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Combining configuration interaction with perturbation theory for atoms
with a large number of valence electrons
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A version of the configuration interaction (CI) method is developed which treats highly excited many-electron
basis states perturbatively, so that their inclusion does not affect the size of the CI matrix. This removes, at least
in principle, the main limitation of the CI method in dealing with many-electron atoms or ions. We perform
calculations of the spectra of iodine and its ions, tungsten, and ytterbium as examples of atoms with open s, p,
d , and f shells. Good agreement of the calculated data with experiment illustrates the power of the method. Its
advantages and limitations are discussed.
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I. INTRODUCTION

Many-electron atoms provide a lot of opportunities to study
relativistic and many-body effects and to do fundamental
research. The spectra of most of the atoms and their ions is
very well known and documented, e.g., in the NIST database
[1]. However, there are two classes of atomic systems for
which experimental data is poor or absent and theoretical data
is limited. These are superheavy elements (SHE, Z > 100)
and highly charged ions (HCI). Both classes are important for
fundamental research. The study of the SHE is motivated by
the search of the island of stability, where the atomic nucleus
of a SHE has long lifetime due to its closed-shell structure (see,
e.g., [2–4]). The SHE are also interesting objects to study the
interplay between correlation and relativistic effects in extreme
conditions.

The HCI are used to study relativistic and correlation
effects as well, but they are also important for fundamental
research. There are many HCI with optical transitions which
are sensitive to new physics beyond the standard model, such as
variation of the fine-structure constant [5–13], local Lorenz in-
variance and Einstein equivalence principle violations [14,15],
interactions with dark matter [16–19], etc. The HCI can also
be used to build atomic clocks of extremely high accuracy
[10–13,20–22].

The lack of experimental data can be partly compensated
by atomic calculations. However, accurate calculations are
possible only for systems with relatively simple electron
structure, i.e., systems with few (one to about four) valence
electrons above the closed-shell core. There are many good
methods which produce very accurate results for such systems.
They include configurations interaction [23] (CI), many-body
perturbation theory [24] (MBPT), correlation potential (CP)
method [25], coupled-cluster [26,27] (CC), multiconfigura-
tional Dirac-Fock (MCDF) method [28], etc., as well as their
combinations [29–33]. There are many SHE and HCI which
do not fall into this category. For example, transuranium atoms
have an open 5f subshell and up to 16 valence electrons (for
example, the nobelium atom, which has excited states with
excitations from the 5f and 7s subshells); the SHE from
Db (Z = 105) to Cn (Z = 112) have an open 6d subshell,
and the number of valence electrons ranges from five to 12;
the SHE from E115 to E118 have an open 7p subshell and
from three to eight valence electrons (depending on whether

7s electrons are attributed to the core or valence space).
Apart from recent measurements of the ionization potential
(IP) and the frequency of the strong electric dipole transition
(1S0 −1P o

1 ) for No [34–36] and IP for Lr [37], the experimental
data on the spectra of these elements are practically absent.
The number of theoretical studies is limited and accuracy of
the analysis is not very high.

The situation with HCI is also complicated. One needs
optical transitions for high accuracy of the measurements.
Optical transitions in HCI suitable for building very accurate
clocks can be found as transitions between states of the same
configuration [21]. However, such transitions are usually not
sensitive to new physics; one should instead look for optical
transitions between states of different configurations [8]. If we
limit ourselves to systems with a simple electron structure,
then we may come to a situation when there are not many
suitable optical transitions near the ground state of HCIs. The
need for high measurement accuracy dictates that the optical
transition of interest is narrow, i.e., weak. The absence of other
strong optical transitions makes it hard to work with these ions.
The answer to this problem is to move to systems with more
valence electrons, which have more states and transitions.
Then we must be able to perform accurate calculations for
such systems. Good examples are Ir17+ [6,38] and Ho14+ [9]
ions, which were suggested to search for time variation of the
fine-structure constant. The ions have complicated electron
structure (the 4f 135s configuration in the ground state of Ir17+

and the 4f 65s configuration in the ground state of Ho14+).
While measurements of these spectra are in progress [38,39],
interpretation of the results is difficult partly because of poor
accuracy of the calculations.

Methods of calculations for many-valence-electron atoms
mostly represent versions of the CI approach [23,28,40,41].
They often have many fitting parameters and the accuracy of
the results is not very high. There is an interesting approach
which considers not only valence electrons but also holes in
almost-filled shells [42,43] (see also [33]). For example, the
4f 13 configuration in this approach can be considered as a
hole in the fully filled 4f subshell. This approach can produce
very accurate results but it is also limited to systems with
a small number of holes. There is a clear need for further
advance in the methods of the calculations for atoms with many
valence electrons. In this paper, we consider a version of the CI

2469-9926/2017/95(1)/012503(9) 012503-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.012503


DZUBA, BERENGUT, HARABATI, AND FLAMBAUM PHYSICAL REVIEW A 95, 012503 (2017)

method in which most of the high-energy many-electron basis
states are treated perturbatively rather than being included
into the CI matrix diagonalization. This addresses the main
problem of the CI method: the huge size of the CI matrix
for systems with many valence electrons. As a result, the main
limitations of the CI approach are removed and the method can
be used practically for any atom. We call this the configuration
interaction perturbation theory (CIPT) method and apply it to
the iodine atom and its ions, tungsten, and ytterbium atoms
as examples of systems with open p, d, and f shells. We
demonstrate the strengths and limitations of the approach.

II. REDUCING THE SIZE OF THE CI MATRIX

We begin our discussion of calculations for many-electron
atoms with the configuration interaction (CI) technique. There
are many versions of the CI method differing in the way the
core-valence correlation is included, the basis used, etc. (see,
e.g., [29–31]). We shall postpone the discussion of the details
of the CI calculations to the consideration of specific examples.
In this section, we only consider the very general problem of
calculating eigenstates of a Hamiltonian matrix of huge size.

In the CI approach, all atomic electrons are divided into
two groups: closed-shell core and remaining valence electrons
which occupy the outermost open subshells. The wave function
for state number m for valence electrons has the form of
expansion over single-determinant basis states,

�m(r1, . . . ,rNe
) =

∑

i

cim�i(r1, . . . ,rNe
). (1)

The coefficients of expansion cim and corresponding energies
Em are found by solving the CI matrix eigenstate problem,

(H CI − EI )X = 0, (2)

where I is the unit matrix, the vector X = {c1, . . . ,cNs
}, and

Ns is the number of many-electron basis states. The basis
states �i(r1, . . . ,rNe

) are obtained by distributing Ne valence
electrons over a fixed set of single-electron orbitals. The
number of basis states Ns grows exponentially with the number
of electrons Ne (see, e.g., [44]). So does the size of the CI
matrix. In practice, the CI matrix reaches an unmanageable
size for Ne � 4. This greatly limits the applicability of the CI
method since the number of valence electrons can be as large
as 16 (e.g., states of the Yb atom with excitations from the
4f subshell). We suggest that under certain conditions, the CI
calculations can still be performed for any number of valence
electrons at the expense of some small sacrifice of the accuracy
of the results. The conditions are as follows:

(i) We are only interested in a few of the lowest eigenstates
of the matrix. Note that we construct the CI matrix for atomic
states of definite total angular momentum J and parity π , Jπ ;
π is either + or −. There is a separate CI matrix for every Jπ .
Therefore, the few lowest states of every such CI matrix may
add up to hundreds of atomic states.

(ii) The many-electron basis states �i(r1, . . . ,rNe
) are

ordered in terms of their energies (i.e., their diagonal matrix
element). The state with the lowest energy goes first and the
state with the highest energy is the last in the list.

0

FIG. 1. The structure of the CI matrix. The matrix is real and
symmetric, therefore only upper triangular part is shown. The black
triangular shape in the top-left corner of the matrix is the effective CI
matrix. Neglected off-diagonal matrix elements between high-energy
states are shown in white.

(iii) The wave-function expansion (1) saturates with a
relatively small number of first terms. The rest of the sum
is just a small correction.

Note that the current approach is applicable to any matrix,
not just the CI matrix. In the general case, the last two
conditions can be reformulated in the following way: the
matrix has only a relatively small number of large off-diagonal
matrix elements, and the matrix can be reorganized in such a
way that all important off-diagonal matrix elements are located
in the top-left corner of the matrix.

We divide all many-electron basis states �i into two
groups. The first group P contains the low-energy states
which dominate in the expansion (1). We use the notation
Neff for the number of such states (Neff � Ns), and we call
the corresponding part of the CI matrix the effective CI matrix.
The second group Q consists of all remaining high-energy
states.

We can neglect all off-diagonal matrix elements in the high-
energy group Q. Indeed, the contributions of these matrix
elements to the energies and wave functions in the low-energy
group P are insignificant. These follow from the perturbation
theory estimates. The correction to the energy of the low-
energy state g from the off-diagonal matrix elements 〈i|H CI|j 〉
between the high-energy states appears in the third order of the
perturbation theory and is suppressed by the two large energy
denominators Eg − Ei and Eg − Ej :

δEg =
∑

i,j

〈g|H CI|i〉〈i|H CI|j 〉〈j |H CI|g〉
(Eg − Ei)(Eg − Ej )

. (3)

The structure of the full CI matrix is shown in Fig. 1. The
matrix is real and symmetric, so that one can consider only the
upper (or lower) triangular part of the matrix. The effective CI
matrix is in the top-left corner of the full matrix and shown in
black. The off-diagonal matrix elements between high-energy
states, which are put to zero, are shown in white. The diagonal
matrix elements for the high-energy states are not neglected
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and are shown in black. The off-diagonal matrix elements
between low- and high-energy states are shown in gray. The
full CI matrix with this structure can be reduced to a much
smaller effective CI matrix with modified matrix elements,

〈i|H CI|j 〉 → 〈i|H CI|j 〉 +
∑

k

〈i|H CI|k〉〈k|H CI|j 〉
E(0) − Ek

. (4)

Here, |i〉 ≡ �i(r1, . . . ,rNe
), i,j � Neff , Neff < k � Ns , Ek =

〈k|H CI|k〉, and E(0) is an initial approximation to the energy
E in (2). In principle, the energies E in (2) and E(0) in (4)
should be the same. However, since the energy is not known at
the stage of the matrix calculation, one can perform iterations
starting from some reasonable approximation for the energy
and using the result of (2) for calculating the matrix using (4) at
the next iteration. If more than one state of definite J and parity
is needed, the iterations should be done separately for each
state. This leads to a couple of problems. First, too many runs of
the program are needed to calculate several states of the same
J and parity: the program becomes very inefficient. Second,
different states of the same Jπ will correspond to different
matrices (4), which makes them nonorthogonal. This may lead
to problems when calculating matrix elements between levels.

We propose the following solution to both problems. The
energy parameter E(0) in (4) is calculated for each basis state
|i〉 according to its contribution to the states of interest m,

E(0i) =
∑

m c2
imEm∑

m c2
im

. (5)

The summation goes over all states of interest. Let us consider
an example. We are interested in two low-energy states
m = 1,2, i.e., the sum in Eq. (5) contains only two terms.
However, the state i may be any state from the group of the
low-energy states P . We will need corresponding energy E(0i)

in the calculation of the matrix element in the sum in Eq. (4).
The energy E(0i) is close to those solutions Em of (2) where

the basis state |i〉 contributes the most. Here we also need
iterations over energies Em. However, only one run of the
program is needed and all states come from the same matrix.
The results for the energies are very close in both procedures.

Note that the high-energy state corrections to the matrix
elements of the effective CI matrix are similar to the second-
order perturbation theory (PT) corrections to the energy.
Therefore, we will use the corresponding CI and PT notations
for the method. We test the assumptions (4) and (5) in Sec. IV
by comparing the results of our CIPT method with exact
diagonalization of the full CI matrix as shown in Fig. 1.

The calculation of the sum over high-energy states [last term
in (4)] takes up most of the computer time. However, the calcu-
lation of each term in this sum is independent of the others. This
makes the method very convenient for parallel calculations.

In the next sections, we describe in more detail specific cal-
culations for atoms with open s, p, d, and f shells and discuss
the advantages and limitations of the suggested approach.

III. IODINE AND ITS IONS: LIMITS OF
THE V N−M APPROXIMATION

The iodine atom and its ions are good subjects to study the
limitations of the current approach based on reducing the size

of the CI matrix and limitations of the V N−M approximation
[45]. In the V N−M approximation, the initial Hartree-Fock
procedure is done for the N -electron atom with all M valence
electrons removed. Then the CI technique is used to build the
states of valence electrons. This works well when the overlap
between the core and valence states is small. Then the valence
electrons have little effect on the core and the core is almost
the same in the ion with all M valence electrons removed
and in the neutral atom. This can be easily understood by
considering the classical analog. If valence atomic electrons
are approximated by a charged sphere with a hole inside, and
all core electrons are inside this hole, then the charge sphere
creates no electrical field inside it and thus has no effect on
the internal electrons. This is usually the case when a new
shell is started (with new principal quantum number n). In
neutral atoms, new shells always start with s and p states.
The ground state of neutral I is [Pd]5s25p5. All core states
have n < 5. So the overlap between 5s and 5p states and the
core is small. Therefore, it can be considered in the V N−7

approximation.
The iodine atom is an extreme case to check both the V N−M

approximation and the CIPT method. It is the heaviest atom
with an open p shell for which the experimental spectrum is
known. The only other heavier atom which has more external
p electrons, xenon, has no low-lying excited states. This means
that the CIPT method is unlikely to work well for it: the
expansion (1) for highly excited states will not be dominated
by a small number of terms.

The main advantage of using the V N−M approximation is
the relative simplicity of inclusion of the core-valence correla-
tions [45]. They can be included using the lowest, second order
of the many-body perturbation theory [30], or single-double
(SD) coupled-cluster method [29,31], or all-order correlation
potential method [46]. In this work, we use the combination
of the SD and CI methods developed in Ref. [31]. We use the
V Z−7 approximation (N = Z for a neutral atom) and perform
the calculations for all ions starting from the I VIII ion which
has a closed-shell Pd-like core. The first ion for which we cal-
culate excitation energies, the I VII ion, has only one valence
electron. It is clear that the V Z−7 approximation is adequate
for the I VII ion, but deteriorates with increasing number of
valence electrons. This is because the overlap between the
core and valence electrons is small but not exactly zero. It is
instructive to estimate in advance what kind of uncertainty can
be expected in neutral atoms due to the fact that the core is taken
from the ion rather that from the neutral atom. For this purpose,
we have calculated the energy shift due to the difference of
the core potential in the I VII ion and neutral iodine for the 5s

and 5p electrons of I I. The results are 〈5s|δVcore|5s〉 =
5055 cm−1, 〈5p1/2|δVcore|5p1/2〉 = 3273 cm−1, and
〈5p3/2|δVcore|5p3/2〉 = 2891 cm−1. Total shift of the
energy of the seven-electron ground state is ∼25 000 cm−1,
which is about 1% of the total removal energy. The contribution
of this shift to the IP of neutral iodine is approximately equal
to the energy shift of one 5p3/2 electron and constitutes
about 3.5% of the IP. The effect on the excitation energies
is expected to be smaller than 3000 cm−1 due to cancelation
in energy shifts for lower and upper states. Relative energy
shifts for the ions are also small due to larger values of the
energies.
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TABLE I. Ground-state energies (GSE) and ionization potentials for iodine and its ions from I VII to neutral I and corresponding numerical
parameters used in the calculations. NNC is the number of the nonrelativistic configurations included into the effective CI matrix; NRC and
Neff are the corresponding numbers of relativistic configurations and configuration state functions (with given total angular momentum and
parity); Ns is the total number of CSFs; Ns − Neff is the number of terms in the summation over high-energy states [see Eq. (4)]. The ionization
potential is calculated as a difference of the ground-state energies of neighboring ions.

Ion/
Ground state IP (cm−1)

atom Conf. J π NNC NRC Neff Ns GSE (a.u.) CIPT NIST [1] �

I VII 5s 1/2+ 14 14 14 14 −3.22403 707590 706600(500) 990
I VI 5s2 0+ 100 276 66 945 −5.96185 600880 599800(3000) 1080
I V 5s25p 1/2− 100 349 228 11092 −7.85009 414419 415510(300) −1090
I IV 5s25p2 0+ 100 413 176 18652 −9.33862 326693 325500(200) 1193
I III 5s25p3 3/2− 100 535 994 106287 −10.42426 238269 238500(200) −230
I II 5s25p4 2+ 100 610 1551 168659 −11.11511 151623 154304.0(10) −2680
I I 5s25p5 3/2− 100 691 1990 119490 −11.46144 76010 84295.1(2) −8285

Next we compare the value of the energy shift due to the use
of the V N−7 potential in neutral iodine with the contribution
of the core-valence correlations. The total calculated removal
energy for seven valence electrons of neutral iodine is
−11.4614 a.u. (see Table I) when core-valence correlations are
included. It comes to the value of −11.2225 a.u. when core-
valence correlations are neglected. The difference, 0.2389 a.u.
or 52 430 cm−1, is about two times larger than the shift due
to the use of the V N−7 potential (∼25 000 cm−1; see above).
This justifies the use of the V N−M approximation for all iodine
ions up to the neutral atom. Note that there is an alternative
way of taking into account the core-valence correlations which
does not require the removal of all valence electrons from the
initial approximation because their effect is included via the
so-called subtraction diagrams [30].

Table I presents calculated energies of the ground state for
all iodine ions from I VII up to neutral I I. Ionization potentials
of the ions are calculated as differences of the ground-state
energies of the neighboring ions and compared with the
data from the NIST database [1]. Relevant computational
parameters are also presented. In all cases starting from
I VI, we include 100 of the nonrelativistic configurations
(NNCs) into the effective CI matrix. NRC and Neff are
the corresponding numbers of the relativistic configurations
(NRCs) and configuration state functions (CSFs), respectively.
All other configurations are included perturbatively as a
correction to the effective CI matrix according to formula (4).
In the extreme cases of I II and I I, the total number of CSFs
(Ns) is larger than the size of the effective CI matrix by about
two orders of magnitude. The difference between calculated
IPs and those from the NIST databases is smaller than 0.4% for
all cases, apart from the extreme cases of I II and I I where its is
1.7% and about 10%, respectively. The deteriorating accuracy
with increasing number of valence electrons is expected and
most probably caused by insufficient size of the effective CI
matrix and incompleteness of the many-electron basis states
(e.g., triple and higher excitations are not included).

Table II compares the calculated energy levels of iodine
ions with experiment. In general, the accuracy is good, about
1% or better for most of the states. However, we can see
one more interesting tendency. The accuracy deteriorates not
only with increased number of valence electrons, but also
with the increased excitation energy. This is also an expected

effect. Highly excited states mix strongly with the high-energy
states which are not included into the effective CI matrix and
are only treated perturbatively. The accuracy for such states
can be improved by increasing the size of the effective CI
matrix. On the other hand, the accuracy for low-lying states
is significantly better. Note that relatively poor accuracy for
the 6s and 6p states of the I VII ion is due to a different
reason which comes from the core-valence correlations. The
energy parameter of the �1 operator which is responsible for
the core-valence correlations is chosen to get the best results
for the lowest states, 5s and 5p (see, e.g., [30] for details).

IV. TUNGSTEN ATOM

The tungsten atom is a good example of an atom with an
open d shell. Its ground-state configuration is [Yb]5d46s2.
It has six valence electrons above the Yb-like closed-shell
core. This number is sufficiently large to make the full-scale
CI calculations extremely difficult. On the other hand, its
spectrum is very well known. Therefore, the atom is good
for checking the CIPT technique and demonstrating its use.

The 5d valence electrons of W have relatively large overlap
with the 5s and 5p core states, which means that the V N−6

approximation would not work well for the atom (see Ref. [45]
and the discussion in the previous section). Therefore, we
neglect core-valence correlations and use the V N−1 initial ap-
proximation. Note that choosing a good initial approximation
is important for minimizing the size of the effective CI matrix,
thus making the calculations more efficient. In full-scale CI
calculations, the choice of the initial approximation is less
important and the accuracy of the final results vary little from
state to state regardless of their configurations. In our present
approach, most of the basis states are included perturbatively
and only a very limited number of the lowest states are
treated accurately via matrix diagonalization. Therefore, it
is hardly possible to find an initial approximation which is
equally good for states of all configurations. We may choose,
for example, that the most important states are those which
belong to the 5d46s2 and 5d46s6p configurations to ensure
high accuracy for the strong electric dipole transitions from
the ground state. Then the V N−1 approximation in which
one 6s electron is removed from the initial self-consistent
Hartree-Fock procedure seems to be an adequate choice.
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TABLE II. Calculated excitation energies (CIPT, cm−1) of iodine and its ions, compared with experiment.

Energy Ion/ Energy

Ion State Expt. CIPT � atom State Expt. CIPT �

I VII 5s 2S1/2 0 0 0 I IV 5s25p2 3P0 0 0 0
5p 2P o

1/2 104960 105161 −201 3P1 6828 6909 −81
5p 2P o

3/2 119958 120229 −271 3P2 10982 11167 −185
5d 2D3/2 274019 274559 −540 1D2 22532 23004 −472
5d 2D5/2 276256 276802 −546 1S0 37177 37987 −810
6s 2S1/2 335376 337132 −1756 5s5p3 5So

2 78084 78495 −411
6p 2P o

1/2 377185 378800 −1615 3Do
1 99047 99254 −207

6p 2P o
3/2 382985 384596 −1611 3Do

2 99542 99853 −311
I VI 5s2 1S0 0 0 0 3Do

3 102387 102597 −210
5s5p 3P o

0 85666 86140 −474 3P o
0 114658 114702 −44

3P o
1 89262 89800 −538 3P o

1 115478 115597 −119
3P o

2 99685 100345 −660 3P o
2 115013 115040 −27

1P o
1 127424 126414 1010 3So

1 135677 133867 1810
5p2 3P0 200085 199827 258 I III 5s25p3 4So

1/2 0 0 0
3P1 208475 208183 292 2Do

3/2 11711 12149 −438
3P2 221984 222252 −268 2Do

5/2 14901 14534 367
1D2 209432 209890 −458 2P o

1/2 24299 24640 −341
1S0 245659 245657 2 2P o

3/2 29637 30138 −501
5s5d 3D1 251817 251749 68 5s5p4 4P5/2 85555 88539 −2984

3D2 252540 252262 278 4P3/2 90964 93908 −2944
3D3 253752 253676 76 4P1/2 92902 95820 −2915
1D2 274162 268727 5435 2D3/2 103470 110686 −7216

I V 5s25p 2P o
1/2 0 0 0 2D5/2 106619 112931 −6312

2P o
3/2 12222 12397 −175 I II 5s25p4 3P2 0 0 0

5s5p2 4P1/2 81018 81417 −399 3P0 6448 6709 −261
4P3/2 85556 87337 −1781 3P1 7087 6910 177
4P5/2 92558 93108 −550 1D2 13727 14010 −283
2D3/2 108780 109274 −494 1S0 29501 31955 −2454
2D5/2 111831 112498 −667 5s25p36s 5So

0 81033 88782 −7749
2P1/2 125704 124835 869 5s5p5 3P o

2 81908 83765 −1857
2P3/2 139398 138098 1300 3P o

1 84222 96489 −12267
2S1/2 138328 138137 191 3P o

0 90405 103475 −13070
5s25d 2D3/2 154050 153666 384 5s25p36s 3So

1 84843 87390 −2547
2D5/2 155462 155109 353 I I 5s25p5 2P o

3/2 0 0 0
5s26s 2S1/2 176814 177614 −802 2P o

1/2 7603 7311 −292
5s25p46s 2[2]5/2 54633 64817 −10187

2[2]3/2 56093 66762 −10669
2[0]1/2 60896 72829 −11933
2[1]3/2 61820 72508 −10688
2[1]1/2 61187 75818 −14625

Indeed, all single-electron s, p, etc. states (including the 6s

state) are calculated in the field of the frozen 5d46s core,
leading to the states of the 5d46snl configurations.

The CIPT results for the W atom are presented in
Table III. Calculations for even states were performed when
only states of the 5d46s2 and 5d56s were included into
the effective CI matrix, while all other states obtained by
single and double excitations from these two configurations
were included perturbatively. For odd states, we used the
5d46s6p, 5d36s26p, and 5d56p configurations as reference
configurations to generate states for the effective CI matrix
and for the PT expansion.

For the tungsten case, we also ran an exact diagonalization
of the CI matrix shown in Fig. 1 using the AMBiT code (see,
e.g., [32]); these are presented in the column “Full CI” of

Table III. In this calculation, configuration state functions
(CSFs) with definite J and parity are formed within each
relativistic configuration (i.e., configurations formed in j − j

electron coupling) and these are the basis functions for the
CI procedure. We keep all matrix elements shown in black
and gray in Fig. 1. In addition, we keep all matrix elements
between CSFs coming from the same relativistic configuration
(these will appear close to the diagonal in the white section).
We limit the storage to only the nonzero parts of the matrix and
solve using the Davidson method [47] (implemented in [48]),
which reduces diagonalization to a series of matrix-vector
multiplications. As an example, the J = 2 odd-parity matrix
size is Ns ≈ 3 × 106, but Neff = 144 only.

We see in Table III that both the solution of the Full CI and
of the CIPT method give good agreement with experiment.
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TABLE III. Calculated excitation energies (cm−1) of tungsten
in different approximations. Min. CI: only leading configurations
included (see text). Full CI: exact diagonalization with all config-
urations included, but off-diagonal matrix elements between CSFs
outside the minimal CI set to zero. CIPT: diagonalization of the
effective CI with other configurations included in perturbation theory.
� is the difference between CIPT and experiment.

Energy (cm−1)

Level J Expt. [1] Min. CI Full CI CIPT �

5d46s2 5D 0 0 0 0 0 0
1 1670 776 1106 1502 168

5d56s 7S 3 2951 796 2494 2674 277
5d46s2 5D 2 3325 1933 2740 2664 661

3 4830 3287 4272 4506 324
4 6219 4788 5509 5414 805

5d46s2 3P 2 0 9528 13025 8530 9747 −219
5d46s2 3H 4 12161 14994 11730 12963 −802
5d46s2 3P 2 1 13307 16283 12078 13540 −233
5d46s2 3G 3 13348 16491 12916 14185 −837
5d46s2 3F2 2 13777 17411 13030 14648 −871
5d46s2 3D 2 14976 18933 14144 15501 −525

1 18082 21869 17171 18898 −816
5d46s6p 7F o 0 19389 4750 20303 20920 −1531

1 20064 5269 20927 21580 −1516
5d46s2 1S2 0 20174 25063 20255 20916 −742
5d56s 5P 1 20427 28439 18965 20281 146

2 20983 25070 17692 22906 −1923
5d46s6p 7F o 2 21448 6240 22090 22702 −1254
5d46s6p 7Do 1 21453 7922 22199 23076 −1623

Comparison with diagonalization of the effective CI matrix
without PT (the “Min. CI” column) shows that both methods
give similar corrections to the level energies. This shows that
assumptions (4) and (5) are reasonable.

Note the lower accuracy for the odd states (see Table III).
Test calculations show that the accuracy can be further
improved if more configurations are moved from the PT
expansion to the effective CI matrix. This is a future direction
for highly accurate calculations; however, it takes a lot of
computer power and is beyond the scope of this work.

V. YTTERBIUM ATOM

The ytterbium atom has the [Ba]4f 146s2 closed-shell
configuration in its ground state. However, the excited states
of Yb belong to configurations which have excitations from
both the 6s and 4f subshells. This means that a complete
description of excited states of Yb is only possible when the
atom is treated as a system with 16 valence electrons. There
are many successful calculations in which the Yb atom is
treated as a two-valence electron system (see, e.g., [49–51]).
In these calculations, excitations are allowed only from the
6s2 subshell, while the 4f electrons are attributed to the
core. Good quality of the results indicates that the states with
excitations from 6s and 4f subshells usually do not strongly
mix. However, this is not always the case. There is at least
one known case when the mixing is important. This is the
mixing between the 4f 146s6p 1P o

1 state at E = 25068 cm−1

and the 4f 135d6s2 (7/2,5/2)o1 state at E = 28857 cm−1.
The case is important due to the strong electric dipole
transition between the ground and excited 4f 146s6p 1P o

1
state. It strongly dominates in the polarizability of Yb [49],
it can be used in cooling [52], etc. The experimental value
for the electric dipole amplitude is 4.148 a.u., while two-
valence-electron calculations give the value of 4.825 a.u.; the
difference is due to the mixing of the two odd states [49]. This
mixing cannot be accounted for in the two-valence-electron
calculations.

Apart from studying the mixing, it might be equally
important to be able to get a complete description of the
atomic spectrum including states with excitations from the
core. This is especially useful when experimental data are
incomplete or absent (e.g., superheavy elements and highly
charged ions). The Yb atom is a good testing ground for
developing appropriate approaches. It represents an extreme
case of 16 valence electrons, while its experimental spectrum
is very well known.

As in the case of tungsten (see previous section), we
start the calculations from the V N−1 approximation with one
6s electron removed from the self-consistent Hartree-Fock
procedure. This leads to adequate treatment of the states of the
4f 146s2 and 4f 146s6p configurations, while it is less adequate
for the states of the 4f 135d6s2 configuration. The latter can
be compensated at least to some extent be increasing the size
of the effective CI matrix.

The results for Yb are presented in Table IV. Calculations
for the ground state were performed with the inclusion of only
two configurations to the effective CI matrix, the 4f 146s2 and
the 4f 146s7s configurations. Even states with the total angular
momentum J > 0 were calculated starting from the 4f 146s7s

and the 4f 146s5d configurations. Odd states were calculated
starting from the 4f 146s6p and the 4f 135d6s2 configurations.
Accuracy of the results varies from state to state, which should
probably be expected for a small-size CI matrix due to different
convergence for states with different values of the total angular
momentum J . We have seen similar features in the tungsten
calculations (see previous section); however, for ytterbium, it is
more prominent. As in the case of tungsten, further significant
improvement in accuracy can be achieved with an increase of
the size of the effective CI matrix. This would take greater
computer power.

Table V shows electric dipole (E1) transition amplitudes
from the ground state of ytterbium to the first four excited
states that satisfy E1 selection rules. The calculations of the
present work are done with the use of the random phase
approximation (RPA) and CI wave functions as has been
described in Ref. [49]. The CI wave function is taken from
the calculations of the energies described above, i.e., it has
16 valence electrons and includes excitations from the 4f

subshell. The result for the 〈4f 146s6p 1P o
1 ||E1||4f 146s2 1S0〉

amplitude is in better agreement with the experiment than any
other calculations. This is because the present calculations
include the mixing of the 4f 146s6p 1P o

1 and 4f 135d6s2 1P o
1

states, while the other calculations treat the ytterbium atom as
a two-valence-electron system and cannot include this mixing.

It was noted in Ref. [49] that the calculation of the
static dipole polarizability of Yb does not depend on the
mixing of the 4f 146s6p 1P o

1 and 4f 135d6s2 (7/2,5/2)o1
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TABLE IV. Calculated excitation energies (CIPT, cm−1) of
ytterbium, compared with experiment.

Energy

State J Expt. [1] CIPT �

4f 146s2 1S 0 0 0 0
4f 146s6p 3P o 0 17288 17670 −382

1 17992 18305 −331
2 19710 19886 −176

4f 135d6s2 (7/2,3/2)o 2 23188 25028 −1840
4f 145d6s 3D 1 24489 27568 −3079

2 24751 27217 −2466
4f 146s6p 1P o 1 25068 25597 −529
4f 145d6s 3D 3 25270 27747 −2477
4f 135d6s2 (7/2,3/2)o 5 25859 26343 −484
4f 135d6s2 (7/2,5/2)o 6 27314 27205 109
4f 135d6s2 (7/2,3/2)o 3 27445 27431 14
4f 145d6s 1D 2 27677 28071 −394
4f 135d6s2 (7/2,3/2)o 4 28184 28013 171
4f 135d6s2 (7/2,5/2)o 2 28195 27354 841

1 28857 30071 −1214
4 29774 28975 799
3 30207 29133 1074
5 30524 29172 1352

states if the energy interval between them is neglected.
This is because the sum of squares of the electric
dipole matrix elements 〈4f 146s6p 1P o

1 ||E1||4f 146s2 1S0〉2 +
〈4f 135d6s2 (7/2,5/2)o1||E1||4f 146s2 1S0〉2 does not depend
on mixing. Therefore, it is instructive to compare the sum
calculated in two different approximations. The sum is equal
to 24.83 a.u. if the amplitudes calculated in the present work are
used (4.312 + 2.502 = 24.83; see Table V). The first amplitude
calculated in the two-valence-electron approximation is equal
to 4.825 a.u. [49]. The contribution of the second state
(4f 135d6s2 (7/2,5/2)o1) to the polarizability is simulated by
the contribution of the 〈4f7/2||E1||5d5/2〉 matrix element into
polarizability of the atomic core. The value of this matrix
element in the RPA approximation is equal to 1.40 a.u.
The sum of squares of the two amplitudes is equal to
25.24 a.u. (4.8252 + 1.402 = 25.24). The two numbers (24.83
and 25.84) differ by only 1.6%. This illustrates the fact that

the sum of the squares of the two amplitudes does not depend
on mixing.

In the present work, we include into the effective CI matrix
mixing of the states with excitations from the 4f subshell,
but we do not include mixing of the states with excitations
from the 6s or 6p states. Therefore, we have good accuracy
where the first mixing is more important and poor accuracy
where the second mixing is more important. An example of
the latter is the triplet state 4f 146s6p 3P o

1 ; the corresponding
electric dipole matrix element is given to better accuracy by
the two-valence-electron calculations (see Table V).

VI. DISCUSSION

The calculations for representative atoms with open p,
d, and f shells discussed above allow one to come to
some conclusions about the advantages and limitations of
this approach. The most obvious and important advantage is
the ability to perform the calculations for any atom or ion
regardless of the number of valence electrons. The calculations
are totally ab initio with absolutely no fitting parameters. The
same single-electron basis can be used for many-valence-
electron atoms as has been used for few-valence-electron
atoms (e.g., B splines in a box [61]) in a number of calculations
and has been proved to be complete.

Another important advantage is the huge gain in the
efficiency compared with the full-scale CI calculations which
can be achieved at the expense of little loss in accuracy by
treating most of the high-energy configurations perturbatively.

The method is practically equivalent to the full-scale CI
calculations for atoms or ions with few valence electrons (up
to four or five). However, in contrast to the full-scale CI, it
can be used for systems with any number of valence electrons,
but with some limitations. For example, the calculations are
sensitive to the choice of initial approximation. Since only
a limited number of states are included into the effective CI
matrix and most of the states are treated perturbatively, it is
important that the low-energy states are sufficiently close to
the real physical states of interest and the contribution of the
high-energy states is small. It is not always possible to find an
approximation which is equally good for states of all low-lying
configurations. For example, the V N−1 approximation for
tungsten discussed above is good for the states of the 5d46s2

and 5d46snl configurations, but it is less appropriate for the

TABLE V. Electric dipole transition amplitudes (reduced matrix elements) between ground and low excited states of Yb (a.u.). Experimental
uncertainties are shown in parentheses.

Energy (cm−1) Amplitude

Upper state Expt. [1] CIPT CIPT Expt. Other theory

4f 146s6p 3P o
1 17992 18305 0.763 0.542(2) [53] 0.54(8) [54]

0.547(16) [55] 0.587 [49]
0.41(1) [56]

4f 146s6p 1P o
1 25068 25597 4.31 4.148(2) [57] 4.825 [49]

4.13(10) [58] 4.40(80) [54]
4.44 [59]
4.89 [60]

4f 135d6s2 (7/2,5/2)o1 28857 30071 2.50
4f 135d6s2 1P o

1 37415 37529 0.584
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states of the 5d56s configuration. This may lead to a different
accuracy of the results for different states even when they
belong to the same configuration. This is due to inaccurate
treatment of the mixing with other configurations. The situa-
tion can be improved at the expense of using more computer
power by increasing the size of the effective CI matrix.

Another limitation comes from the fact that at the present
stage, we cannot include core-valence correlations for systems
with a large number of valence electrons. This is not directly
relevant to the approach considered in this work; however, we
mention it here because the ways of inclusion of the core-
valence correlations for atoms with many valence electrons
remains an open problem. The inclusion of the core-valence
correlations is usually reduced to modification of the matrix
element of the CI matrix [30], similar to what is done here
for inclusion of high-energy states [see Eq. (4)]. However,
our current approach presents a way of reducing the size of
the CI matrix regardless of the origin of its matrix elements,
i.e., regardless of whether or not core-valence correlations
are included, what kind of basis is used, etc. In Sec. III,
we considered an extreme case of the seven-valence-electron
atom, iodine. The core-valence correlations were included
and the V N−7 approximation was used for this purpose.
This approach would not work for tungsten or ytterbium or
any other atom with a large number of valence electrons.

Finding more suitable approaches is a subject for further
study.

VII. CONCLUSION

We present a version of the CI method which treats
high-energy many-electron basis states perturbatively, hugely
reducing the size of the CI matrix. In principle, the method
can work for systems with any number of valence electrons.
Calculations for iodine and its ions, tungsten, and ytterbium
(atoms with open p, d, and f shells) show that good accuracy
for the energies can be achieved for a wide range of atomic
systems. The method is equivalent to the full-scale CI method
for systems with few valence electrons (up to four or five).
The accuracy for the energies for such systems is on the level
of 1% in both approaches. However, this approach is much
more efficient for systems where full-scale CI calculations
are difficult (four or five valence electrons). The accuracy for
the energies of atoms or ions with a large number of valence
electrons (up to 16) is on the level of a few percent and can be
controlled by varying the size of the effective CI matrix.

ACKNOWLEDGMENT

The work was supported in part by the Australian Research
Council.

[1] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team,
NIST Atomic Spectra Database, version 5.3 (National Insti-
tute of Standards and Technology, Gaithersburg, MD, 2015),
http://physics.nist.gov/asd (unpublished).

[2] F. P. Hessberger, ChemPhysChem 14, 483 (2013).
[3] A. Türler and V. Pershina, Chem. Rev. 113, 1237 (2013).
[4] J. H. Hamilton, S. Hofmann, and Y. T. Oganessian, Annu. Rev.

Nucl. Part. Sci. 63, 383 (2013).
[5] J. C. Berengut, V. A. Dzuba, and V. V. Flambaum, Phys. Rev.

Lett. 105, 120801 (2010).
[6] J. C. Berengut, V. A. Dzuba, V. V. Flambaum, and A. Ong,

Phys. Rev. Lett. 106, 210802 (2011).
[7] J. C. Berengut, V. A. Dzuba, V. V. Flambaum, and A. Ong,

Phys. Rev. Lett. 109, 070802 (2012).
[8] J. C. Berengut, V. A. Dzuba, V. V. Flambaum, and A. Ong,

Phys. Rev. A 86, 022517 (2012).
[9] V. A. Dzuba, V. V. Flambaum, and H. Katori, Phys. Rev. A 91,

022119 (2015).
[10] M. S. Safronova, V. A. Dzuba, V. V. Flambaum, U. I. Safronova,

S. G. Porsev, and M. G. Kozlov, Phys. Rev. Lett. 113, 030801
(2014).

[11] M. S. Safronova, V. A. Dzuba, V. V. Flambaum, U. I. Safronova,
S. G. Porsev, and M. G. Kozlov, Phys. Rev. A 90, 042513 (2014).

[12] M. S. Safronova, V. A. Dzuba, V. V. Flambaum, U. I. Safronova,
S. G. Porsev, and M. G. Kozlov, Phys. Rev. A 90, 052509 (2014).

[13] V. A. Dzuba and V. V. Flambaum, Hyperfine Interact. 236, 79
(2015).

[14] T. Pruttivarasin, M. Ramm, S. G. Porsev, I. I. Tupitsyn, M. S.
Safronova, M. A. Hohensee, and H. Haffner, Nature (London)
517, 592 (2015).

[15] V. A. Dzuba, V. V. Flambaum, M. S. Safronova, S. G. Porsev, T.
Pruttivarasin, M. A. Hohensee, and H. Häffner, Nat. Phys. 12,
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