total −4.874(9) −1.027(2)

numerical integration is likely the form-factor parametrization.
This reinforces the danger of model dependence.

VI. SUMMARY AND CONCLUSION

In this work, we have computed the coefficient C1,HVP

in two ways with greatly reduced uncertainty. The first
improved upon the work of Ref. [2] through the use of a
more complex pionic form factor and better modeling of
the perturbative regime and resonances. The final calculation
in this technique was C

imp
1,HVP = −0.0472(5). The error was

estimated by parameter variation and experimental uncertainty.
While more precisely accounting for some of the features of
the full spectral function, it still has drawbacks. The mixing

between the φ-ω is treated by phenomenological fits to data.
It treats the φ meson as a simple pole, which underestimates
its contribution.

In order to avoid these problems, we computed C1, =
−0.04874(9) directly from experimental R(s) in analogy to
methods used for aμ. This value is in agreement with JSIK, but
with an almost two-order-of-magnitude-smaller uncertainty. It
disagrees with the improved method at 3σ . We attribute this
to the pion form-factor parametrization. Therefore, CR

1,HVP is
our final value for the coefficient.

We can now reevaluate the prediction for HFS. Our result
reduces the leading-order hadronic error estimate of JSIK [2]
from 800 to 16 MHz. This is a factor-of-50 reduction in the
hadronic uncertainty. With this improvement, the current value
is �E1s

HFS = 42329437(16)had(700)miss MHz, where the first
uncertainty is our reduced hadronic error, and the second is an
estimate of missing O(mμα6) terms. With this reduction in the
leading-order hadronic uncertainty, missing corrections now
dominate and are the remaining step to obtaining O(100 MHz)
predictions for use in new physics searches.

Of the O(mμα6) corrections, additional HVP corrections
arise. These arise from inserting HVP loops into O(mμα5)
diagrams in analogy to the lepton loops (e.g., Refs. [35,49]).
The uncertainty from missing C2,HVP can be estimated by
assuming it to be 2C1,HVP. The factor of 2 is included
because the average number of photon lines at O(mμα5) is

2. This yields 2C1,HVP
mμα6

π
= 30 MHz, which is subdominant

compared to the 700 MHz arising from missing electron loops.
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