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Difficulty of distinguishing product states locally
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Nonlocality without entanglement is a rather counterintuitive phenomenon in which information may be
encoded entirely in product (unentangled) states of composite quantum systems in such a way that local
measurement of the subsystems is not enough for optimal decoding. For simple examples of pure product
states, the gap in performance is known to be rather small when arbitrary local strategies are allowed. Here we
restrict to local strategies readily achievable with current technology: those requiring neither a quantum memory
nor joint operations. We show that even for measurements on pure product states, there can be a large gap between
such strategies and theoretically optimal performance. Thus, even in the absence of entanglement, physically
realizable local strategies can be far from optimal for extracting quantum information.
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A composite quantum system is more than the sum of its
parts; it can have properties that cannot be explained as a
result of properties of its constituent particles. This may be
thought of as a result of the superposition principle and has
far-reaching consequences, giving quantum theory a far richer
structure than classical probability theory. Indeed, entangled
states, characterized by correlations between particles rather
than local properties of constituent particles, famously exhibit
correlations that cannot be reproduced by any local classical
theory [1]. In addition, there exist properties of composite
systems that are not accessible through only local measure-
ment of the subsystems: for example, a measurement which
distinguishes between the j = 0 and j = 1 subspaces of a
two spin-half system cannot be performed through only local
measurements on the spins.

In contrast to classical probability theory, therefore, lo-
cal measurements together with postprocessing of measure-
ment results is not enough to perform all measurements
allowed by quantum theory. In fact, due to the existence
of incompatible observables, even classical communication
between subsystems (allowing the choice of measurement on
one system to depend on the outcome of measurement on
the other) gives the measuring parties new capabilities. In
general, one-way classical communication, two-way classical
communication, and quantum communication (the ability
to send quantum states) are each more powerful than the
last [2–27]. Remarkably, this is true even for measurements
on unentangled states, a phenomenon known as “nonlocality
without entanglement” [2–5]. In practical terms, however, for
measurements on product states, the known bounds on the
gaps in performance are really rather small [4,5].

In this paper, we introduce another piece of the puzzle
in the local detection of quantum information and show that
two-way classical communication can significantly improve
the distinguishability of pure, orthonormal product states.
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Such sets of states have two important features: they can
be prepared in separated laboratories without either classi-
cal or quantum communication between labs and they are
perfectly distinguishable through a joint measurement. We
derive optimal one-way strategies for two examples of such
sets, one of which may be perfectly discriminated with only
two rounds of classical communication, while the other, the
so-called domino states, requires quantum communication for
perfect discrimination. We show that any one-way scheme
succeeds with probability of at most �85% and �84%, respec-
tively, a significant deficit compared to the globally optimal
schemes.

Physically, current experimental capabilities are such that
sequential measurement (i.e., one-way) strategies may be
readily implemented in a variety of physical systems. Ad-
ditional rounds of measurement and classical communication
are more technologically challenging; they not only introduce
additional errors and inefficiencies, but also require some sort
of quantum memory in which to store the local systems in
a many-round protocol. Our examples demonstrate that even
for the simplest cases of discriminating pure, orthonormal,
unentangled states, quantum memories or joint control can be
necessary for optimal or even close-to-optimal performance.

We begin with a simple example, first considered by Gro-
isman and Vaidman [9], which demonstrates the asymmetry
of classical communication as a resource for performing joint
measurements and serves to illustrate some features of optimal
measurement strategies that we will need later. Consider the
product basis of two-qubit states,

|ψ00〉 = |0〉A ⊗ |0〉B, |ψ10〉 = |1〉A ⊗ |0 + 1〉B,
(1)

|ψ01〉 = |0〉A ⊗ |1〉B, |ψ11〉 = |1〉A ⊗ |0 − 1〉B,

where {|0〉,|1〉} form an orthonormal basis, by convention
the eigenbasis of the Pauli operator σz, and |0 ± 1〉 =

1√
2
(|0〉 ± |1〉) are the eigenstates of σx . Clearly, the states

are perfectly distinguishable given one-way communication
from Alice to Bob, but not the other way around: if Alice
can send a message to Bob, she simply needs to measure in
the {|0〉,|1〉} basis and send the result of her measurement to
Bob. Given result “0,” Bob measures in the {|0〉,|1〉} basis,
while given result “1,” he measures in the {|0 ± 1〉} basis. On
the other hand, if Bob can send messages to Alice but not
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vice versa, there is clearly no procedure that allows Alice and
Bob to perfectly distinguish the states: Bob’s local states are
eigenstates of incompatible observables σz and σx , and any
measurement giving information about one must necessarily
disturb the other, thus destroying the orthogonality of at least
one pair of states.

It is instructive to consider what is the best Alice and Bob
can do if they are limited to communication only from Bob
to Alice. Note that Alice’s system is essentially classical in
that regardless of the information obtained from Bob, the
only sensible measurement she can make is in the z basis,
which allows her to perfectly determine the index i in the
labeling {|ψij 〉}, but gives no information about the index j .
The role of Bob’s measurement therefore is to provide the
information which allows Alice to distinguish between the
states within the pair {|ψi0〉,|ψi1〉} for each possible outcome
i of Alice’s measurement. It follows that Bob’s measurement
must rule out as well as possible one state from each pair,
leaving Alice with two remaining allowed states, which are
perfectly distinguishable through Alice’s measurement. There
are four subsets of two states with the property that the states
are perfectly distinguishable on Alice’s side:

S00 = {|ψ00〉,|ψ10〉}, S01 = {|ψ00〉,|ψ11〉},
S10 = {|ψ01〉,|ψ10〉}, S11 = {|ψ01〉,|ψ11〉}.

Thus, Alice and Bob’s strategy, if classical communication is
allowed from Bob to Alice only, is for Bob’s measurement to
optimally assign the state to one of these subsets, while Alice’s
measurement discriminates between the remaining two states
within a subset.

If the states are equiprobable, the measurement on Bob’s
system maximizing the probability of correctly identifying
the state is, in fact, quite well known, as these states arise
in the BB84 protocol for quantum key distribution [28]. The
index i corresponds to the sender’s choice of basis, while j

denotes the bit value. Naturally enough due to the symmetry
of the set, the optimal measurement is in a basis intermediate
to the x basis and the z basis: the so-called Breidbart basis
[29],

|φ0〉 = cos
π

8
|0〉 + sin

π

8
|1〉,

(2)
|φ1〉 = sin

π

8
|0〉 − cos

π

8
|1〉.

Outcome 0 leads Bob to guess that the state belongs to subset
S00, while outcome 1 leads to a guess of S11. In fact, the
optimal measurement is degenerate: measurement of either of
the spin observables 1√

2
(σz ± σx) results in an optimal strategy.

This succeeds with probability cos2 π
8 = 1

2 (1 + 1√
2
) � 0.85, a

significant deficit compared to the unit probability of success
achievable when one-way communication is allowed from
Alice to Bob [9].

Using this simple set as a building block, we can construct
our first example for which two-way classical communication
provides a significant advantage over one-way classical com-
munication for discriminating unentangled states. Consider the
following orthonormal product basis of a 2 ⊗ 4 level system

(also introduced in [17]):

|ψ00〉 = |0〉A|0〉B, |ψ02〉 = |0 + 1〉A|2〉B,

|ψ01〉 = |0〉A|1〉B, |ψ03〉 = |0 + 1〉A|3〉B,
(3)

|ψ10〉 = |1〉A|0 + 1〉B, |ψ12〉 = |0 − 1〉A|2 + 3〉B,

|ψ11〉 = |1〉A|0 − 1〉B, |ψ13〉 = |0 − 1〉A|2 − 3〉B.

These states are perfectly distinguishable given just two
rounds of classical communication, while any one-way scheme
succeeds with probability at most cos2 π

8 , as we now show.
We first note that Bob can learn in which subspace

{|0〉,|1〉} or {|2〉,|3〉} his state lies without disturbing any of
the states, via a von Neumann measurement with projec-
tors {|0〉〈0| + |1〉〈1|,|2〉〈2| + |3〉〈3|}, thus learning to which
of the two subsets S0 = {|ψ00〉,|ψ01〉,|ψ10〉,|ψ11〉} or S1 =
{|ψ02〉,|ψ03〉,|ψ12〉,|ψ13〉} the shared state belongs. Each subset
is equivalent (up to local unitaries) to the simpler set discussed
above. This observation simplifies the analysis of optimal
schemes.

There are three cases of interest: (i) Two-way classical
communication: Bob measures first and tells Alice to which of
the subsets S0 or S1 the state belongs. Each subset is perfectly
distinguishable with one-way communication from Alice to
Bob, so just one more round of communication is needed
for perfect discrimination. (ii) One-way communication from
Alice to Bob: within each subset, the shared states are perfectly
distinguishable with one-way measurement from Alice to
Bob. However, Alice does not know in which subset the
state lies. Clearly, Alice’s measurement must simultaneously
distinguish, as well as possible, between the states {|0〉,|1〉}
and {|0 + 1〉,|0 − 1〉}. But this is simply the same problem
as we have seen previously and an optimal measurement for
Alice is again in the Breidbart basis Eq. (2). Alice commu-
nicates the result of measurement to Bob; given outcome
0, Bob’s measurement discriminates perfectly between the
states {|0〉,|1〉} and {|2〉,|3〉}, and given outcome 1, he instead
measures in the basis {|0 ± 1〉,|2 ± 3〉}. The combination of
Alice’s and Bob’s measurement results leads to a unique guess
as to the state, which is correct with probability cos2 π

8 . (iii)
One-way communication from Bob to Alice: Bob knows in
which subset S0, S1 the state lies. In each case, as we have
noted, the resulting set is equivalent to our simple example
discussed above, for which the optimal one-way strategy
succeeds with probability cos2 π

8 . Thus, any one-way scheme,
regardless of the direction of communication, succeeds with
probability at most cos2 π

8 � 85%, while two rounds of
classical communication are sufficient to discriminate the
states perfectly.

For our second example, we turn to the domino states [3],
an orthonormal basis of a 3 ⊗ 3 level system given by

|ψ00〉 = |0〉|0 − 1〉,
|ψ10〉 = |1 + 2〉|0〉,
|ψ01〉 = |0〉|0 + 1〉,
|ψ11〉 = |1〉|1〉,
|ψ02〉 = |0 − 1〉|2〉,
|ψ12〉 = |0 + 1〉|2〉,
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FIG. 1. Graphical representation of the domino states.

|ψ20〉 = |1 − 2〉|0〉,
|ψ21〉 = |2〉|1 − 2〉,
|ψ22〉 = |2〉|1 + 2〉. (4)

A useful graphical representation of these states is given in
Fig. 1. This example is of a different flavor from the previous
one, as the states are globally perfectly distinguishable, but
two-way classical communication, even in the limit of infinite
rounds of measurement and communication, is not enough to
perfectly distinguish the states [3]. The known upper bound
on the probability of error of any scheme with two-way
communication, however, is so small as to be negligible for all
practical purposes: 1.9 × 10−8 [4]. We find, by contrast, that
the best one-way strategy has an error of more than 16%.

We begin by simply stating the optimal sequential mea-
surement, which is somewhat intuitive, and give some of the
technical details later. We assume the states are equiprobable,
and we suppose that A is measured first, which due to
the symmetry of the states we can do without any loss of
generality. There are eight subsets of the set of domino states
which are perfectly distinguishable on system B alone; these
are

S0 = {|ψ00〉,|ψ01〉,|ψ02〉}, S4 = {|ψ10〉,|ψ11〉,|ψ02〉},
S1 = {|ψ00〉,|ψ01〉,|ψ12〉}, S5 = {|ψ10〉,|ψ11〉,|ψ12〉},

(5)
S2 = {|ψ10〉,|ψ21〉,|ψ22〉}, S6 = {|ψ20〉,|ψ11〉,|ψ02〉},
S3 = {|ψ20〉,|ψ21〉,|ψ22〉}, S7 = {|ψ20〉,|ψ11〉,|ψ12〉}.

The optimal sequential strategy assigns the state to one of
these subsets in the first step, and perfectly discriminates the
states within the subset in the second step. This succeeds with
probability �83.6%, as we show later.

Proving that this is indeed optimal is less straightforward
than the previous cases. Our strategy is to place an upper
bound on the probability of success of any sequential strategy,
by considering a simpler, related discrimination problem, and
then show that this bound is achievable. Thus, to bound
the probability of success in identifying the state, rather
than trying to discriminate between all nine states, let us

suppose instead that we simply try to determine to which of
the three subsets {|ψ00〉,|ψ01〉,|ψ02〉}, {|ψ10〉,|ψ11〉,|ψ12〉}, or
{|ψ20〉,|ψ21〉,|ψ22〉} the state belongs; that is, with our choice
of labeling |ψjk〉, we try to determine the index j , without
worrying about k. This is equivalent to discriminating between
the equiprobable mixed states,

ρj = 1

3

∑

k

|ψjk〉〈ψjk|. (6)

This problem of subset discrimination is strictly easier than our
original problem: any measurement to discriminate between all
nine domino states may also be used for subset discrimination,
and performs at least as well for this task. Thus the success
probability of the optimal sequential measurement discrimi-
nating the states {ρi} is at least as high as the probability of
success of any sequential measurement discriminating all nine
domino states:

P seq
corr({ψi}) � P seq

corr({ρi}).

Furthermore, this set has the rather nice property that Bob’s
system is essentially classical; his state is always diagonal in
the {|0〉,|1〉,|2〉} basis, and thus regardless of the measurement
on A, the only sensible measurement on B is in this basis.
The role of Alice’s measurement then, as in our first example,
is simply to inform Bob how to interpret his measurement
result. By inspection of the states ρj [Eq. (6)], we see that
if Bob obtains outcome 0, then Alice’s measurement must
discriminate between the orthonormal states {|0〉,|1 + 2〉,|1 −
2〉} to provide Bob with the information required to identify
one of the states {ρ0,ρ1,ρ2}, respectively. Similar observations
for Bob’s outcomes 1 and 2 reveal that the role of Alice’s mea-
surement is to simultaneously distinguish as well as possible
the states within the three bases {|0〉,|1 ± 2〉}, {|0〉,|1〉,|2〉},
and {|0 ± 1〉,|2〉}. There are 27 subsets containing exactly one
state from each basis: Alice’s job is to optimally discriminate
between these subsets. This sounds like a rather daunting
task; however, it turns out, as we discuss below, that the
optimal strategy is one that only ever identifies those subsets
{S0, . . . ,S7} given in Eq. (5).

Thus Alice’s measurement giving the optimal one-way
strategy for this simpler problem is precisely that conjectured
to be optimal for discriminating all nine domino states. This
succeeds with probability 83.6%, which as argued above
is therefore an upper bound on the success probability for
discriminating the domino states with only one-way classical
communication. Further, this bound is achievable via the con-
jectured sequential scheme given above, which we therefore
conclude is an optimal one-way strategy. In the remainder of
the paper, we discuss some of the technical details of the
derivation of Alice’s optimal measurement. We give more
details and an alternative proof elsewhere [30].

Alice wishes to optimally assign the state to one of the
subsets {Si}. She performs a measurement on her system
and, upon obtaining outcome j , takes this to indicate that the
state belongs to the subset Sj . The most general measurement
she can perform on her system is described by a probability
operator measure (POM) [31], also known as a positive
operator-valued measure (POVM) [32], that is a set of positive

012337-3



SARAH CROKE AND STEPHEN M. BARNETT PHYSICAL REVIEW A 95, 012337 (2017)

operators {πj } that form a resolution of the identity

πj � 0,
∑

j

πj = I. (7)

The probability of obtaining outcome j in a measurement
on a system prepared in state ρ is given by the Born rule:
P (j |ρ) = Tr(ρπj ). Thus, the probability that Alice chooses a
subset containing the prepared state is given by

Pcorr =
∑

ij

1

9

∑

k||ψij 〉∈Sk

TrAB(|ψij 〉〈ψij |πk)

= 8

3

∑

k

1

8
TrA(σkπk),

where in the last line we have defined σk =
TrB( 1

3

∑
ij ||ψij 〉∈Sk

|ψij 〉〈ψij |). σk is thus the density operator
obtained by taking an equal mixture of the states in the subset
Sk , traced over Bob’s system. It follows from the above
that {πk} is the optimal measurement to discriminate the
equiprobable states {σk}. Explicitly, the states σk are given by

σ0 = 2
3 |0〉〈0| + 1

3 |0 − 1〉〈0 − 1|,
σ1 = Uσ0U

†, σ2 = V Uσ0U
†V †, σ3 = V σ0V

†,

σ4 = 1
3 |0 − 1〉〈0 − 1| + 1

3 |1〉〈1| + 1
3 |1 + 2〉〈1 + 2|,

σ5 = Uσ4U
†, σ6 = UV σ4V

†U †, σ7 = V σ4V
†,

where we have introduced the unitary operators

U = −|0〉〈0| + |1〉〈1| + |2〉〈2|,
V = |0〉〈2| + |1〉〈1| + |2〉〈0|.

Any measurement {πj } discriminating optimally between the
states {ρj } with priors {pj } satisfies the so-called Helstrom
conditions, which are known to be both necessary and
sufficient [33–36]:

∑

j

pjρjπj − pkρk � 0, (8)

πi(piρi − pjρj )πj = 0. (9)

Denoting � = ∑
i piρiπi , an alternative, equivalent condition,

which is sometimes easier to use in practice, is obtained by
summing over i in Eq. (9), giving

(� − pjρj )πj = 0. (10)

Our strategy to find the optimal probability of success
for Alice’s measurement is to use the Helstrom conditions
constructively to find � = 1

8

∑
i σiπi such that the operators

� − 1
8σj are rank-two positive semidefinite for all j . Thus,

Eq. (8) is satisfied, and choosing πj to be a weighted projector
onto the zero eigenvalue eigenstate of � − 1

8σj ensures that
Eq. (10) is also satisfied. If we can choose the weights
such that the resulting operators πj sum to the identity, we

have succeeded in finding an optimal measurement. This task
is facilitated by noting that the states have rather a lot of
symmetry. It is clear that the set {σk} is invariant under the
action of the two unitary operators U and V . Hence we search
for a measurement {πi} with the same symmetry properties. It
follows that we are searching for an operator � = 1

8

∑
i σiπi

which is invariant under U and V : � = U�U † = V �V †,
which further implies that � is of the form

� = p(|0〉〈0| + |2〉〈2|) + q|1〉〈1|.
Finally, using the symmetry again, we need only check the
condition (8) for σ0 and σ4, and the rest follow by construction.
Imposing that each of � − 1

8σ0 and � − 1
8σ4 have one zero

eigenvalue allows us to solve for p and q, giving p �
0.110, q � 0.093, and Pcorr = 8

3 Tr(�) = 8
3 (2p + q) � 0.836.

We note without proof that we can indeed form a resolution of
the identity from the resulting operators {πi}, which therefore
define an optimal measurement. Finally, we recall that the
simplified problem of discriminating the three mixed states
{ρ0,ρ1,ρ2} given above leads to a problem of discriminating
between 27 subsets on Alice’s side. Performing the same
analysis as above, it is readily verified that the measurement
just derived, which optimally discriminates the eight subsets
{S0, . . . ,S7}, remains optimal. It is tedious but straightforward
to check that the Helstrom condition (8) is satisfied for the
remaining states, which are therefore never identified.

We thus find that for these cases, it is two-way classical
communication that significantly boosts the distinguishability
of the states and that quantum communication provides only
a small additional boost in one case. It is known, of course,
that two-way communication is more powerful than one-way
communication; however explicit, quantitative gaps for the
problem of discriminating orthogonal states have been shown
in the literature only for measurements on entangled states (see,
e.g., [16,21]). It is surprising that even a single round of two-
way classical communication can provide such a significant
improvement in measurements on pure product states.

The optimal sequential measurement is a well-motivated
indicator of achievable experimental performance in local
measurement schemes: many rounds of measurement and clas-
sical communication quickly become infeasible and further
require quantum memories to store the local quantum systems.
Thus, even for rather simple cases and when information
is encoded in product states, an appreciable gap can exist
between the performance of the best readily achievable
local measurement and the theoretically allowed optimum
measurement. In practical terms, this is arguably a much
stronger manifestation of nonlocality without entanglement
than the known theoretical cases—albeit of a different flavor.

This work was supported by the University of Glasgow
College of Science and Engineering through an Academic
Returners grant (S.C.) and by the Royal Society Research
Professorships (S.M.B.).

[1] J. S. Bell, Physics 1, 195 (1964).
[2] A. Peres and W. K. Wootters, Phys. Rev. Lett. 66, 1119

(1991).

[3] C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains,
P. W. Shor, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 59,
1070 (1999).

012337-4

https://doi.org/10.1103/PhysRevLett.66.1119
https://doi.org/10.1103/PhysRevLett.66.1119
https://doi.org/10.1103/PhysRevLett.66.1119
https://doi.org/10.1103/PhysRevLett.66.1119
https://doi.org/10.1103/PhysRevA.59.1070
https://doi.org/10.1103/PhysRevA.59.1070
https://doi.org/10.1103/PhysRevA.59.1070
https://doi.org/10.1103/PhysRevA.59.1070


DIFFICULTY OF DISTINGUISHING PRODUCT STATES . . . PHYSICAL REVIEW A 95, 012337 (2017)

[4] A. M. Childs, D. Leung, L. Mančinska, and M. Ozols, Comm.
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