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It has been shown that the conditional probability distributions obtained by performing measurements on an
uncharacterized physical system can be used to infer its underlying dimension in a device-independent way both
in the classical and the quantum setting. We analyze several aspects of the structure of the sets of probability
distributions corresponding to a certain dimension, taking into account whether shared randomness is available as
a resource. We first consider the so-called prepare-and-measure scenario. We show that quantumness and shared
randomness are not comparable resources. That is, on the one hand there exist behaviors that require a quantum
system of arbitrarily large dimension in order to be observed while they can be reproduced with a classical
physical system of minimal dimension together with shared randomness. On the other hand, there exist behaviors
that require exponentially larger dimensions classically than quantumly even if the former is supplemented with
shared randomness. We also show that in the absence of shared randomness, the sets corresponding to a sufficiently
small dimension are negligible (zero measure and nowhere dense) both classically and quantumly. This is in
sharp contrast to the situation in which this resource is available, and it explains the exceptional robustness of
dimension witnesses in the setting in which devices can be taken to be uncorrelated. We finally consider the Bell
scenario in the absence of shared randomness, and we prove some nonconvexity and negligibility properties of
these sets for sufficiently small dimensions. This shows again the enormous difference induced by the availability
(or lack thereof) of this resource.
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I. INTRODUCTION

Is it possible to estimate the degrees of freedom of an
uncharacterized physical system? This question has received
much attention in recent years in what is known as device-
independent dimension witnessing (DIDW). It turns out that
it is indeed possible to make tests about the underlying
dimension of a physical system without making any as-
sumption about it or on the internal functioning of the
measurement devices used to interact with it. Dimension
estimates can be constructed based only on the measurement
data, i.e., on the observed probabilities of obtaining certain
outcomes conditioned on the different possible choices of
measurement. These results are not only interesting from
a fundamental point of view, but they also play a role
in quantum information processing. Besides allowing for
experimental tests of the physical dimension [1], which might
be considered as a resource, these investigations allow us to
constrain the correlations that are achievable when the setting
limits the underlying dimension of the physical systems used
in a protocol. These scenarios are known as semi-device-
independent quantum information processing: no assumption
is made on the working of the devices nor on the physical
system used except for its dimension. Ideas from DIDW have
allowed us to prove the security of certain cryptographic
schemes [2] and to provide randomness-expansion protocols
in this framework [3]. Moreover, DIDW is intimately related to
the field of quantum communication complexity, which studies
the minimal amount of communication that parties must
exchange to successfully carry out distributed computational
tasks [4]. Indeed, communication can be quantified by the
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dimensionality of the physical systems used to encode the
messages.

The first proposals for DIDW considered the Bell scenario
of quantum nonlocality, since violating Bell inequalities
by a certain amount might require quantum systems of at
least a certain dimension [5]. Subsequently, the structure
of quantum correlations under dimensionality constraints
has been studied extensively [6]. Although other settings
have been considered [7], a different general and simple
formalism for DIDW was presented in [8] in the so-called
prepare-and-measure scenario, which was largely explored
afterward [9,10]. Both the Bell and the prepare-and-measure
scenarios rely on different parties holding devices that interact
with the physical system. It is usually assumed that the action
of these devices might be correlated by the parties having
access to a common random variable. This induces con-
vexity into the sets of observable probability distributions
corresponding to a given dimension, and separation theorems
can be used to obtain linear functionals that enable DIDW.
However, shared randomness can be viewed as a resource,
and in certain settings it might be more natural to assume
that all devices are independent (this is the case, for example,
when the devices are trusted and are not jointly conspiring to
mimic higher-dimensional behaviors). Conditions for DIDW
with uncorrelated devices have been presented in [11] (the
prepare-and-measure scenario) and more recently in [12] (the
Bell scenario) and [13] (the prepare-and-measure scenario).

In this paper, we explore the differences for DIDW, taking
into account whether shared randomness is available as a
resource. To do this, we analyze in detail the structure of
the sets of probability distributions corresponding to a certain
dimension, taking into account both possibilities. We first
consider the prepare-and-measure scenario, and we show
that quantumness and shared randomness are not comparable
resources. That is, on the one hand there exist behaviors
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that require a quantum system of arbitrarily large dimension
in order to be observed while they can be reproduced with
a classical physical system of minimal dimension together
with shared randomness. On the other hand, using results
from communication complexity, it can be seen that there
exist behaviors that require exponentially larger dimensions
classically than quantumly even if the former is supplemented
with shared randomness. We also show another clear difference
depending on whether shared randomness is available. In the
absence of it, the sets corresponding to a sufficiently small
dimension are negligible both classically and quantumly: they
are zero-measure and nowhere-dense subsets in the set of all
possible behaviors. However, this is never the case in the other
setting as these sets are never negligible independently of how
small the dimension might be. This negligibility property also
explains the exceptional robustness of dimension witnesses
when devices are taken to be independent, as observed in [11].
In the second part of this article, we consider the Bell scenario.
The availability (or lack thereof) of shared randomness is
known to make a difference, and nonconvexity results for
the sets of observable probability distributions of a fixed
dimension are known [14,15]. Here we extend these results
and prove systematically some nonconvexity properties for
these sets for sufficiently small underlying dimension when the
parties do not have access to shared randomness. Furthermore,
contrary again to the case of correlated devices, we also show
that in this case these sets have measure zero and are nowhere
dense in the set of all quantum behaviors. To obtain all these
results, we use some very simple dimension estimates based
on the rank of a matrix.

II. PREPARE-AND-MEASURE SCENARIOS

The prepare-and-measure scenario [8] for witnessing di-
mensions in a device-independent way is the following. There
are two parties, Alice (or A) and Bob (or B), which receive,
respectively, inputs x and y from finite alphabets X and Y .
Their only chance to communicate is by A sending a classical
or quantum physical system to B depending on her input.
The dimension of this system, to be defined precisely below,
quantifies the amount of communication used. Upon receival
of the message, B interacts with the system by performing a
measurement depending on his input and produces an output
b that can take values in a finite alphabet. For simplicity, we
will consider this output to be binary, i.e., b ∈ {0,1}. Then,
we can record the conditional probabilities with which each
output occurs for any given pair of inputs: P (b|xy). This is
the main object in a device-independent scenario, and we
will refer to it as behavior and denote it by P. Of course,
as conditional probabilities, behaviors are characterized by
P (b|xy) � 0 ∀ b,x,y and

∑
b P (b|xy) = 1 ∀ x,y.

The question to be addressed in this setting is the following.
Without using any knowledge on how A and B process
their information, what is the minimal amount of classical or
quantum communication sent from A to B that is compatible
with the observation of a given behavior? The possible classical
messages m(x) are given by dits, i.e., m ∈ {1, . . . ,d}. Thus,
the amount of classical communication is measured by the
dimension of the message d. A always has the chance to use
a random strategy, i.e., she can send a message m given x

with probability s(m|x), and so does B, i.e., he can produce
an output b given y and the reception of m with probability
t(b|ym). In the quantum case, A sends quantum states ρx . The
dimension of her message is thus

d = dim
∑

x

supp ρx, (1)

where supp stands for the support of an operator. To produce
his output, B can interact with the message through a quantum
measurement conditioned on his input.

Thus, we define the set of behaviors obtained by sending
classical messages of dimension at most d by Cd (this and
the other sets to be defined below also depend on |X | and
|Y|, which we drop to ease the notation since these quantities
should be clear in general from the context). In other words,
P ∈ Cd when

P (b|xy) =
d∑

m=1

s(m|x)t(b|my). (2)

On the other hand, Qd denotes the set of behaviors achievable
by sending quantum states of dimension at most d. That is,
P ∈ Qd if there exists measurements for B, {�y

b � 0} with∑
b �

y

b = 1l ∀ y, such that

P (b|xy) = tr
(
ρx�

y

b

)
, (3)

where the {ρx} are of dimension less than or equal to d [cf.
Eq. (1)].

As already mentioned in the Introduction, this does not
exhaust all possibilities. Depending on the physical setting,
A and B may be granted with another resource to build their
strategy: shared randomness. This means that A and B may
preestablish the strategy each will follow depending on the
value of a random variable to which they both have access.
This boils down to the fact that they can prepare any convex
combination of their previously allowed behaviors. Thus, we
define the sets of behaviors obtained by sending classical or
quantum messages of dimension at most d together with shared
randomness by

C ′
d = Conv(Cd ), Q′

d = Conv(Qd ), (4)

where Conv(·) stands for the convex hull. The sets Cd and
Qd need not be convex, so in general we have strict inclusions
Cd ⊂ C ′

d andQd ⊂ Q′
d [9]. This means that shared randomness

is indeed a resource that can allow us to perform some tasks
using less communication. On the other hand, we clearly have
as well the inclusions Cd ⊆ Qd and C ′

d ⊆ Q′
d , which can also

be seen in general to be strict. That is, quantum strategies are
also a resource over classical strategies in order to reduce the
amount of communication.

Notice that if d � |X |, the scenario is trivial. A can
unambiguously encode the value of her input into her message
to B, who can then use his private randomness to output any
possible behavior. Hence, C|X | = Q|X | = C ′

|X | = Q′
|X |, which

constitute the set of all behaviors in a given setting. Thus, given
any valid behavior there always exist values of the dimension
in which it is realizable in any of the aforementioned sets,
since in the worst case we have d = |X |. Therefore, it is
always well defined to ask what the minimal value of the
dimension is to obtain some behavior in any of the four sets of
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FIG. 1. For a fixed value of d , all inclusions among sets are clear
except for those corresponding to classical communication together
with shared randomness and quantum communication without shared
randomness.

possible strategies. Taking into account the inclusions pointed
out above, it comes as a natural question what the relation
between C ′

d and Qd is (see Fig. 1). Moreover, given the status
of both quantumness and shared randomness as a resource, it
is interesting to know if one can exchange one for the other
or if one is strictly more powerful than the other. Actually,
this is a standard question in the context of communication
complexity [16]. Here, one usually seeks differences in d

that are larger than a logarithmic cost over |X | as this is
considered negligible with respect to the size of the input:
the so-called exponential separations. We will show that there
exist scenarios in which C ′

d � Qd and Qd � C ′
d , with both

separations being exponential (or even arbitrary). The second
inclusion is a straightforward observation from known results
in communication complexity. To establish the first one, we
will first observe in the following subsection some very simple
dimension estimates based on the rank of a matrix associated
with P. Using again these estimates, we will finish this section

by showing the negligibility of low-dimensional sets in the
absence of shared randomness. This explains the exceptional
robustness to noise of dimension witnessing in this scenario,
and it provides a clear contrast to the case in which this resource
is available.

A. Dimension estimates

The fact that C ′
d and Q′

d are convex sets allows us to
separate each set from its complement by linear functionals on
the behaviors. This gives rise to the so-called linear dimension
witnesses [8,9]. The case of Cd and Qd was recently addressed
in [11], which obtained some nonlinear dimension witness
for these nonconvex sets. Specifically, they consider the
scenario in which |X | = 2|Y| = 2k and show that the k × k

matrix Wk with entries Wk(i,j ) = P (0|2j − 1,i) − P (0|2j,i)
(i,j = 1, . . . ,k) is such that det Wk = 0 for all behaviors
in Cd (Qd ) with d � k (d �

√
k). Thus, the determinant of

Wk being nonzero allows one to establish nontrivial lower
bounds on the required dimensionality both in the classical
and quantum cases.

In the following, we obtain more refined estimates. To do
so, and to deal with behaviors, we will arrange the array of
numbers given by P into a matrix P ∈ R|X |×2|Y| according to
the rule

P =
∑
bxy

P (b|xy)|x〉〈yb|, (5)

where in the standard notation of quantum mechanics
|yb〉 = |y〉 ⊗ |b〉 and {|y〉} denotes the computational basis
of R|Y|, and similarly for the other alphabet elements. In other
words, P takes the form

P =

⎛
⎜⎜⎝

P (0|11) P (1|11) P (0|12) P (1|12) · · · P (0|1|Y|) P (1|1|Y|)
P (0|21) P (1|21) P (0|22) P (1|22) · · · P (0|2|Y|) P (1|2|Y|)

...
...

...
...

. . .
...

...
P (0||X |1) P (1||X |1) P (0||X |2) P (1||X |2) · · · P (0||X ||Y|) P (1||X ||Y|)

⎞
⎟⎟⎠. (6)

Now, in the case P ∈ Cd , we can make the following
immediate observation. Since the behavior is given by Eq. (2),
we have that

P =
d∑

m=1

(∑
x

s(m|x)|x〉
)⎛

⎝∑
by

t(b|my)〈yb|
⎞
⎠ =

d∑
m=1

umvT
m

(7)

for some real (actually non-negative) vectors {um} and {vm}
of size |X | and 2|Y|, respectively. Thus, we clearly see that if
P ∈ Cd , then rank P � d. On the other hand, if the behavior
is quantum, Eq. (3) tells us that its entries are given by the
Hilbert-Schmidt inner product of pairs of Hermitian matrices
of size d × d. This set of matrices forms a subspace that is
isomorphic to Rd2

. Thus, there exists vectors {wx} and {tby}
in this space such that P (b|xy) = wT

x tby . Therefore, we now
have that if P ∈ Qd , then rank P � d2.

Observation 1. If P ∈ Cd , then d � rank P while if P ∈ Qd ,
then d �

√
rank P .

These simple observations generalize the previous afore-
mentioned result of [11] in several ways. First, we do not put
any constraint on the size of the alphabets X and Y . Second,
the estimates are finer since we do not rely on a matrix being
of full rank or not, but the bound is sensitive to the different
possible values of the rank. It should be mentioned that the
result of Bowles et al. based on the W matrix is also obtained
by showing that the entries of this matrix are given by the
inner product of a set of vectors. Thus, rank estimates are
also possible in this case. In more detail, one obtains that
d � rank Wk + 1 if P ∈ Cd and d �

√
rank Wk + 1 if P ∈ Qd .

Hence, it comes as a natural question whether it is better
to use P or W to get the strongest estimate. Notice that, in
the |X | = 2|Y| = 2k setting, the maximal possible rank of P

is k + 1 [this is because several columns are surely linearly
dependent due to the condition

∑
b P (b|xy) = 1 ∀ x,y] while

for W it is obviously k. Thus, in the case of maximal rank both
approaches yield equal estimates. In the Appendix, we show
that rank W � rank P . Thus, this suggests that it is generally
better to use P . In fact, it can only be worse in cases for which
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rank W = rank P . However, this can only lead to a difference
of 1 in the estimate (and not always in the quantum case since
it holds for many natural numbers n that �√n + 1� = �√n�).

It is worth mentioning that stronger bounds on d can
be placed by using generalizations of the rank [17]. Recent
literature has established an intimate relation between the
non-negative rank and the classical dimension and the positive-
semidefinite rank and the quantum dimension in similar
scenarios [17,18]. It is immediately apparent that the non-
negative rank of P and the positive-semidefinite rank of P

are lower bounds for d in the classical and quantum case,
respectively, in the scenario considered here. Reference [13]
also offers related strategies to bound the dimension. However,
we stick here to the weaker rank estimates because they seem
much easier to use. In fact, we do not know efficient algorithms
to compute these other notions of the rank [17,19].

B. Behaviors more expensive quantumly than classically
together with shared randomness

In this subsection, we will show that C ′
d � Qd with an

arbitrary separation: there exist behaviors requiring a constant
amount of classical communication together with shared
randomness (actually just one bit) while the necessary quantum
communication increases at least as

√|Y|. In more detail,
we will consider general scenarios such that |Y| = k and
|X | = m � k + 1 (this condition is only to make it possible
that the matrices of behaviors can have the largest possible
rank, k + 1) and we will construct behaviors Pk for any natural
k that they all belong to C ′

2 but cannot belong to Q
√k�. The
idea is to mix a sufficient number of behaviors in C2 such that
the corresponding matrix Pk has its rank as large as possible
so that Observation 1 leads us to conclude that d �

√
k + 1 in

order for Pk ∈ Qd to hold.
An example of such a construction goes as follows. Here

and throughout this paper, we will denote by e
(n)
i the vector

of Rn that has zeros everywhere except a 1 in the ith entry.
Consider the behavior D1 in the aforementioned setting whose
m × 2k matrix is given by (to ease the notation we drop the
dependence on k)

D1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
e

(2)
2

)T (
e

(2)
1

)T · · · (
e

(2)
1

)T(
e

(2)
1

)T (
e

(2)
1

)T · · · (
e

(2)
1

)T

...
...

. . .
...(

e
(2)
1

)T (
e

(2)
1

)T · · · (
e

(2)
1

)T(
e

(2)
1

)T (
e

(2)
1

)T · · · (
e

(2)
1

)T

...
...

...
...(

e
(2)
1

)T (
e

(2)
1

)T · · · (
e

(2)
1

)T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

0
1
...
1

⎞
⎟⎟⎠[(

e
(2)
1

)T · · · (
e

(2)
1

)T
]

+ e
(m)
1

[(
e

(2)
2

)T (
e

(2)
1

)T · · · (
e

(2)
1

)T
]
. (8)

The second way to write D1 shows clearly that D1 ∈ C2:
B outputs all the time b = 0 except maybe when y = 1

depending on the bit sent by A, her action relying on whether
she gets the input x = 1 or any other. We can similarly define
the behaviors Di (i = 1, . . . ,k) whose matrices are all made
by 1 × 2 blocks given by (e(2)

1 )T except at the position (i,i)
where it is given by (e(2)

2 )T . By the same arguments as above,
we have that Di ∈ C2 ∀ i. It is easy to see that any nontrivial
mixture of all these behaviors has maximal rank. Taking, for
instance,

Pk =
k∑

i=1

1

k
Di , (9)

we find that

Pk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cT
k

(
e

(2)
1

)T · · · (
e

(2)
1

)T(
e

(2)
1

)T
cT
k · · · (

e
(2)
1

)T

...
...

. . .
...(

e
(2)
1

)T (
e

(2)
1

)T · · · cT
k(

e
(2)
1

)T (
e

(2)
1

)T · · · (
e

(2)
1

)T

...
...

...
...(

e
(2)
1

)T (
e

(2)
1

)T · · · (
e

(2)
1

)T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

where

cT
k = (1 − 1/k 1/k). (11)

Now, one can see that Pk has the largest possible rank, i.e.,
rank Pk = k + 1. This is because, on the one hand, all even
columns are clearly linearly independent, i.e., col2j (Pk) =
e

(m)
j /k for j = 1,2, . . . ,k. On the other hand, if we add to this

set any other odd column, the set remains linearly independent
because this column has nonzero entries where all the others
have a zero entry [from the (k + 1)th entry to the mth]. Thus,
using Observation 1, we finally obtain that if Pk ∈ Qd it must
hold that d �

√
k + 1 while, by construction, Pk ∈ C ′

2 ∀ k.
In passing, since obviously Pk ∈ Q′

2 ∀ k, this also shows the
nonconvexity of Qd (see also [9] and [13]).

C. Behaviors cheaper quantumly than classically together
with shared randomness

The results of [11] discussed before show that there is a
quadratic gap between C and Q. Interestingly, this gap can be
seen to be exponential and extended to C ′. Testing classical and
quantum dimensions in the prepare-and-measure scenario, is
intimately connected to the field of communication complexity
when restricted to the scenario of one-way communication
complexity. In fact, this setting is the same, with the only
difference being that it is task-oriented. In this case, under the
same restrictions, A and B now have the goal of evaluating
with high probability of success a binary function f of their
inputs that is known to both of them. That is, their strategies
should aim at preparing behaviors P (b|xy) for which the result
b = f (x,y) is much more likely than b �= f (x,y). The field of
communication complexity studies what is the least amount of
communication (from A to B in the one-way case) necessary
to evaluate different functions. The possible benefits of using
quantum communication over classical communication have
been studied extensively in recent years, and there are several
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scenarios for which it is known that certain functions can
be evaluated with a given probability of success requiring
exponentially less communication in the quantum case than
in the case of classical messages [4]. Interestingly, the one-
way scenario is not an exception, and Refs. [20,21] provide
instances of this situation for the case of partial functions. In
more detail, [21] considers a function, fP , for which A receives
an n-bit string x (i.e., |X | = 2n) and B an n × n permutation
matrix M (i.e., |Y| = n!). The goal is to output 1 if Mx = x

and 0 if Mx and x are sufficiently different (in a precise
way that is irrelevant here). This is an example of a partial
function or a function with a promise; A and B are guaranteed
to receive a strict subset of the inputs x and y (those for which
any of the above conditions hold). In [21], it is shown that a
quantum strategy solves this function using O(log n) qubits of
communication [i.e., d = O(n)] while there cannot exist any
classical strategy solving fP using less than of the order of
n7/16 bits. This immediately implies that Qd � C ′

d . To see this,
consider any behavior corresponding to the aforementioned
quantum strategies that solve fP . It must then be that Pn ∈ Qd

for some d = O(n). However, it cannot be that Pn ∈ C ′
d as

this would be in contradiction to the result of [21]. Indeed,
any behavior in C ′

d cannot have the same entries as Pn over
the subset of promised inputs x and y since it could then be
used to solve fP . Moreover, it must be that Pn ∈ C ′

d ′ with
d ′ scaling at least as 2n7/16

. Interestingly, there is roughly no
difference between Cd and C ′

d for the evaluation of functions.
Newman’s theorem [22] shows in the one-way communication
scenario that classical strategies with shared randomness that
solve some function can be turned into successful strategies
without shared randomness with just a logarithmic overhead.
Thus, if there exists some exponential gap for the solution
of a function with quantum and classical resources, it must
persist if we allow classical resources supplemented with
shared randomness.

In light of the communication complexity, the reader might
wonder whether the results of the previous section show-
ing behaviors that required overwhelmingly more quantum
communication to be prepared than classical communication
together with shared randomness could be used to devise
functions whose solution has a similar gap, i.e., functions
that are at least exponentially cheaper to solve classically
if shared randomness is allowed than quantumly. However,
Newman’s theorem forbids this possibility. With regard to
the evaluation of functions, the differences with and without
shared randomness can be at most logarithmic in the one-way
scenario even if one just uses classical messages.

D. Structure of Cd and Qd and robustness
of dimensionality detection

As discussed in the Introduction, the prepare-and-measure
scenario was introduced to certify the dimension of un-
characterized physical systems in a device-independent way,
i.e., based solely on the observed statistics and without any
assumption on the internal working of the devices used. In
this context, any condition expressed in terms of the observed
behavior that guarantees that A and B exchange physical
systems of at least a certain dimension is usually referred to as a
dimension witness. The rank estimates introduced in Sec. II A

are therefore an example of such an object. In practice, the
measurement device cannot be perfectly isolated from external
noise introducing errors in the experimentally reconstructed
behavior, which can make it less dimensional. The robustness
of a dimension witness characterizes its noise tolerance in
these scenarios and plays a crucial role in dimensionality
certification. Although not strictly necessary, in this setting a
natural assumption is that the preparing and measuring devices
are uncorrelated (i.e., the preparer and the measurer are not
maliciously conspiring to fool the certifier) and, hence, in
this case one takes that shared randomness is not available.
Thus, the problem here boils down to identifying what is
the smallest d such that P ∈ Cd or P ∈ Qd . This was the
motivation of [11] to introduce the dimension witness based
on the determinant of the matrix Wk that we have reviewed
in Sec. II A. It was observed there that these witnesses are
extraordinarily robust tolerating arbitrary amounts of noise. In
this section, we investigate the structure of the sets Cd and
Qd from this point of view, and we find reasons for this
exceptional robustness. Low-dimensional sets are negligibly
small in the set of all possible behaviors: they are nowhere
dense and have measure zero. Hence, very contrived forms of
noise are required to drastically reduce the dimension. This is
in sharp contrast to the case in which shared randomness is
available since, as we also discuss here, the sets C ′

d and Q′
d are

not negligible ∀ d � 2. We finish this section by observing that
rank estimates are also extremely robust under any physically
reasonable form of noise.

Notice that evaluating the rank of a matrix is an ill-
conditioned problem. Due to the estimates presented in
Sec. II A, this indicates that small perturbations of a behavior
could increase considerably the required dimension to pre-
pare it. Furthermore, for general matrices it is well known
that lower-rank matrices are of measure zero and nowhere
dense among matrices of higher rank. This suggests that
lower-dimensional sets of behaviors might be negligible. We
formalize this in the following:

Theorem 1. In every scenario with |Y| = k and |X | = m �
k + 1, the sets Cd with d < k + 1 and Qd with d <

√
k + 1

have measure zero and are nowhere dense in the set of all
possible behaviors Cm = Qm.

Proof. We will show that the set of rank-deficient behaviors
(i.e., rank P < k + 1), which we will denote by S, is of
measure zero and nowhere dense in Cm = Qm. Since in the
classical case we have seen that rank P � d, when d < k + 1
we have that Cd ⊂ S and the result follows. The same applies
to the quantum case. The proof of the claim for rank-deficient
behaviors follows basically in a straightforward manner the
analogous case for general matrices.

Let us first show that S has measure zero. Notice that the
set of behaviors is a subset of Rkm determined by specifying
an arbitrary collection of values 0 � P (0|xy) � 1 ∀ x,y and it
has nonzero Lebesgue measure. When P ∈ S, this additionally
imposes that the determinants of certain square submatrices
vanish, which is a polynomial in the matrix entries, i.e., in the
{P (0|xy)}. However, the zero set of a polynomial must have
measure zero (unless it is the zero polynomial). Hence, S has
Lebesgue measure equal to zero.

Let us now see that S is nowhere dense. For this we have to
see that the closure of S, S, has an empty interior. Since we are
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dealing with finite-dimensional matrices, for these topological
considerations we can take any matrix norm || · ||. First of
all, it is useful to notice that S is closed. This is because S

is characterized by the determinant of all (k + 1) × (k + 1)
submatrices of P being zero. Hence, the set is the preimage
of a closed set under a continuous map (the determinant is a
polynomial of the matrix entries) and it is therefore closed.
Now, since S = S, we just need to check that S has an empty
interior. Clearly, general rank-deficient matrices can always
be approximated by full-rank matrices. It remains to see the
same, being careful that the full-rank approximation can be
chosen to be a behavior as well. For this, take any P ∈ S and
define for any ε ∈ [0,1],

Pε = (1 − ε)P + εQ, (12)

where

Q =
k∑

j=1

e
(m)
j vT

j +
⎛
⎝ m∑

j=k+1

e
(m)
j

⎞
⎠vT

k+1 (13)

with the 2k-dimensional vectors {vj } defined by

v1 =

⎛
⎜⎜⎜⎜⎝

e
(2)
2

e
(2)
1
...

e
(2)
1

⎞
⎟⎟⎟⎟⎠, v2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

e
(2)
1

e
(2)
2

e
(2)
1
...

e
(2)
1

⎞
⎟⎟⎟⎟⎟⎟⎠

, . . . , vk =

⎛
⎜⎜⎜⎜⎝

e
(2)
1

...
e

(2)
1

e
(2)
2

⎞
⎟⎟⎟⎟⎠, vk+1 =

⎛
⎜⎜⎜⎜⎝

e
(2)
1
...

e
(2)
1

e
(2)
1

⎞
⎟⎟⎟⎟⎠.

(14)

Notice that Q is a valid behavior and therefore so is Pε ∀ ε. It is
important to notice that the {vj } are linearly independent (LI)
vectors. That the first k of them are LI is clear because each of
them has a nonzero entry where all the others are zero. To see
that adding vk+1 to the set keeps it LI, we notice the following.
This vector has its second entry equal to zero, which is the case
for all of the others except v1. Thus if vk+1 could be obtained as
a linear combination of the other vectors, the weight of v1 has
to be zero. Iterating this argument for all even entries of vk+1,
we obtain the claim. Now, because P and Q are behaviors and
the {vj } are non-negative vectors, we have that Pvj and Qvj

are non-negative vectors too ∀ j . Moreover, by construction
Qvj �= 0 ∀ j and, therefore, Pεvj �= 0 ∀ j and all ε > 0. Since
the {vj } are LI, this implies that dim ker Pε � k − 1 and, hence,
given that the dimension of the kernel and the rank must add
up to the number of columns 2k, rank Pε = k + 1 ∀ ε > 0,
i.e., Pε /∈ S ∀ ε > 0. Thus, we finally see that ∀ δ > 0 and
∀ P ∈ S, ∃P ′ /∈ S such that ||P − P ′|| < δ (for this it suffices
to take P ′ = Pε with ε sufficiently small). Hence, S does not
contain any nonempty open set, i.e., it has an empty interior,
as we wanted to prove [23]. �

Thus, the sets Cd with d < k + 1 and Qd with d <
√

k + 1
are negligibly small and Cm\Cd and Qm\Qd have full measure
and a dense interior. It might be that the conditions d < k + 1
and d <

√
k + 1 are an artifact of the proof due to the rank

estimates and that the above claim can be extended to larger
values of d < m. Moreover, it could be that Cd−1 (Qd−1) has
zero measure and is nowhere dense in Cd (Qd ) for all d such
that 2 � d � m.

The result of Theorem 1 is in sharp contrast to the case
when shared randomness is available. The sets C ′

d and Q′
d are

not negligible in the set of all possible behaviors ∀ d � 2, as
we show below. Thus, this negligibility property provides a
crucial difference for DIDW in the presence (or lack thereof)
of shared randomness.

Proposition 1. In every scenario with |Y| = k and |X | =
m � k + 1, the sets C ′

d and Q′
d ∀ d � 2 have nonzero measure

and are not nowhere dense in the set of all possible behaviors
Cm = Qm.

Proof. First of all, notice that C ′
2 ⊂ C ′

d (d > 2) and C ′
2 ⊂ Q′

d

(d � 2). Hence, it suffices to prove the claim for C ′
2. Notice,

moreover, that both C ′
2 and Cm are (convex) polytopes [8]. We

have discussed in the proof of Theorem 1 that dim Cm = km.
Therefore, one only needs to see that dim C ′

2 = km too. For
this, we have to find km + 1 points in C ′

2 that are affinely
independent. We give such a construction in the following.
Notice that, as in Eq. (8), behaviors whose matrix has all rows
except one equal are in C2 ⊂ C ′

2. In analogy with Eq. (8), we
denote then by {Dij } (1 � i � m, 1 � j � k) the behaviors
whose m × 2k matrices have 1 × 2 blocks equal to (e(2)

1 )T ,
except for the block at position (i,j ), which is equal to (e(2)

2 )T .
We will also consider the behavior D0, whose matrix has all
blocks equal to (e(2)

1 )T . Arguing in a similar manner as with the
set of vectors of Eq. (14), it is easy to see that the km + 1 points
{D0,Dij } (which all happen to be vertices of the polytope C ′

2)
are LI and, hence, affinely independent. �

Theorem 1 should not be interpreted as a physical impos-
sibility of preparing low-dimensional behaviors. If the setting
limits the amount of communication A can send to B, we are
bound to observe such a low-dimensional behavior. What we
learn from it is that if the underlying dimension is sufficiently
large, and B’s measurements are subject to noise, it must
have a very particular form in order to drastically reduce the
dimension of the observed behavior. Actually, for any behavior
P one can see that under any physically reasonable form of
noise Pn, the observed behavior,

Pη = ηP + (1 − η)Pn (η ∈ [0,1]), (15)

maintains the rank ∀ η > 0. That is, rank Pη = rank P ∀ η > 0
and the rank estimates are completely robust against noise.
Thus, if P can be certified to have dimension d � k + 1 in the
classical case (or d �

√
k + 1 in the quantum case) by means

of its rank, this will not change for its noisy version (unless in
the extremal case of full noise η = 0).

We finish this section by proving the above claim that
rank Pη = rank P ∀ η > 0. First we need to discuss what
Pn can be. The most reasonable and general form for the
noise is that it is independent of A’s input, i.e., Pn(b|xy) =
Pn(b|y) ∀ b,x,y. This is because the errors only occur in the
measurement process carried out by B, and A has no control
over it to affect the encoding of her message. Thus, Pn = 1vT ,
where 1 is a column vector inR|X | with all entries equal to 1 and
v = ∑

b,y Pn(b|y)|yb〉. This implies that the noisy behavior
Pη is given by a rank-1 perturbation to P . This means that the
rank of P and Pη can at most differ by 1. However, we will see
now that they are actually equal (as long as η �= 0). Since the
image of Pn is spanned by 1, rank Pη = rank P − 1 can only
hold if there exists some vector u such that Pu ∝ 1 in such
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a way that Pηu = 0. Clearly, this vector must be of the form
u = α1 + w, where α ∈ R and w ∈ ker P because P 1 = |Y|1
for any behavior. However, since we also have that Pη1 = |Y|1,
if it is possible to have a vector in the kernel of Pη that is
not in the kernel of P , Pηu = [α|Y| + (1 − η)(vT w)]1 = 0,
it must be such that vT w �= 0. In this case, we then have
that Pηw �= 0, that is, we can also find a vector such that it
is in the kernel of P but not in that of Pη. This shows that
rank Pη �= rank P − 1 when η �= 0. A similar argument shows
that rank P �= rank Pη − 1 when η �= 0. Hence, we obtain the
desired result.

III. BELL SCENARIOS

The first scheme [5] that was proposed to test in a device-
independent way the dimension of a quantum system used the
Bell scenario of quantum nonlocality [24]. In this setting, we
also have two parties A and B, but they cannot communicate
in this case. However, both A and B perform measurements
dependent, respectively, on some inputs x and y on a bipartite
quantum state ρ they share. Each measurement leads to outputs
a and b for A and B, respectively. This scenario can also
be catalogued according to the (finite) size of the input and
output alphabets X , Y , A, and B. In the following, we will
consider that |X | = |Y| = m and |A| = |B| = n, and we will
refer to (m,n) scenarios. Similarly to the prepare-and-measure
setting, the object to which we have access to here is the
set of conditional probabilities of obtaining the outputs (a,b)
given the choice of inputs (x,y), P (ab|xy). We will use
again the term behavior to refer to this collection of numbers.
Obviously, it must hold that P (ab|xy) � 0 ∀ a,b,x,y and∑

a,b P (ab|xy) = 1 ∀ x,y. All behaviors attainable classically
(together with shared randomness) satisfy

P (ab|xy) =
∑

λ

pλP
A
λ (a|x)P B

λ (b|y) ∀ a,b,x,y (16)

for some convex weights {pλ} and sets of conditional probabili-
ties {P A

λ } and {P B
λ }. Alternatively, the set of all such behaviors,

the so-called local set L, can be characterized to be the
convex hull of all local deterministic behaviors (LDBs). The
LDBs correspond to all possible deterministic uncorrelated
behaviors, i.e., to those of the form D(ab|xy) = δa,f (x)δb,g(y),
where f is any function mapping elements of X to A and
similarly for g. That is, for every party a unique output occurs
with probability 1 for every choice of input. Given a scenario,
there is a finite number (actually n2m) of possible LDBs, and
hence L is a polytope. We will denote by Q here the set of all
behaviors that can be obtained by performing measurements
on bipartite quantum states ρAB , i.e.,

P (ab|xy) = tr
(
ρABEx

a ⊗ F
y

b

)
(17)

for some positive-semidefinite operators {Ex
a ,F

y

b } such that∑
a Ex

a and
∑

b F
y

b equal the identity in each party’s Hilbert
space ∀ x,y. The celebrated conclusion of Bell’s theorem is
that L � Q.

For a fixed (m,n) setting, one can now define Qd here as
the set of all behaviors in Q that are obtainable by a quantum
state such that minX=A,B(dim supp ρX) � d, i.e., all behaviors
obtainable by measuring quantum states of minimum local
dimension at most d. As discussed in the Introduction, the

characterization of these sets has raised a considerable amount
of attention from the point of view of both dimensionality cer-
tification and semi-device-independent quantum information
protocols. It is interesting to notice that, when the dimension
of the physical system is not restricted, shared randomness is
not a resource. Its availability is irrelevant when it comes to
which behaviors can be observed with quantum preparations
because Q = Q∞ is a convex set [24]. However, this is not the
case when the physical dimension of the underlying system
plays a role. If shared randomness is freely available, this
leads us to consider the sets Conv(Qd ). Thus, it is interesting
to explore the differences given by whether this resource is
available or not and, in particular, whether Qd �= Conv(Qd )
in general. In fact, it is easy to see that Q1 is nonconvex in
every scenario [15]. By definition, this set can only include
uncorrelated behaviors. However, the convex hull of all LDBs
gives rise to the full local polytope L, and it is well known that
this set includes correlated behaviors. Reference [14] was the
first to observe that the sets Qd need not be convex in general.
In more detail, it is shown therein that in the scenarios (m,2)
with m even, every setQd such that d <

√
m + 1 is nonconvex.

In particular, this implies that Q2 is nonconvex already in the
reasonably simple scenario (4,2). This was observed to be the
case in [15] even in the simplest possible scenario (2,2) [25].
In the following, we prove the nonconvexity properties of the
sets Qd in the general scenario (m,n). In analogy with Sec. II,
we will finish this section by proving that the sets Qd are
negligible in Q when the dimension is sufficiently small, a
property that is not true for Conv(Qd ).

A. Dimension estimates

To prove the nonconvexity and negligibility of Qd in (m,n)
scenarios, we first derive dimension estimates. In analogy with
the previous section, and adapting the techniques of [14],
we will obtain lower bounds on the quantum dimension in
terms of the rank of some matrix associated with the behavior.
More explicitly, for every (m,n) scenario we will arrange every
behavior P to form the mn × mn real matrix,

P =
∑
abxy

P (ab|xy)|xa〉〈yb|, (18)

where in the standard notation of quantum mechanics
|xa〉 = |x〉 ⊗ |a〉 and {|x〉} denotes the computational basis
of Rm and similarly for the other alphabet elements. Thus, P

can be partitioned as a block matrix,

P =

⎛
⎜⎝

P11 · · · P1m

...
. . .

...
Pm1 · · · Pmm

⎞
⎟⎠ ∈ Rmn×mn

with blocks

Pxy =

⎛
⎜⎝

P (11|xy) · · · P (1n|xy)
...

. . .
...

P (n1|xy) · · · P (nn|xy)

⎞
⎟⎠ ∈ Rn×n.

It will be relevant in the next subsection to note that the
matrix associated with LDBs D(ab|xy) = δa,f (x)δb,g(y) is of
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rank 1, i.e.,

D =
(∑

ax

δa,f (x)|xa〉
)⎛

⎝∑
by

δb,g(y)〈yb|
⎞
⎠

=
(∑

x

|xf (x)〉
)(∑

y

〈yg(y)|
)

. (19)

Suppose now that P ∈ Qd and that the optimal quantum
state is such that d = dim supp ρA. This means that the
operators {Ex

a } act on Cd . Since they are Hermitian, they
must then belong to a real vector space of dimension d2 and,
thus, at most d2 of them can be linearly independent. In other
words, we can express all the {Ex

a } as real linear combinations
of a fixed set of d2 Hermitian operators [e.g., the identity
and the generators of SU(d)]. By linearity of the trace, this
means that there are at most d2 linearly independent rows in
the matrix P and hence rank P � d2. If it was the case that
d = dim supp ρB , then we can make the same reasoning with
the operators {Fy

b } and the columns of P , arriving again at the
same conclusion that d �

√
rank P .

Observation 2. If P ∈ Qd , then d �
√

rank P .
It is important to notice for the following that the largest

rank a matrix of a behavior can attain is mn − m + 1. This
is because quantum behaviors must obey the no-signaling
constraints∑

b

P (ab|xy) =
∑

b

P (ab|xy ′), ∀ a,x,y,y ′,

∑
a

P (ab|xy) =
∑

a

P (ab|x ′y), ∀ b,x,x ′,y. (20)

The set of all behaviors fulfilling these conditions will be
denoted by NS, which is also a polytope.

It should be mentioned that [12] already provides the means
to obtain lower bounds for the dimension and, actually, one
can also use for these matters the positive-semidefinite rank of
P . However, as in the previous section, although weaker, rank
estimates turn out to be more easily applied.

B. Nonconvexity of Qd

To prove the nonconvexity of Qd , we will use the following
strategy. We will construct a local behavior L such that L has
the largest possible rank mn − m + 1. Through Observation
2 this implies that L /∈ Qd if d <

√
rank L. However, since

all local behaviors can be written as a convex combination
of LDBs, it must hold that L ∈ Conv(Q1) ⊂ Conv(Qd ) ∀ d.
Thus, for sufficiently small values of d, Qd cannot be convex.

Lemma 1. In every (m,n) scenario there exists L ∈ L such
that rank L = mn − m + 1.

Proof. Consider the set of n − 1 vectors of size mn given
by (we use here the same notation for the {e(n)

i } as in Sec. II)

v
(1)
i =

⎛
⎜⎜⎜⎜⎝

e
(n)
i

e
(n)
1
...

e
(n)
1

⎞
⎟⎟⎟⎟⎠, i = 2,3, . . . ,n. (21)

We will also consider similar sets of the same cardinality,

{
v

(2)
i

} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

e
(n)
1

e
(n)
i

e
(n)
1
...

e
(n)
1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, . . . ,
{
v

(m)
i

} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

e
(n)
1
...

e
(n)
1

e
(n)
i

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (22)

Notice now that the set {v(j )
i } (i = 2, . . . ,n, j = 1, . . . ,m)

contains mn − m LI vectors. This can be seen by noticing that
each vector has a nonzero entry where all the others are zero.
Notice, moreover, that if we add the vector

v(0) =

⎛
⎜⎜⎜⎜⎝

e
(n)
1

e
(n)
1
...

e
(n)
1

⎞
⎟⎟⎟⎟⎠ (23)

to this set, the vectors are still LI [cf. the reasoning after
Eq. (14)]. Finally, notice that the matrices

L0 = v(0)(v(0))T
, {Lij } = {

v
(j )
i

(
v

(j )
i

)T }
(24)

clearly correspond to LDBs in the (m,n) scenario. Hence, the
matrix

L = 1

mn − m + 1

⎛
⎝L0 +

∑
ij

Lij

⎞
⎠ (25)

corresponds to a local behavior and has the desired property
that rank L = mn − m + 1. This is because by construction
Lv(0) �= 0 and Lv

(j )
i �= 0 ∀ i,j and thus dim ker L � m − 1,

which leads to the claim using that rank L + dim ker L = mn.
To see that indeed none of the above vectors is in the kernel of
L, notice that L0v

(0) = mv(0) while Lijv
(0) is a non-negative

vector ∀ i,j and similarly for the {v(j )
i }. �

This shows that L /∈ Qd for d <
√

mn − m + 1 and as
discussed above we obtain the following corollary.

Corollary 1. Every set Qd in an (m,n) scenario such that
d <

√
mn − m + 1 is not convex.

Notice that in the case n = 2, we recover the result of [14]
that allowed us to verify the nonconvexity of Q2 in the
scenario (4,2). With our result, the simplest scenario for
which we can see that Q2 is not convex is (2,3). However,
as mentioned before, Q2 is known to be nonconvex in the
simplest possible scenario (2,2). Since the maximal rank of
the matrix of a behavior is mn − m + 1, Corollary 1 cannot be
further improved using our techniques. Thus, more powerful
constraints could be established in principle going beyond the
estimates based on the rank.

Lemma 1 has also a similar interpretation to the result of
Sec. II B in the prepare-and-measure scenario. If A and B

are bound to local preparations but have access to shared
randomness, they can obtain behaviors that, in order to be
accessible quantumly without this resource, need an arbitrarily
large dimension as the number of inputs and/or outputs grows.
An analogous result to that of Sec. II C is also obviously true
by Bell’s theorem. There are behaviors observable quantumly
without shared randomness (even with the smallest possible
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dimension d = 2) that cannot be attained by local strategies
no matter how much access to this resource they have.

C. Negligibility of low-dimensional sets

As in the prepare-and-measure scenario, one can show as
well that a significant difference between the availability (or
lack thereof) of shared randomness is that in the latter case the
sets of low-dimensional behaviors are negligible in the set of
all quantum behaviors.

Theorem 2. Every set Qd in an (m,n) scenario such that
d <

√
mn − m + 1 is of measure zero and nowhere dense in

the full set of quantum behaviors Q.
Proof. The proof is given in two parts. We first show that

with the given premise Qd is of measure zero and nowhere
dense in NS . We then show that this implies the claim.

The first part follows closely the proof of Theorem 1 and
we will only outline it. Similarly, we consider the set S of rank-
deficient no-signaling behaviors (i.e., rank P < mn − m + 1)
and prove the claim for this set, which is extended to Qd

with d <
√

mn − m + 1 because Qd ⊂ S. The no-signaling
set NS is a polytope in Rt with [26]

t = m2(n − 1)2 + 2m(n − 1). (26)

For behaviors in S, some polynomials of the t variables must
additionally vanish, and S has measure zero in NS . To see
that S is nowhere dense in NS, one should follow the same
argumentation as before replacing Pε in Eq. (12) by

Pε = (1 − ε)P + εL, (27)

where L is given by Eq. (25).
We finish by showing that Qd (d <

√
mn − m + 1) having

zero measure and being nowhere dense inNS implies the same
negligibility properties inside Q. Since the local polytope L
has the same dimension (t) as NS [26] and L ⊂ Q ⊂ NS ,
we have that Q is not of measure zero in NS [27]. Hence Qd

has measure zero in Q as well. Regarding nowhere density, we
use again that Q is full dimensional together with the fact that
it is a convex set. Corollary 6.4.1 in [28] tells us then that for

every P in the interior of Q,
◦
Q, we have that

∃ε > 0 such that ||P − P ′|| < ε =⇒ P ′ ∈ Q. (28)

Let us proceed by contradiction and assume that Qd is not
nowhere dense in Q. Then, there would exist a P ∈ Qd and
δ > 0 such that ||P − P ′|| < δ and P ′ ∈ Q implies that P ′ ∈
Qd . By definition, such P must belong to

◦
Qd and since Qd ⊂

Q, it holds then that
◦
Qd ⊂

◦
Q = ◦

Q, where the equality follows
from the convexity of Q (cf. Theorem 6.3 in [28]). Thus, by
condition (28) we can drop the assumption P ′ ∈ Q if we take
min{ε,δ}, i.e.,

||P − P ′|| < min{ε,δ} =⇒ P ′ ∈ Qd . (29)

This means that Qd is not nowhere dense in NS and we have
reached a contradiction [29]. �

Theorem 2 tells us that in such simple scenarios as (4,2) or
(2,3) it is not only not enough to consider quantum systems
with d = 2 to reproduce all quantum behaviors but that this is
almost never the case.

This negligibility property is again in sharp contrast to the
case in which the devices of the parties can be correlated.
When shared randomness is granted to the parties, we have
that L ⊂ Conv(Qd ) ∀ d. Since, as we have already used in
the proof of Theorem 2, dimL = dimQ = dimNS, the sets
Conv(Qd ) have nonzero measure and are not nowhere dense
in Q ∀d.

Looking at Theorem 2, it comes as a natural question
whether the bound d <

√
mn − m + 1 is optimal for the

negligibility property to hold. Although we cannot answer
this question completely, the above observation allows us to
establish a lower bound on d for which negligibility does not
hold anymore in every scenario [30].

Proposition 2. Every set Qd in an (m,n) scenario such that
d � m2(n − 1)2 + 2m(n − 1) + 1 has nonzero measure and is
not nowhere dense in the full set of quantum behaviors Q.

Proof. We first notice that if P ∈ Qd and P′ ∈ Qd ′ , then
Pλ = λP + (1 − λ)P′ ∈ Qd+d ′ ∀ λ ∈ (0,1). This is a well-
known argument that is used to show that Q is convex. Indeed,
if

P (ab|xy) = tr
(
ρEx

a ⊗ F
y

b

)
,

P ′(ab|xy) = tr
[
ρ ′(E′)xa ⊗ (F ′)yb

]
, (30)

then

Pλ(ab|xy) = tr
{
[λρ ⊕ (1 − λ)ρ ′]Ex

a ⊗ Fy

b

}
(31)

with Ex
a = Ex

a ⊕ (E′)xa ∀ a,x and Fy

b = F
y

b ⊕ (F ′)yb ∀ b,y.
On the other hand, Carathéodory’s theorem [28] tells us

that ∀ P ∈ L = Conv(Q1) we have the convex combination

P =
t+1∑
i=1

λiPi, Pi ∈ Q1 ∀ i, (32)

where we are using that dimL = t [cf. Eq. (26)]. This means
that Conv(Q1) ⊂ Qt+1, and since Conv(Q1) is not of measure
zero nor nowhere dense, we obtain the claim. �

As in the prepare-and-measure scenario, Theorem 2 also
implies an exceptional robustness in the presence of noise for
DIDW when shared randomness is not available. Notice that in
this case it is natural to assume that the noisy behavior Pη [cf.
Eq. (15)] is subjected to uncorrelated noise, i.e., Pn(ab|xy) =
PA(a|x)PB(b|y) ∀ a,b,x,y, since this affects independently
the devices held by A and B. Therefore, the noise induces
again a rank-1 perturbation and we have that rank P − 1 �
rank Pη � rank P + 1 ∀ η > 0.

IV. CONCLUSIONS

The task of DIDW has been receiving a lot of attention in
recent years. It enables experiments to certify the underlying
dimension of an uncharacterized physical system, and it
provides a framework for semi-device-independent quantum
information processing. The most common scenarios for
DIDW involve different parties interacting with the physical
system: the so-called prepare-and-measure and Bell scenarios.
Depending on the context, it might or might not be the
case that the parties are provided with an extra resource,
shared randomness, that allows to correlate the different
devices the parties hold. In this work, we have explored the
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differences that may arise for the task of DIDW in these
two possible settings. We have seen that shared randomness
is indeed a powerful resource: certain behaviors that can be
obtained by sending just one classical bit (when the devices
are correlated) need quantum systems of arbitrarily large
dimension in the absence of shared randomness (the necessary
quantum dimension grows with the number of possible inputs
while the classical dimension remains 2). On the other hand,
quantumness is also more powerful than classical systems
even if the latter have access to shared randomness. There
are behaviors that require an exponentially larger classical
dimension, even though in the quantum setting the devices
are not correlated. We have also shown that one of the main
differences given by the availability (or lack thereof) of this
resource is not only the lack of convexity of the corresponding
sets of probability distributions, but the fact that for sufficiently
small dimensions these sets are negligibly small (of measure
zero and nowhere dense in the set of all possible distributions)
if shared randomness is not granted. These results are obtained
using very simple estimates for the dimension based on the
rank of a matrix. In the future, it would be interesting to study
whether the bounds on the dimension as a function of the
number of possible inputs provided here for the sets to be
nonconvex or negligible in both the prepare-and-measure and
Bell scenarios can be improved by using more sophisticated

tools. The results of [12,13] and the notions of non-negative
and positive semidefinite rank might be helpful in this task.
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APPENDIX: RELATION BETWEEN THE RANKS
OF W AND P

Taking the matrices defined in Sec. II A, here we prove
that rank W � rank P . To transform P into W , we have to
subtract from every odd row i its subsequent row i + 1. This
is a so-called elementary row operation, and it can be achieved
by multiplying P from the left with the matrix Ei , which is like
the identity with the difference being that the entry (i,i + 1)
should be equal to −1. Since the matrices {Ei} are all full-rank,
the matrix

∏
i odd EiP has the same rank as P . To obtain W ,

it just remains to delete all even rows and columns, a process
that certainly cannot increase the rank. Thus, we obtain the
desired result.
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011011 (2014); M. Navascués and T. Vértesi, Phys. Rev. Lett.
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