
PHYSICAL REVIEW A 95, 012335 (2017)

Using recurrent neural networks to optimize dynamical decoupling for quantum memory

Moritz August*

Department of Informatics, Technical University of Munich, 85748 Garching, Germany

Xiaotong Ni†

Max-Planck Institute for Quantum Optics, 85748 Garching, Germany
(Received 23 September 2016; published 27 January 2017)

We utilize machine learning models that are based on recurrent neural networks to optimize dynamical
decoupling (DD) sequences. Dynamical decoupling is a relatively simple technique for suppressing the errors in
quantum memory for certain noise models. In numerical simulations, we show that with minimum use of prior
knowledge and starting from random sequences, the models are able to improve over time and eventually output
DD sequences with performance better than that of the well known DD families. Furthermore, our algorithm is
easy to implement in experiments to find solutions tailored to the specific hardware, as it treats the figure of merit
as a black box.

DOI: 10.1103/PhysRevA.95.012335

I. INTRODUCTION

A major challenge of quantum information processing
(e.g., quantum computation and communication) is to preserve
the coherence of quantum states. While in principle we can
build a fault-tolerant quantum memory or universal quantum
computer once the error rate of the device is below a certain
threshold, it is still beyond nowadays experimental capacity to
build a decent-size quantum computer. One less explored area
is the optimization of implementing a fault-tolerant protocol
on a concrete experimental setting. This is often a tedious
problem, due to the amount of details in the real devices and
the fact that the architectures of both experimental devices
and theoretical protocols are still rapidly changing. Thus, an
attractive approach is to automatize this optimization task.
Apart from convenience, it is conceivable that with less human
intuition imposed, the upper bound of the performance will
be higher. This has previously been proven to be true in
fields such as computer vision where artificial neural network
(ANN) models that try to solve tasks without using handcrafted
representations of data have overtaken approaches based on
human insight in tasks such as image classification and object
recognition [1]. Another interesting recent example is the
ability of ANNs to learn how to play games on a human or even
superhuman level without any or just little prior knowledge
about the respective games [2,3].

Automatically optimizing parameters in real (or numerical
simulations of) experiments is not a new idea. For example, it
has been applied to optimizing the pulse shape of a laser,
the parameters of Hamiltonians to achieve certain unitary
operations, or the parameters of dynamical decoupling and
cold-atom experiments. Most works that attempt to obtain
optimal parameters use genetic algorithms [4–8] or (to some
degree [9]) local searches such as gradient descent [7,10–14]
and the Nelder-Mead simplex method [15–17]. It is argued
that by using these optimization methods directly on the
experiments, we can avoid the difficulty of modeling the

*august@in.tum.de
†xiaotong.ni@mpq.mpg.de

imperfect control and the system-environment interaction.
However, one possible weakness of these optimization meth-
ods is that they generate new trials only by looking at a fixed
number of previous ones and often they need to restart once
they reach a local minimum. Thus, in the long run, they do not
fully utilize all the data generated by the experiments.

In this work we propose an orthogonal approach, where we
try to mimic the structure of good parameters by building a
model that approximates the probability distribution of these
parameters. After an initial optimization, this model can then
be used to efficiently generate new possible trials and can
be continuously updated based on new data. In particular,
based on the problem we attempt to solve, we choose this
model to be a variant of the recurrent neural network (RNN),
which makes our approach very similar to the way in which
natural languages or handwriting are currently modeled.
This ansatz enables us to exploit the models and insights
developed by the machine learning community and possibly
translate further progress there into the field of quantum
control. It is worth pointing out that the machine learning
part of this work is purely classical; only the (classical) data
are related to quantum time evolution. Among the previous
works, the approach by Wigley et al. in [18] is the most
similar to ours, as they attempt to build a model from the
data and utilize the model to perform optimization. Classical
machine learning is also used in [19–21] to characterize
the error models in quantum error correction and to react
accordingly.

To demonstrate the feasibility of using our method to
help optimize quantum memory, we consider the problem of
automatically learning and optimizing dynamical decoupling
sequences (almost) without using any prior knowledge. Dy-
namical decoupling (DD) [22] is a technique that combats
certain noise by applying a sequence of unitary operations on
the system (see [23,24] for a review). It has a less stringent
requirement compared to general error correction protocols,
which allows it to be demonstrated in experiments [15,23,25]
in contrast to other methods. Moreover, known classes of
good DD sequences have a relatively simple and well-defined
structure. Based on the assumption that this holds true also
for yet unknown and possibly better classes of sequences, it is

2469-9926/2017/95(1)/012335(15) 012335-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.012335

MORITZ AUGUST AND XIAOTONG NI PHYSICAL REVIEW A 95, 012335 (2017)

conceivable that a learning algorithm could eventually sample
them without the need of using heavy mathematics.

To clarify, we do not attempt to solve the following two
questions.

First, what do RNNs try to learn? It is known that RNNs
can incorporate both short- and long-range correlation, which
is desirable in our case, but it is unclear which one the gradient
training method prioritizes. Indeed, it is an ongoing study
to understand the behavior of RNNs [26]. Nevertheless, we
choose to use RNNs since there are heuristic arguments on
the advantage of them compared to similar models [27] and
they benefit greatly from modern machine learning libraries
and hardware.

Second, what is the optimal machine learning algorithm to
find the best DD sequences? It is clear that we cannot claim
our algorithm is the best one as there is not much theoretical
understanding on RNNs. Indeed, the present authors believe
there is much room for improvement, possibly by using better
heuristics or taking into account more prior knowledge of DD.
However, our work demonstrates that with a general model
and a small amount of human effort, we can already achieve
nontrivial results for certain problems.

II. BACKGROUND

A. Dynamical decoupling

The majority of dynamical decoupling schemes are de-
signed for error models where the system-environment in-
teraction can be described by a Hamiltonian. We will use
HS and HB to denote the Hilbert space of the system and
environment (often called bath), respectively. The difference
between system and environment is that the former represents
the part of the Hilbert space we can apply the Hamiltonian on
and in which we store quantum information. The total noise
Hamiltonian is

H0 = HS ⊗ IB + IS ⊗ HB + HSB.

Without intervention, in general H0 would eventually destroy
the quantum states we store in HS . To suppress this noise,
we could apply a time-dependent Hamiltonian HC(t) to the
system, which makes the total Hamiltonian H (t) = H0 +
HC(t). In the ideal case, we can control HC(t) perfectly and
reach very high strength (i.e., norm of the Hamiltonian), which
allows the ideal pulse

V (t) = Oδ(t − t0).

It applies a unitary operator e−iO to the system for an infinitely
small duration (we set h̄ = 1 in this work). A very simple
DD scheme for a qubit (a two-level system S) is the XY4

sequence: It applies pulses of the Pauli matrices X and
Y alternatingly with equal time interval τd in between. A
complete cycle consists of four pulses XYXY , thus the total
time period of a cycle is Tc = 4τd . In the limit of τd → 0, the
qubit can be stored for an arbitrarily long time. The intuition
behind DD sequences is the average Hamiltonian theory. Let
UC(t) = T exp{−i

∫ t

0 dt ′HC(t ′)} be the total unitary applied
by HC(t ′) up to time t . In the interaction picture defined
by UC(t), the dynamics is governed by the Hamiltonian
H̃ (t) = U

†
C(t)H0UC(t). If the time interval τd between pulses

is much smaller than the time scale defined by the norm of
‖H0‖, it is reasonable to consider the average of H̃ (t) within
a cycle. The zeroth-order average Hamiltonian in Tc (with
respect to τd) is

H̄ (0) = 1

Tc

∫ Tc

0
dt ′U †

C(t)H0UC(t).

For the XY4 sequences introduced above, it is easy to
compute H̄ (0) = 1

4

∑
σ∈{I,X,Y,Z} σH0σ . Since the mapping

O → ∑
σ∈{I,X,Y,Z} σOσ maps any 2 × 2 matrix to 0, by

linearity we know H̄ (0) = 0.
Here we are going to list several classes of DD sequences.

We will first explain how to concatenate two sequences, as
most long DD sequences are constructed in this manner. Given
two DD sequences A = P1 · · · Pm and B = Q1 · · · Qn, the
concatenated DD sequence A[B] is

A[B] = (P1Q1)Q2 · · ·Qn(P2Q1)Q2 · · ·Qn

· · · (PmQ1)Q2 · · · Qn.

As an example, when we concatenate the length-2 and length-
4 sequences XX and XYXY , we obtain IYXYIYXY . For
convenience, we will use CDD to denote these sequences. Note
that originally CDD is used to denote sequences generated
solely from recursively concatenating XYXY with itself.

We will use Pi to represent any Pauli matrix X, Y , or Z

and for i �= j , Pi �= Pj . The families of DD sequences can
then be listed as follows: DD4, length-4 sequences P1P2P1P2;
DD8, length-8 sequences IP2P1P2IP2P1P2; EDD8, length-
8 sequences P1P2P1P2P2P1P2P1; CDD16, length-16 con-
catenated sequences; DD4[DD4]; CDD32, length-32 con-
catenated sequences DD4[DD8] and DD8[DD4]; and
CDD64, length-64 concatenated sequences DD4[CDD16]
and DD8[DD8]. Longer DD sequences can again be obtained
by the concatenation of the ones listed above and in the ideal
situation they provide better and better protection against
the noise. However, with realistic experimental capability,
the performance usually saturates at a certain concatenation
level. Since at this moment we are only optimizing short DD
sequences, the listed ones are sufficient to provide a baseline
for our purpose. One important family we did not include here
is the Knill DD (KDD) [28], because it requires the use of
non-Pauli gates.

However, we cannot expect these requirements to be met
in all real-world experiments. The two major imperfections
that are often studied are the flip-angle errors and the finite
duration of the pulses. Flip-angle errors arise from not being
able to control the strength and time duration of HC(t)
perfectly, thus the intended pulse V (t) = Oδ(t) becomes
V (t) = (1 ± ε)Oδ(t). Also, since zero-width pulses Oδ(t)
are experimentally impossible, we must consider finite-width
pulses that approximate the ideal ones. In this paper we
will only consider the imperfection of finite-width pulses.
However, it is straightforward to apply our algorithm to pulses
with flip-angle errors.

B. Measure of performance

There are multiple ways to quantify the performance of
DD sequences. In practice, we choose different measures to

012335-2

USING RECURRENT NEURAL NETWORKS TO OPTIMIZE . . . PHYSICAL REVIEW A 95, 012335 (2017)

suit the intended applications. Here we use the same measure
as in [24,29], which has the advantage of being (initially)
state independent and having a closed formula for numerical
simulation:

D(U,I) =
√

1 − 1

dSdB

‖TrS(U)‖Tr,

where U represents the full evolution operator generated
by H (t), dS and dB are the dimensions of the system and
environment Hilbert space HS and HB , respectively, ‖X‖Tr =
Tr(

√
X†X) is the trace norm, and TrS(·) is the partial trace over

HS . The smaller D(U,I) is, the better the system preserved its
quantum state after the time evolution. For example, the ideal
evolution U = IS ⊗ UB has the corresponding D(U,I) = 0.

In experiments, it is very hard to evaluate D(U,I), as we
often do not have access to the bath’s degree of freedom.
Instead, the performance of DD sequences is often gauged
by doing process tomography for the whole time duration
where DD is applied [25,30]. Although it is a different measure
compared to our choice above, the optimization procedure can
still be applied as it does not rely on the concrete form of
the measure. Moreover, for solid state implementations such
as superconducting qubits or quantum dots, a typical run of
initialization, applying DD sequences and measurements, can
be done on the time scale of 1 ms or much faster. Thus, it is
realistic that on the time scale of days we can gather a large data
set of DD sequences and their performance, which is needed
for our algorithm.

C. Recurrent neural networks

Sequential models are widely used in machine learning for
problems with a natural sequential structure, e.g., speech and
handwriting recognition, protein secondary structure predic-
tion, etc. For dynamical decoupling, not only do we apply
the gates sequentially in the time domain, but also the longer
DD sequences are often formed by repetition or concatenation
of the short ones. Moreover, once the quantum information
of the system is completely mixed into the environment, it is
hard to retrieve it again by DD. Thus, an educated guess is
that the performance of a DD sequence largely depends on the
short subsequences of it, which can be modeled well by the
sequential models.

Since our goal is not simply to approximate the distribution
of good dynamical decoupling sequences by learning their
structure but to sample from the learned distribution to effi-
ciently generate new good sequences, we will further restrict
ourselves to the class of generative sequential models. Overall,
these models try to solve the following problem: Given {xi}i<t ,
approximate the conditional probability p(xt |xt−1, . . . ,x1). As
a simple example, we can estimate the conditional probability
p(xt |xt−1) from a certain data set and use it to generate new
sequences.1 For more sophisticated problems (e.g., natural
language or handwriting), it is not enough to only consider the

1This idea can be at least dated back to Shannon [31], where this
model generated “English sentences” like “On ie antsoutinys are t
inctore st be s deamy achin d ilonasive tucoowe at”

nearest-neighbor correlations as simple models like Markov
chains of order one do.

The long short-term memory (LSTM) network, a variation
of the RNN, is a state-of-the-art technique for modeling longer
correlations [32] and is comparably easy to train. The core
idea of RNNs is that the network maintains an internal state
in which it encodes information from previous time steps.
This allows the model to, at least theoretically, incorporate all
previous time steps into the output for a given time. Some
RNNs have even been shown to be Turing complete [33]. In
practice, however, RNNs often can only model relatively short
sequences correctly due to an inherently unstable optimization
process. This is where LSTMs improve over normal RNNs,
as they allow for training of much longer sequences in a
stable manner. Furthermore, LSTMs, like all ANNs, are based
on matrix multiplication and the elementwise application
of simple nonlinear functions. This makes them especially
efficient to evaluate.

Algorithm 1. Optimization algorithm.

Input: Number of initial models to train: n

Number of models to keep: k

Percentage of data to keep: p

Set of possible topologies: M
Size of data: d

D ← generateRandomData (d)
D,〈ςs〉 ← keepBestData (D,p)
M ← trainRandomModels (n,D,M)
M ← keepBestKModels (M,k)
while 〈ςs〉 not converged do

M ← trainBestModels (D)
D ← generateDataFromModels (M,d)
D,〈ςs〉 ← keepBestData (D,p)

end
Output: 〈ςs〉,D,M

From the machine learning perspective, we treat the prob-
lem at hand as a supervised learning problem where we provide
the model with examples that it is to reproduce according
to some error measure. It is also possible to formulate our
problem in the framework of reinforcement learning. However,
since we only compute the performance of a whole DD se-
quence, there is no immediate reward when choosing a gate in
the middle of the sequence. Given the length of the sequences
we are optimizing, it is likely a reinforcement learning algo-
rithm will need help from certain (un)supervised learning, sim-
ilar to the way in [3]. A short introduction to machine learning,
LSTMs, and their terminology can be found in the Appendixes.
More exhaustive discussions can be found in [34–36].

III. ALGORITHM

The algorithm presented in this section is designed with
the goal in mind to encode little prior knowledge about the
problem into it, in order to make it generally applicable to
different imperfections in the experiment. Following this idea,
the method is agnostic towards the nature of the considered
gates, the noise model, and the measure of performance. To
implement this, the algorithm assumes that the individual

012335-3

MORITZ AUGUST AND XIAOTONG NI PHYSICAL REVIEW A 95, 012335 (2017)

gates are represented by a unique integer number such that
every sequence s ∈ G⊗Ls , with G denoting the set of unique
identifiers and Ls being the length of s, and it is provided with
a function f (s) to compute the score ςs of a given sequence s,
taking into account the noise model. The optimization problem
we want to solve is

min
s

f (s) = min
s

ςs .

By assumption, we have no information about f but can
efficiently evaluate it. We furthermore assume the set of
good sequences to exhibit common structural properties that
can be learned well by a machine learning model. So we
propose to solve it indirectly by training a generative model
m ∈ M to approximate the distribution of good sequences,
M being the set of possible models. That means we assume
st ∼ pm(st−1, . . . ,s1), with st being the gate at time t and pm

denoting the distribution learned by m. Then we want to find
an optimal m that ideally learns a meaningful representation
of the structure of good sequences. In this work we choose the
type of model to be the LSTM. We now tackle this surrogate
problem by alternatingly solving

max
m∈M

L(m|T),

where L denotes the likelihood and T the training data, and
then sampling sequences from the model m to generate a
new T consisting of better solutions. The algorithm hence
consists of two nested optimization loops, where the inner
loop fits a number of LSTMs to the current data while the
outer loop uses the output of the inner loop to generate new
training data. This scheme of alternatingly fixing the data to
optimize the models and consecutively fixing the models to
optimize the data resembles the probabilistic model building
genetic algorithm [37] and to some extent the expectation-
maximization algorithm [38]. The method is shown in Algo-
rithm 1. Partial justification of this heuristic algorithm is given
in Appendix C. However, it is easy to see that the algorithm
will not always find the global optimum. For example, it is
conceivable that for certain problems the second to the 100th
best solutions share no common structure with the first one.
In that case, it would be unlikely for the machine learning
approach to find the optimal one. There is however likely
no universal method to bypass this obstruction, as unless we
know the best sequences already, it is impossible to verify that
they exhibit some structure similar to the training sets. This
obstruction seems natural since many optimization problems
are believed to be computationally hard. Thus, we should not
assume to be able to solve them by the above routine.

We will now explain the most important aspects of the
algorithm in more detail.

(a) Choice of LSTMs. The data we want to generate
in our application are of sequential nature. This makes
employing LSTMs an obvious choice as they pose one of
the most powerful models available today for sequential
data. Furthermore, the known well-performing families of DD
sequences are constructed by nested concatenations of shorter
sequences and hence show strong local correlations as well
as global structure. Long short-term memories and especially
models consisting of multiple layers of LSTMs are known to
perform very well on such data and should therefore be able

to learn and reproduce this multiscale structure better than
simpler and shallow models.

(b) Generation of the initial training data. The size d and
the quality, i.e., the percentage p of the initial data to be kept,
are the parameters that we can specify. The data are then
generated by sampling a gate from the uniform distribution
over all gates for each time step. The average score of the
initial data can then be used as a baseline to compare against
in case no other reference value is available. We would like
to point out that in the application considered in this work,
an alternative way to generate the initial data might be to use
the models trained on shorter sequences. This approach could
lead to an initial data set with much higher average score, but
at the price of introducing the bias from the previously trained
RNNs.

(c) Training of the LSTMs. To reduce the chance of ending
up in a bad local optimum, for each training set several different
architectures of LSTMs are trained (see Appendix D 2 for
detailed description of LSTMs). These models are indepen-
dently sampled M. More precisely, for the first generation of
models, we sample a larger set of n models from M and train
them. We then select the best k models and reuse them for all
following generations. While it might introduce some bias to
the optimization, this measure drastically reduces the number
of models that need to be trained in total. The training problem
is defined by assuming a multinoulli distribution over the gates
of each time step and minimizing the corresponding negative
log-likelihood −∑

t δst ,i log2 pm,i(st−1, . . . ,s1), where i is the
index of the correct next gate, pm,i is its predicted probability
computed by the LSTM m, and δst ,i = 1 if and only if st = i.
This error measure is also known as the cross entropy. To
avoid overfitting, we use a version of early stopping where we
monitor the average score 〈ςs〉pm

of sequences generated by
m and stop training when 〈ςs〉pm

stops improving. We employ
the optimizer Adam [39] for robust stochastic optimization.

(d) Selecting the best models. As we employ early stopping
based on the average score 〈ςs〉pm

, we also rank every trained
model m according to this measure. One could argue that
ranking the models with respect to their best scores would be
a more natural choice. This however might favor models that
actually produce bad sequences but have generated a few good
sequences only by chance. Using 〈ςs〉pm

is hence a more robust
criterion. It would of course be possible to also consider other
modes of the pm, such as the variance or the skewness. These
properties could be used to assess the ability of a model to
generate diverse and good sequences. We find, however, that
the models in our experiments are able to generate new and
diverse sequences, thus we only use the average score as a
benchmark for selecting models.

(e) Generation of the new training data. The selected
models are used to generate d new training data by sampling
from pm. This is done by sampling st from pi(st−1, . . . ,s1)
beginning with a random initialization for t = 1 and then using
st−1 as input for time step t . We combine the generated se-
quences with the previous training sets, remove any duplicates,
and order the sequences by their scores. We then choose the
best p percent for the next iteration of the optimization. This
procedure ensures a monotonic improvement of the training
data. Note that all selected models contribute equally many
data to strengthen the diversity of the new training data. A

012335-4

USING RECURRENT NEURAL NETWORKS TO OPTIMIZE . . . PHYSICAL REVIEW A 95, 012335 (2017)

possible extension would be to apply weighting of the models
according to some properties of their learned distributions.
Note though that ordering the generated sequences by their
score is already a form of implicit weighting of the models.

IV. NUMERICAL RESULTS

A. Noise model and the control Hamiltonian

Throughout the paper we will use the same noise model as in
[24]. We consider a 1-qubit system and a 4-qubit bath, namely,
dim(HS) = 2 and dim(HB) = 16. The small dimension of the
bath is for faster numerical simulation and there is no reason for
us to think that our algorithm would only work for a small bath
as the size of the bath enters the algorithm only via the score-
computation function. The total noise Hamiltonian consists of
(at most) three-body interactions between the system and bath
qubits with random strength

H0 =
∑

μ∈{I,X,Y,Z}
σμ ⊗ Bμ, (1)

where σμ is summed over Pauli matrices on the system qubit
and Bμ is given by

Bμ =
∑
i �=j

∑
α,β

c
μ
αβ

(
σα

i ⊗ σ
β

j

)
,

where i,j is summed over indices of the bath qubits and σ
α (β)
i

is the Pauli matrix on qubit i of the bath. We consider the
scenario where the system-bath interaction is much stronger
than the pure bath terms. More precisely, we set cμ

αβ ≈ 1000cI
αβ

for μ ∈ {X,Y,Z}. Apart from this constraint, the absolute
values |cμ

αβ | are chosen randomly from a range [a,b], where
we set b ≈ 3a to avoid too many terms vanishing in (1). The
result Hamiltonian has a 2-norm ‖H0‖ = 20.4.

For the control Hamiltonian, we consider the less explored
scenario where the pulse shape have finite width but no switch
time between them (100% duty cycle). In other words, the
control Hamiltonian is piecewise constant

HC(t) = Hk for kτd � t < (k + 1)τd,

where τd is a small time period with respect to the norm
of H0 and e−iHkτd ∈ {I,X,Y,Z}. This is a good toy model
for experimental settings whose DD performance is mainly
limited by the strength of the control Hamiltonian, but not the
speed of shifting between Hamiltonians. Since this regime is
less explored in theoretical studies, it is an interesting scenario
to explore via machine learning. Another restriction we put on
HC(t) is

HC(t) = −HC(T − t),

where T is the total evolution time. This condition ensures
UC(T) = T exp{−i

∫ T

0 dt ′HC(t ′)} = I and it allows us to
apply the same code on the setting where the system has
more than one qubit. It is known that this family of symmetric
Hamiltonians can remove the first-order terms of τd in the
average Hamiltonian [22,40]. So, strictly speaking, this should
be counted as prior knowledge. However, when we compare
the known DD sequences with the numerically found ones, we
also use the symmetric version of the known DD sequences.
Thus, we perform the comparison on equal terms.

B. Numerical experiments

In the following we present the results of a number of
experiments we have conducted to evaluate the performance
of our method. We consider sequences consisting of 32, 64,
and 128 gates for varying values of τd . This translates to having
to optimize the distribution of the first 16, 32, and 64 gates,
respectively. To compute ςs , we use the figure of merit D as
defined in Sec. II A. Thus, a lower score is better. For M,
we consider models with two or three stacked LSTM layers
followed by a final softmax layer. The layers comprise 20
to 200 units where layers closer to the input have a higher
number of units. We allow for peephole connections and
linear projections of the output of every LSTM layer to a
lower number dimension [35]. The optimization parameters
are also randomly sampled from sets of reasonable values. We
choose the step rate to be in {10−1,10−2} and the batch size to
take values in {200,500,1000}. The parameters specific to the
Adam optimizer β1, β2, and ε, we sample from {0.2,0.7,0.9},
{0.9,0.99,0.999}, and {10−8,10−5}, respectively. We perform a
truncation of the gradients to 32 time steps in order to counter
instabilities in the optimization (see Appendix D 3). As we
have stated above, we also employ early stopping in the sense
that, for every optimization of a model, we keep the parameters
that generate the sequences with the best average score. The
algorithm was run until either the best known score was beat or
the scores converged, depending on the goal of the respective
experiment. We will now briefly list the concrete experiment
settings and discuss the results.

(i) Experiment E1: Length 32. In this first experiment, we
considered sequences of 32 gates with τd = 0.002. We let the
algorithm train n = 30 models initially and set the number of
models to be kept k to 5. We combined the data generated by
the LSTMs with the previous training set after each generation
and chose the best 10% as the new training data, consisting
of 10 000 sequences for each generation. We let every model
train for 100 epochs.

(ii) Experiment E2: Length 64. In our next experiment, we
tackled a more difficult scenario with 64 gates and a larger
τd = 0.004. We set n = 50 and k = 5. Again, we used the best
10% of both generated and previous data as new training data,
which consist of a total 10 000 sequences for each training set.

(iii) Experiment E3: Length 128. In the third experiment
we tried our method on even longer sequences of 128
gates with τd again being 0.004. Due to the very large
sequence space, we set the size of the training sets to 20 000,
again using the best 10% of sequences generated by the
selected models and the previous training set. The number
of epochs was increased to 200. We set n = 30 and k = 5.
Here we let the algorithm run until both the average and
the best score converged to examine its behavior in long
runs.

(iv) Experiment E4: Length 32 with random gates. Finally,
we tested the performance of Algorithm 1 in the case where
we replaced the Pauli gates {I,X,Y,Z} with ten randomly
chosen gates. More precisely, we chose each gate gj to be a
randomly generated single two-dimensional unitary operator
with eigenvalues 1 and −1, i.e., gj = U

†
j XUj , where Uj

is a random unitary. All other parameters were kept as in
experiment E1.

012335-5

MORITZ AUGUST AND XIAOTONG NI PHYSICAL REVIEW A 95, 012335 (2017)

TABLE I. Comparison of the results obtained in experiments E1,
E2, E3, and E4 to the best theoretically derived DD families. For
each experiment, the average and best score of the last training data
and the average score of the best model of the last generation are
shown. They are compared to random sequences and the two DD
classes that yield the best average and overall best score, respectively.
The best results are printed bold.

Sequences 〈ςs〉 min ςs

Experiment E2
EDD8 0.002398 0.002112
CDD32 0.053250 0.000803
last training set E2 0.000712 0.000381
best model E2 0.016692
random 0.341667

Experiment E3
EDD8 0.004793 0.004222
CDD64 0.031547 0.001514
last training set E3 0.000827 0.000798
best model E3 0.029341
random 0.44918

Experiments E1 and E4
EDD8 0.000151 0.000133
CDD16 0.010699 0.000074
last training set E1 0.000112 0.000070
last training set E4 0.007178 0.000082
best model E1 0.003089
random 0.125371

In Table I we compare the last training data and the
best model of the last generation of E1–E4 against the
two DD families that achieve the best average and minimal
scores for the given experiment, respectively. We also plot the
convergence of the training data of E3 and E1 with E4 in
the Figs. 1(a) and 1(b), respectively. In general, the results for
E1, E2, and E3 clearly show that our method outperforms
DD, achieving a better minimal score of the generated data in
a moderate number of iterations and with a relatively small
set of models. The results of E4 will be discussed below.
These findings indicate that our method converges to good
local optima and that the models are able to learn a meaningful
internal representation of the sequences that allows for efficient
sampling of good sequences. There is however a noticeable
gap between the scores of the training data and the models. A
possible remedy for this could be an increase of the training
data size or an adjustment of the model parameters in later
stages of the optimization to account for the change in the
structure of the data.

To assess the importance of LSTMs for the performance
of our algorithm, in experiment E3, we also ran a different
version of our method where we replaced the LSTMs by
simple 5/6-gram models, which only model and generate
sequences based on local correlations (see Appendix A 2
for the definition). The convergence plots in Fig. 1(a) show
that LSTMs are indeed superior to the simpler models. They
are able to improve the average and best scores faster and
ultimately let the algorithm converge to a better local optimum.
This advantage most likely results from the fact that the LSTM
models are able to leverage information about longer-range

(a) Experiment E3

(b) Experiments E1 and E4

FIG. 1. Convergence of the algorithm in (a) E3 compared to the
case where LSTMs are replaced by 5/6-gram models and (b) E1
compared to E4 as both consider the same problem setting. In (a) it
is clearly visible that LSTMs outperform the n-gram models, while
(b) reflects the physical knowledge that the Pauli unitaries are a better
choice than random gates. Note that the red (dark) crosses in (a) are
almost covered by the red (dark) circles. As a reference, we show the
score of the best DD sequence obtained from the known DD classes.

correlations in the data. These results hence justify our choice
of LSTMs as a machine learning model to optimize DD
sequences.

We also compared the results of experiments E1 and E4
to examine the importance of using the Pauli group as the
gate set. Figure 1(b) shows that while for E1 the average score
quickly becomes very good and the best score exceeds the best
known result after a few generations, in E4 the average score
of the data improves much slower and remains significantly
worse than that of E1. Although the best score exhibits a
much stronger improvement, it eventually converges to a value
slightly worse than that of the best theoretical DD sequence and
the one found in E1. This is expected since with the Pauli group
we can achieve first-order decoupling with DD sequences of
length 4, which is the shortest. On the other hand, with random
unitaries, in general it will take much longer sequences to have

012335-6

USING RECURRENT NEURAL NETWORKS TO OPTIMIZE . . . PHYSICAL REVIEW A 95, 012335 (2017)

approximate first-order decoupling, during which the system
and environment can become fairly entangled.

Another interesting aspect to note is the rather strong
improvement of the average scores occurring in E3 and E1
between generations 8 to 10 and 2 to 3, respectively. These
jumps can be explained by the known existence of several
strictly separate regimes in sequence space that differ strongly
in their performance. The results indicate that our algorithm
is able to iteratively improve the learned distributions to
eventually capture the regime of very good sequences.

In order to verify that sampling the initial training data
from the distributions learned for shorter sequences is a viable
alternative to uniform sampling, we let the best model obtained
in E2 generate an initial data set for the problem setting of
E3. The obtained data were found to have an average score of
0.037 175, which is about one order of magnitude better than
the average of the initial training data generated by uniform
sampling.

V. CONCLUSION

We have introduced a method for optimizing dynamical
decoupling sequences that differs from previous work by the
ability to utilize much larger data sets generated during the
optimization. Its ability to efficiently generate large sets of
good sequences could be used along with other optimization
methods to cover their weaknesses or to perform statistical
analysis of these sequences. We showed that for certain imper-
fect control Hamiltonians, our method is able to outperform
(almost all) known DD sequences. The little prior knowledge
about DD we use is (i) choosing Pauli operators as pulses in the
sequences (see experiment E4 and its discussion), (ii) choosing
specific lengths for the DD sequences, and (iii) enforcing the
reversal symmetry, as discussed in Sec. IV A. However, we
do not need to initialize the data set in a specific way as
in Appendix C 5 a of [24], which actually contains a certain
amount of prior knowledge of DD. Also, our method does not
fundamentally rely on the prior knowledge stated above. It is
conceivable that the use of this prior knowledge can be lifted,
at the price of a possibly much slower optimization procedure.
For example, the KDD scheme helps to further increase the
performance of CDD sequences in some experiments [23].
Thus, an interesting question is when given the freedom of
applying non-Pauli gates and choosing variable lengths of the
sequences, whether our algorithm could discover a similar
strategy. Thus, a possible direction of future research is to see
how we can minimize the slowdown when not incorporating
any prior knowledge and whether we can obtain good DD
sequences with non-Pauli pulses.

While we have applied the algorithm to the case of quantum
memory and compared it to dynamical decoupling, it is of
general nature. It can in principle be applied to every problem
where the optimization of a sequence of gates with respect
to some well-defined figure of merit is desired and where it
is feasible to evaluate this performance measure for larger
numbers of sequences. However, due to the nature of the
underlying machine learning model, good results will likely
only be obtained for problems whose solution depends strongly
on local correlations in the sequences.

ACKNOWLEDGMENTS

We would like to thank Geza Giedke for helpful discussions
and comments on the draft. The idea of this paper partially
stems from a discussion between Courtney Brell and X.N.
about using genetic algorithms to optimize quantum memory.
We would also like to thank Peter Wittek for helpful comments.
M.A. acknowledges funding by the Elite Network of Bavaria
via the doctoral programme “Exploring Quantum Matter.”

M.A. and X.N. are contributed equally to this work.

APPENDIX A: ANALYSIS

1. Local correlations of DD sequences

As we suggested earlier, the reason we use RNNs as the
probabilistic model is that the performance of dynamical de-
coupling sequences heavily depends on their local correlations.
To illustrate this fact, we can count the frequency of length-2
(see Table II) (or length-3) subsequences from the training set
of the 30th generation in experiment 3. We can then compare
these statistics to the ones of the sequences generated by
the LSTM, which is trained based on the training set. We
can see indeed that the percentages match very well. To get
more detail about local correlations, we could also count the
frequency of length-3 subsequences (see Table III). Note that
since the table is based on the data sets in the late stage of the
optimization, the distribution of the subsequences are already
very polarized. However, we observe the same behavior (the
percentages matches well) in other experiments at different
stages of the optimization as well. However, RNNs do not
only take into account local correlations, as we show in Fig. 1
that they perform better compared to the n-gram models, which
we will introduce in the next section.

2. The n-gram models

n-grams are the simplest sequential models that treat the
sequences as stationary Markov chains with order n − 1.

TABLE II. Frequency of length-2 subsequences, from the training set and the set generated by the trained LSTM (given in parentheses) at
generation 30 of experiment 3. The total number of subsequences is around 1.2×106.

��������������Previous gate
Next gate

I X Y Z

I 0.00% (0.00%) 0.04% (0.08%) 0.15% (0.68%) 0.02% (0.08%)
X 0.05% (0.22%) 5.38% (5.04%) 30.53% (30.47%) 1.39% (1.26%)
Y 0.07% (0.20%) 30.17% (30.47%) 18.40% (18.61%) 5.84% (5.50%)
Z 0.01% (0.02%) 1.90% (1.68%) 5.75% (5.42%) 0.30% (0.27%)

012335-7

MORITZ AUGUST AND XIAOTONG NI PHYSICAL REVIEW A 95, 012335 (2017)

TABLE III. Frequency of length-3 subsequences started with gate X, from the training set and the set generated by the trained LSTM
(given in parentheses) at generation 30 of experiment 3. The total number of subsequences started with X is around 450 000.

��������������Second gate
Last gate

I X Y Z

I 0.00% (0.00%) 0.02% (0.05%) 0.12% (0.55%) 0.00% (0.01%)
X 0.00% (0.00%) 1.40% (1.22%) 11.99% (11.52%) 0.32% (0.32%)
Y 0.15% (0.47%) 44.79% (45.09%) 33.39% (33.54%) 4.11% (3.85%)
Z 0.01% (0.01%) 2.38% (2.14%) 1.05% (0.98%) 0.28% (0.26%)

Operationally, given a set of sequences, we first estimate the
conditional probability distribution

pxn,xn−1···x1 = Pr(Xt = xn|Xt−1 = xn−1, . . . Xt−n+1 = x1).

Note that we assume the conditional probability is independent
of t (hence stationary Markov chain). The estimation is done
by counting over the whole set of sequences. The generation of
new sequences based on the conditional probability pxn,xn−1···x1

is straightforward, as we can repeatedly sample from it
based on the previous n − 1 items. This behavior is different
compared to that of the RNNs, which have memory units that
can store information for an arbitrarily long time in theory.

3. Optimization without reusing data
from previous training sets

During the optimization processes in the main text, we
always reuse the data from previous training sets, in the sense
that we first add the new sequences generated by the models
to the training sets and then delete the worst sequences. An
interesting question is what will happen if we generate new
training sets completely from the trained models. In Fig. 2
we plot the counterpart of Fig. 1(a) with this modification (as
well as not deleting duplicated sequences from the training
set). We can see that for the LSTMs experiment, the final
minimum score gets slightly worse, which is 0.000 874.
However, the 5/6-gram experiments actually perform better
when not reusing data. While it seems counterintuitive, this
can be possibly explained by the fact that in the case of reused

FIG. 2. The 3- and 5/6-gram experiments without data reusage.
Otherwise, the experiments are done in the same way as in Fig. 1(a).

data with unique sequences the higher diversity of the data
might make it harder for the models to find local correlations,
which then in turn slows down the optimization. There is other
interesting information contained in the plot. For example, we
can see the minimum scores almost always decrease, which
implies that the LSTMs are able to learn new information about
good sequences in most generations.

4. Performance of the obtained sequences
with a larger heat bath

In the main text, all the numerical simulations are done on
a randomly generated noise Hamiltonian with the dimension
of the bath being dim(HB) = 16. The small dimension of the
bath is used in order to have a fast simulation. Here we test the
performance of some obtained sequences from experiment 2,
in the presence of a larger bath with dim(HB) = 128. Apart
from the change of dimension, the Hamiltonian H0 is again
randomly generated according to the description in Sec. IV A,
which has a 2-norm ‖H0‖ = 24.0. We then computed the
scores of the top 500 DD sequences in the last generation of
experiment 2. The results are shown in Table IV. While the best
score of the obtained sequences is worse than the best score
of CDD32, it is clear that, on average, the obtained sequences
still work fairly well. This also suggests that our algorithm
is potentially capable of adapting to the particular noise
Hamiltonian, as the learned sequences outperform known DD
families in experiment 2.

APPENDIX B: BEST SEQUENCES

We list here the best sequences we found in experiments 1–3
from the numerical results section. We denote the identity by I

and X,Y,Z refer to the respective Pauli matrices. Note that we
show only the first half of the complete sequence as the second
one is just the first half reversed. In experiment 1 we found
X,Y,X,Z,X,Y,X,Z,Z,X,Y,X,Z,X,Y,X; in experiment 2,
Z,Z,X,Z,Z,Z,X,Z,Z,X,Z,X,X,X,Z,X,X,X,Z,X,X,Z,X,

TABLE IV. Comparison between the scores of the top 500 DD
sequences in the last generation of experiment 2 and some DD
families for the larger bath dim(HB) = 128. The best score of the
500 sequences is worse than the best score of CDD32. However, it is
clear that, on average, the obtained sequences still work fairly well.

Sequences 〈ς〉 min ς

EDD8 0.002781 0.002203
CDD32 0.053753 0.000432
top 500 0.001081 0.000626

012335-8

USING RECURRENT NEURAL NETWORKS TO OPTIMIZE . . . PHYSICAL REVIEW A 95, 012335 (2017)

X,X,Z,X,Z,Z,X,Z,Z; and in experiment 3, Z,X,Z,Z,Y,

X,Y,Z,Y,X,Y,X,Y,Y,X,Y,Y,Y,Y,X,Y,Y,Y,X,Y,Y,X,Y,X,Y,

X,Y,Y,Z,X,Z,Y,Z,X,Z,Y,X,Y,X,X,Y,X,Y,X,Y,X,Y,Y,X,

Y,Y,Y,X,Y,X,X,Y,X,X.

APPENDIX C: COMPARISON OF
OPTIMIZATION ALGORITHMS

In this appendix we will give a comparison between several
optimization algorithms applied to black-box problems. In
other words, the algorithm needs to optimize (minimize) the
objective function f only by looking at the values of f (x)
(without knowing the concrete formula of it). We are going
to look at the following types of algorithms: gradient-based
algorithms (when we can access the gradient of f), e.g.,
Newton’s method, variants of gradient descent; Metropolis-
Hasting algorithms and its variants, e.g., simulated annealing;
and genetic algorithm and its variants, e.g., a probabilistic
model building genetic algorithm (PMBGA). The performance
of an optimization algorithm depends heavily on the class of
the problems it is applied to. (This fact is remotely related
to the no free lunch theorem for optimization). Thus, in the
following, we will use different objective functions to illustrate
the strong and weak points of those algorithms.

1. Gradient-based algorithms

To understand the idea of these algorithms, it is enough
to consider f : R → R defined on a single variable. The
simplest gradient descent for finding the minimum of f is
the following iterative algorithm: starting from a random
number x0 and successively computing xn+1 = xn − αf ′(xn).
Gradient-based algorithms perform well on functions with
nonvanishing gradients almost everywhere and very few local
minima and likely have a poor performance otherwise. For
example, the above algorithm would perform very well on
a simple function f (x) = x2, but much worse on the fast
oscillating function

f (x) = sin(8x) + 0.5 sin(4x)

+ 0.3 sin(2x) + 0.1 sin(x). (C1)

FIG. 3. Plot of the function (C1).

We plot the above function in Fig. 3. It is easy to see that we
can construct f (x) = ∑N

i=1 ai sin(2ix) such that the chance of
finding the global minimum is arbitrarily small.

2. Simulated annealing

Simulated annealing (SA) and its variants stem from the
Metropolis-Hastings algorithm. The main idea is constructing
a family of probability distribution p(x,T) based on the
values of the objective function f (x), with the requirement
p(x,0) > 0 only when x is a global minimum of f . Then we
repeatedly sample from p(x,T) while slowly decreasing T .
In practice, simulated annealing is also an iterative algorithm,
i.e., it chooses xn+1 based on xn. Since SA uses the Metropolis-
Hastings algorithm as a subroutine, there is a nonzero chance
to choose xn+1 such that f (xn+1) > f (xn). So, in principle,
SA could escape from local minima, which is an advantage
compared to gradient descent. Simulated annealing also works
for functions with discrete variables. As a trade-off, it is likely
to be slower compared to gradient descent when f has very
few local minima. Moreover, while SA has the mechanism to
escape from local minima, in practice it could work poorly on
functions with many local minima and high barriers between
them, e.g., the function (C1).

3. Genetic algorithms and beyond

In this section we will assume that f has the form
f : RN → R. A common feature in all versions of genetic
algorithms is that they maintain a population of solutions
{�xi,1 � i � M}, where �xi = (xi1, . . . ,xiN). For the first gen-
eration, a number of M ′ > M solutions is randomly generated,
then we pick the �xi with the M smallest f (�xi) as the population.
To generate new potential solutions for new generations,
several different operations are introduced. In the original
genetic algorithm, the two such operations are crossover
and mutation. The effect of the mutation operation on a
solution �x is

(x1, . . . ,xj , . . . ,xN) → (x1, . . . ,x
′
j , . . . ,xN),

where x ′
j is a random number. The crossover operation acts on

two solutions �x and �y,

(�x,�y) → (x1, . . . ,xj ,yj+1, . . . ,yN),

where the position j is picked randomly. Then we can use these
two operations to generate M ′′ new test solutions from the first
generation, combine them with the M old solutions, and pick
the top M solutions as the population of the second generation.
Later generations can be obtained by repeating these steps.

To illustrate the advantage of the (original) genetic algo-
rithm, we can consider the objective function f ,

f (�x) =
∑

j

fj (xj).

In this case, if f (�x) is (relatively) small, then either∑k
j=1 fj (xj) or

∑N
j=k+1 fj (xj) is (relatively) small. Thus

the crossover operations serve as nonlocal jumps, while the
mutation operations help to find local minimum. However, in
general, it is not clear for what kind of function f the inclusion
of the crossover operations could provide an advantage.

012335-9

MORITZ AUGUST AND XIAOTONG NI PHYSICAL REVIEW A 95, 012335 (2017)

It is easy to construct counterexamples such that the crossover
operations deteriorate the performance, such as

f (�x) = f (�xa,�xb) = ‖�xa − �xb‖,

where �xa and �xb have equal dimension and ‖ · ‖ is the
Euclidean norm. Clearly, in most cases, the crossover of two
good solutions will only produce inferior new solutions.

It turns out that the most important feature of genetic
algorithms is the use of a population. In comparison, other
optimization methods we mentioned previously only keep
track of the last test solution. If we are willing to believe
that good solutions of the function f have a certain structure
(thus partially dropping the black-box requirement of f), it is
possible that we can identify this structure from the solutions in
the population and then generate new test solutions. This idea
has led to the so-called probabilistic model building genetic
algorithm and its variants [37,41]. The optimization algorithm
we introduced in the main text is also closely related to this
idea.

Instead of going through the details of these algorithms, we
will explain the idea using a simple example, as illustrated in
Fig. 4. Suppose that we want to minimize a function f (x,y)
with two variables defined on a finite region of R2 and prior
knowledge of f allows us to make the hypothesis h that all
points {(x,y)} with values f (x,y) < M exist in a certain region
A [e.g., the square in Fig. 4(a)]. By sampling random points
from the domain of the function, we can verify or refute the
hypothesis h. For simplicity, we assume that h is satisfied for
all sampled points and N of them is inside the region; then
the opposite hypothesis of an α fraction of points {(x,y)} with
values f (x,y) < M existing outside the region A will give
the observed data a likelihood of (1 − α)N . Thus, we can just
optimize f over the region A by ignoring a very small fraction
of the good solutions. It is easy to see that we can iterate
this process, as long as we can formulate a small number
of hypotheses such that one of them will describe the good
solutions correctly. Our algorithm in the main text resembles
this toy example. However, for functions in high dimension
and sophisticated generative models such as RNNs, it is hard
to give a mathematical justification like in the above example.

It is natural to concatenate the above process [see Fig. 4(b)].
Let S0 be the domain of f , and S1 be the points in region A.
By sampling enough points from S1, we might be able to
build a model and sample from a even smaller set S2 with the
good solutions (e.g., find a region B ⊂ A). This way we will
introduce a series of sets {Si}i�K that we can sample from.
Assuming that the order of these subsets satisfies |Si+1| <
1
2 |Si |, then in the ideal scenario the above iterative algorithm
would provide an exponential speed-up with respect to K .
However, it is worth pointing out that automatically building a
model from a data set is, in general, a difficult task (if possible
at all).

As another concrete example we can consider the objective
function (C1) and a routine that looks for the periodicity of
the data and then generates new test solutions accordingly.
After we go through multiple generations, it is likely that the
population would converge to the correct periodic subset that
has the minimum f (x).

S0

S1

S2

S3

A

(a)

(b)

FIG. 4. Outline of our algorithm: (a) demonstrates that if we can
model the distribution correctly, then we will be able to sample from
good solutions more efficiently [red (darker) points correspond to
smaller f (x,y)] and (b) illustrates the idea of concatenating the
step performed in (a) in order to achieve an exponential speed-up
compared to random search.

4. Summary

As seen in the discussion above, each of these optimization
methods has its strong and weak points. Thus different methods
are chosen depending on the prior knowledge we have on the
concrete problems. It should be emphasized that we should
not consider these methods as in a pure competition; instead,
they can be used in complement with each other. For example,
stochastic gradient Langevin dynamics (SGLD) [42] can be
viewed as a combination of gradient descent and annealing,
and in [43] it is mentioned that inclusion of the deterministic
hill climber (discrete version of gradient descent) can lead to
a substantial speed-up in the PMBGA.

APPENDIX D: MACHINE LEARNING

This section will give a brief overview over the subfield of
machine learning known as supervised learning and introduce
a model for time-series data, known as recurrent neural
networks. Furthermore, some aspects of the optimization of
this class of models will be elaborated on.

012335-10

USING RECURRENT NEURAL NETWORKS TO OPTIMIZE . . . PHYSICAL REVIEW A 95, 012335 (2017)

1. Supervised learning

The field of machine learning can be divided into three
main subfields: supervised learning, unsupervised learning,
and reinforcement learning. These branches differ from each
other by the way in which the respective models obtain
information about the utility of their generated outputs.

In the case of supervised learning, it is assumed that for
every input that a model will be trained on, a “supervisor”
provides a target, corresponding to the desired output of the
model for the given input. These pairs of inputs and desired
outputs are then used to make the model learn the general
mapping between input and output.

More formally and from a Bayesian perspective, one
assumes to have a data set D of size N , consisting of several
tuples of independent and identically distributed observations
x ∈ Rl and corresponding targets y ∈ Rk such that

D = {
(xi,yi)

∣∣N
i=1

}
,

where xi and yi are instances of two random variables X

and Y , respectively. These random variables are assumed
to be distributed according to some unknown probability
distribution pgen, the so-called data-generating distribution

X,Y ∼ pgen(X,Y).

The goal of any supervised learning method now is to ap-
proximate the conditional distribution pgen(Y |X) in a way that
allows for evaluation in some new observation x∗ /∈ {xi}|Ni=1.
Since pgen is not available, one resorts to fitting the empirical
distribution pemp given by D as a surrogate problem.

A typical way of deriving a concrete optimization problem
from this is to make an assumption regarding the form of pgen

and treating the model at hand as a distribution pM (Y |X,)
of this kind, parametrized by the parameters of the model 	

that are also often called the weights of the model. Now the
fitting of the model can be perceived as a maximum-likelihood
problem and hence the supervised learning problem can be
formulated as

max
	

L(|D) = max
	

∏
i

pM (yi |xi,),

making use of the independent and identically distributed
assumption. A commonly employed trick to obtain a more be-
nign optimization problem is to instead optimize the negative
log-likelihood. As the logarithm is a monotonic function, this
transformation does not change the location of the optimum in
the error landscape, but turns the product of probabilities into a
sum over the tuples in D. This step then yields a minimization
problem, given by

min
	

− 1

N

∑
i

log2 pM (yi |xi,),

which is also called empirical risk minimization (ERM).
These statements of the problem can now be tackled with
the optimization methods appropriate for the given model.
In the case of the RNN, gradient-based optimization is the
state-of-the-art approach and will be explained in Sec. V.

While it is obvious that fitting a model with respect to
pemp is identical to fitting it to pgen as long as every tuple
in D is only considered once, this is not necessarily true

anymore when considering each tuple multiple times. This
however is needed by many models in order to fit their
parameters to a satisfying degree. In order to prevent the model
from learning characteristics of the empirical distribution
that are not present in the data-generating distribution, a
phenomenon commonly known as overfitting, often some form
of regularization, is applied. This may be done by punishing too
large parameter values, stopping the training after performance
starts to decrease on some holdout data set or by averaging
over multiple models. Note that in the Bayesian picture some
penalty terms can be perceived as the logarithm of a prior
distribution over 	, hence turning the optimization problem
into finding the maximum a posteriori parameters.

2. Recurrent neural networks

In this section the recurrent neural network model will be
discussed. We will start with an introduction of the standard
version of the model and based upon this explain the advanced
version of the model employed in this work in a second step.

a. Standard RNN model

In many areas of application, the data can be perceived as,
often non-Markovian, discrete time-series data, such that an
observation xt ∈ Rl at some time t depends on the previous
observations xt−1, . . . ,x1 or with respect to the framework
introduced above,

Xt ∼ p(Xt |Xt−1, . . . ,X1).

While Markov chains have been the state-of-the-art approach
for this kind of data in recent decades, with the recent rise
of artificial neural networks, RNNs [44,45] have also gained
momentum and are now generally considered to be the most
potent method.

An RNN is defined by the two nonlinear maps st : Rl → Rh

and ot : Rh → Ro given by

st = fs(Uxt + Wst−1 + bs),

ot = fo(V st + bo),

where U ∈Rh×l , W ∈Rh×h, V ∈Ro×h, bs ∈R1×h, bo ∈R1×o,
and the trainable parameters of the models are constituted
by 	 = {U,V,W,bs,bo}. The nonlinear function fs is often
chosen to be tanh, the rectifier function given by

rect(x) = max(0,x),

or the sigmoid function given by

sigm(x) = 1

1 + e−x
.

The function fo must be chosen according to the distribution
that is to be approximated by the model. For the case
of a multinoulli distribution as assumed in this work, the
corresponding function would be the softmax, defined as

softmax(x)j = exj∑
k exk

,

the superscripts in this case denoting the single elements of
the vector x.

012335-11

MORITZ AUGUST AND XIAOTONG NI PHYSICAL REVIEW A 95, 012335 (2017)

U

V
W

x

s

o

W W W W

V V V

U U U

ot−1 ot ot+1

st+1st−1 st

xtxt−1 xt+1

unfold

FIG. 5. Standard model of a recurrent neural network shown for
three time steps.

The intuition behind this simple model is that it combines
its information about the input at a given time step with a
memory of the previous inputs, referred to as the state of the
network. The precise nature of this combination and the state
depends on the weight matrices U and V and the bias vector
bs . The combined information is then used as input of the
chosen nonlinear function fh to generate the next state. From
this state, the output ot is then computed as defined by W , bo,
and fo. The effect of an RNN acting on the sequence {xt } is
illustrated in Fig. 5.

From the above explanation, it is clear that the power of
the model depends strongly on the size of the hidden state
h. It should however also be noted that another effective way
of increasing the expressive power of an RNN is to construct
a composition of multiple functions of the form of st (see
Fig. 6). In the machine learning terminology, the respective
functions are called the layers of an artificial neural network
and the number of composed functions is referred to as the
depth of a network. The layers between the input and the
output are referred to as hidden layers. The common intuitive
reasoning behind stacking multiple layers is that it will allow
the network to learn a hierarchy of concepts, called features,
from the initial input data. Thereby, the features are assumed
to be of increasing complexity with every layer, as they are
based on a linear combination of the features learned by the
layer below. Apart from this intuitive reasoning, also more
rigorous work on the benefits of using at least one hidden layer
between input and output can be found in the literature [46–48].
This ansatz of increasing the power of neural network models
via deepening their architecture is publicly known as deep

ot−1 ot ot+1

xtxt−1 xt+1

……

FIG. 6. Illustration of an RNN with three hidden layers.

learning and has led to a drastic increase in success of machine
learning methods during the past decade. However, having a
composition of many state-computing functions of similar size
can slow down the optimization process. This is why, when
forming such a composition, each pair of functions is often
connected via a simple linear projection from the space of the
state of the earlier function onto some lower-dimensional space
that is then used by the following function. Note that while all
the above claims seem natural and lead to a good enough
performance for our paper, more benchmarking is needed to
really confirm them.

Now, in the case of supervised learning, one assumes to be
in possession of a set of time series x1, . . . ,xn that will be used
to let the RNN learn to predict series of this kind. The natural
way of doing this is to define the pairs (xi,yi) := (xt ,xt+1).
While in principle the model is capable of taking into account
all previous time steps, in practice it shows that optimization
is only feasible for a relatively short number of steps. This
is mainly due to the fact that the gradients that are needed to
optimize the parameters of an RNN tend to grow to infinity or
zero for higher numbers of steps. This will be discussed more
in depth below.

b. Long short-term memory networks

In order to improve upon the standard RNN, Hochreiter and
Schmidhuber introduced the long short-term memory network
[49], which provides a different way of computing the state of
an RNN. Hence the following set of equations can be perceived
as a replacement for st from the previous section. The main
advantage of the approach is that it drastically mitigates the
problem of unstable gradients by construction. It is defined by
the following set of equations:

it = sigm(Uixt + Wist−1 + bi),

ft = sigm(Uf xt + Wf st−1 + bf),

ot = sigm(Uoxt + Wost−1 + bo),

c̃t = tanh(Uc̃xt + Wc̃st−1 + bc̃),

ct = ct−1 ∗ ft + c̃t ∗ it ,

st = tanh(ct) ∗ ot , (D1)

where again xt is the input at time step t , st−1 is the
previous state of the network, and ct is the state of the cell.
In addition, Ui,Uf ,Uo,U c̃ ∈ Rh×l , while Wi,Wf ,Wo,W c̃ ∈
Rh×h, bi,bf ,bo,bc̃ ∈ R1×h, and ∗ denotes the elementwise
multiplication.

As it can be seen from the equations, the way in which an
LSTM computes the state is a bit more involved. If needed, it
may however just be treated as a black box and can be stacked
just in the same manner as it was described for the plain RNN
model. The general idea of an LSTM is to give the model a
higher degree of control over the information that is propagated
from one time step to the next. This is achieved by making use
of so-called gates that control the information flow to and from
the network and cell state. These gates, by taking into account
the previous state and the new input, output vectors of values
in [0,1] that determine how much information they let through.
In the equations given above, it is called the input gate, ft is

012335-12

USING RECURRENT NEURAL NETWORKS TO OPTIMIZE . . . PHYSICAL REVIEW A 95, 012335 (2017)

C C̃

IN

OUT

i

f

o

S

FIG. 7. Long short-term memory model illustrated in a schematic
way. In addition to the diagram, the input gate i, the forget gate f ,
and the output gate o all depend on the current input xt and previous
state of the network st−1, as described in (D1).

referred to as the forget gate, and ot denotes the output gate.
Now, the mechanism works as follows.

(i) For a given time step t , the new input and previous
network state are processed by c̃t like for the standard RNN
and the output values are squashed to the interval [−1,1] to
yield candidate values for the next cell state.

(ii) The input gate it determines how to manipulate the
information flow from the candidate cell state. Likewise, the
forget gate ft determines how to affect the information flow
from the old cell state. The gated previous cell state and the
gated input are then added to form the new cell state ct .

(iii) Finally, the output gate ot determines what to output
from the new cell state. The new cell state is then also projected
onto the interval [−1,1] and put through the output gate to
become the network state.

The whole process is shown in Fig. 7.
Naturally, there exists a plethora of possibilities to adapt the

normal LSTM as explained above. One important enhance-
ment is commonly referred to as peepholes, which allows the
gates to incorporate the cell state via an extra term in the
sum, in addition to the input and the network state. One other
popular possibility introduced in [50] is the use of projection
layers between different time steps of LSTM. In this case, we
replace st−1 by rt−1 in the equations for it , ft , ot , and c̃t and
add the simple equation

rt = Wpst ,

where Wp ∈ Rk×h is the projection matrix. In this work we
have made use of both of these extensions of the normal LSTM.
For an exhaustive overview over the known variants of the
LSTM, we refer the interested reader to [35].

3. Optimization of RNNs

As the optimization problem described in the beginning
of this section cannot be solved analytically for the models
considered in this work, gradient-based approaches have
established themselves as the state of the art. However, in
the case of fitting the parameters of neural network models,
three main restrictions need to be accounted for.

(a) The number of parameters for neural network models
easily exceeds 100 000 and can for larger architectures go up
to several tens or even hundreds of millions. Hence, computing

the Hessian (or its inverse) explicitly is not tractable and so
one is limited to first-order or approximative second-order
methods.

(b) As the error function that is minimized is only a
surrogate error function, its global optimum is not necessarily
the optimum of the error function one actually wants to
minimize.

(c) For many real-world data sets, computing the gradient
of the complete sum of the error function over all samples is
not feasible. Hence, the sum is normally split up into smaller
parts called mini batches and these batches are looped over. A
complete loop over D is then called an epoch.

These restrictions have led to the rise of an own subfield
of machine learning that is concerned with the paralleliza-
tion of gradient computations in the mini batch case, the
approximation of second-order information, and the formal
justification for the splitting up of the error function. All of
the currently available methods are nevertheless extensions of
the simplest method for gradient-based optimization known as
steepest gradient descent: At iteration i in the loop over the
batches, the parameters 	 are updated according to

	i+1 = 	i − γ
∂E
∂	i

,

where E(D,) is the respective error function and γ is called
the step rate. The most straightforward natural adaption is to
make γ depend on the iteration and slowly decrease it over
time, following the intuition that smaller steps are beneficial
the closer one gets to the respective optimum. In addition to
that, many methods employ some kind of momentum term
[51] or try to approximate second-order information and scale
the gradient accordingly [39].

Besides this, the size of the batches also has an influence
on the performance of the respective optimization method.
In the extreme case where each batch only consists of one
sample, the gradient descent method is known to converge
almost surely to an optimum under certain constraints [52]. As
picking individual samples for optimization can be perceived
as sampling from the empirical distribution to approximate
the overall gradient, this method is called stochastic gradient
descent. Using single data points however is computationally
inefficient and by definition leads to heavily oscillating opti-
mization, so it is common practice to resort to larger batches.
Following the ERM interpretation, batches B consisting of SB

samples are often used to compute an approximation of the
mean gradient over D given by〈

∂E
∂	i

〉
D

≈
〈

∂E
∂	i

〉
B

= 1

SB

∑
(x,y)∈B

∂E(x,y)

∂	i

,

where obviously

lim
|B|→|D|

〈
∂E
∂	i

〉
B

=
〈

∂E
∂	i

〉
D

.

This interpretation is used, e.g., by the recently proposed
algorithm Adam, which has been shown to yield very good
local optima while being very robust with respect to noisy
gradients and needing comparatively little adjustment of its
parameters. We have employed Adam for fitting the models
used in this work.

012335-13

MORITZ AUGUST AND XIAOTONG NI PHYSICAL REVIEW A 95, 012335 (2017)

While the approach to optimizing artificial neural networks
is well established, this does not change the fact that the
optimization problems posed by them are inherently difficult. It
is well known that the error landscape becomes less smooth the
more layers one adds to a network. This results in error surfaces
with large planes where ∂E

∂	
≈ 0 that are followed by short but

very steep cliffs. If the step rate is not adapted correctly, the
optimization procedure is very likely to get stuck in one these
planes or saddle points and to jump away from an optimum
in the vicinity of 	 if evaluated on one of the cliffs. The
phenomena of the frequent occurrence of very large or very
small gradients are referred to in the literature as the exploding
gradient or vanishing gradient problem, respectively. To get
a better understanding of why these problems exist, it is
instructive to examine how the gradients for a given model
are obtained.

As has been explained above, multilayer neural network
models are a composition of nonlinear functions Rik → Rok :
xk+1 = fk(Wkxk + bk), where Wk is the weight matrix, bk the
bias vector, x0 the input data, and xK the final output of the
network. From this definition it is clear that ok = ik+1. For
convenience, we define yk ≡ Wkxk + bk . In order to obtain
the gradient for a specific Wk or bk one must obviously make
use of the chain rule such that

∂E
∂Wk

= ∂E
∂xk+1

∂xk+1

∂yk

∂yk

∂Wk

= ∂E
∂xK

⎛
⎝ K−1∏

j=k+1

∂xj+1

∂xj

⎞
⎠∂xk+1

∂yk

∂yk

∂Wk

and
∂E
∂bk

= ∂E
∂xk+1

∂xk+1

∂yk

∂yk

∂bk

= ∂E
∂xK

⎛
⎝ K−1∏

j=k+1

∂xj+1

∂xj

⎞
⎠∂xk+1

∂yk

∂yk

∂bk

,

where ∂
∂Wk

is the shortcut of doing the derivative elementwise:[
∂

∂Wk

]
ab

= ∂

∂[Wk]ab

.

The same convention applies to ∂
∂bk

. As ∂
∂Wk

and ∂
∂bk

depend
on all the gradients of the later layers, this formulation yields
an efficient method of computing the gradients for all layers
by starting with the uppermost layer and then descending in
the network, always reusing the gradients already computed.
Together with the fact that many of the commonly used
nonlinearities have an easy closed-form expression of the
first derivative, this allows for fully automatic computation
of the gradients as it is done in every major deep learning
framework. This dynamic programming method of computing
the gradients is known in the literature as backpropagation.
The vanishing (exploding) gradient problem arises because
of the product

∏K−1
j=k+1

∂xj+1

∂xj
in the above equations. For

example, if one of the ∂xj+1

∂xj
≈ 0 in the product, then likely we

have ∂E
∂Wk

≈ 0, which leads to an ineffective gradient descent.

Similarly, if many of the terms ∂xj+1

∂xj
have large norms, then

W W W
V V V

U U U

st

x1 x2

o2o1

W W
V V V

U U U

W W W
V V V

U U U

st

x1 x2

o2o1

W W
V V V

U U U

W W
V V V

U U U

st

x1

o1

W

x2

o2

W W
V V V

U U U

FIG. 8. Illustration of how we truncate the gradient computation
for long sequences. Here we divide the sequences into two halves. As
the first step, we compute the gradient of the error function E(�x1,�o1)
with respect to the parameters U,V,W , while ignoring the other
half of the network. In the second step, we compute the gradient of
E(�x2,�o2), while treating the final state of the network st of the first
half as a constant. The final gradients are approximated by the sums
of these two constituents. Thus, we are able to avoid the instability
of computing gradients, but still capture the correlation between two
halves, since we feed the final network state st into the second half.

there is a possibility that ∂E
∂Wk

becomes too large, which often
causes the optimization method to jump out of a local optimum.

In the case of an RNN as defined in Sec. V, the above
generic equations for the derivative become a little more
involved, as in addition to the term for possibly multiple
stacked layers, a term accounting for states of previous times
has to be added. Nevertheless, at the heart of the problem,
it is still about computing derivatives of composite functions.
This slightly more involved backpropagation method is known
as backpropagation through time and can also be fully
automatized. Similar to the multilayer neural network models
mentioned above, the gradient computation of RNNs also has
these instability issues. As can be seen from Fig. 5, the same
matrix W is used in all time steps of an RNN. Thus, a tiny
change of W could affect the output ot drastically when the
time step t gets big. In other words, the derivative of the
error function E with respect to W could again become very
large or very small in certain situations. To deal with this
issue, we could truncate the number of time steps during the
computation, as described in Fig. 8. More discussion on this
topic can be found in Sec. 3.2 of [32].

APPENDIX E: TECHNICAL ASPECTS

For the implementation of this work, we have made use
of PYTHON with the numerical libraries NumPy, SciPy, and
TensorFlow [53–55]. All experiments were run on single
workstations with up to eight threads and a GeForce Titan
X. The runtime of the experiments varied, depending on the
optimization parameters, from a few hours to days.

012335-14

USING RECURRENT NEURAL NETWORKS TO OPTIMIZE . . . PHYSICAL REVIEW A 95, 012335 (2017)

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, in Proceedings of
the Conference on Advances in Neural Information Processing
Systems 25, edited by F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger (MIT Press, Cambridge, MA, 2012),
pp. 1097–1105.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, arXiv:1312.5602.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou, V.
Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K.
Kavukcuoglu, T. Graepel, and D. Hassabis, Nature (London)
529, 484 (2016).

[4] R. S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992).
[5] U. Las Heras, U. Alvarez-Rodriguez, E. Solano, and M. Sanz,

Phys. Rev. Lett. 116, 230504 (2016).
[6] I. Geisel, K. Cordes, J. Mahnke, S. Jöllenbeck, J. Ostermann, J.

Arlt, W. Ertmer, and C. Klempt, Appl. Phys. Lett. 102, 214105
(2013).

[7] Ł. Pawela and P. Sadowski, Quantum Inf. Process. 15, 1937
(2016).

[8] M. Grace, C. Brif, H. Rabitz, I. A. Walmsley, R. L. Kosut, and
D. A. Lidar, J. Phys. B 40, S103 (2007).

[9] M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger,
Phys. Rev. Lett. 116, 090405 (2016).

[10] C. Chen, L.-C. Wang, and Y. Wang, Sci. World J. 2013, 869285
(2013).

[11] D. Dong, C. Chen, B. Qi, I. R. Petersen, and F. Nori, Sci. Rep.
5, 7873 (2015).

[12] L. Banchi, N. Pancotti, and S. Bose, npj Quantum Inf. 2, 16019
(2016).

[13] S. Machnes, U. Sander, S. J. Glaser, P. de Fouquières, A.
Gruslys, S. Schirmer, and T. Schulte-Herbrüggen, Phys. Rev.
A 84, 022305 (2011).

[14] D. J. Egger and F. K. Wilhelm, Phys. Rev. Lett. 112, 240503
(2014).

[15] M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M.
Itano, and J. J. Bollinger, Nature (London) 458, 996 (2009).

[16] P. Doria, T. Calarco, and S. Montangero, Phys. Rev. Lett. 106,
190501 (2011).

[17] J. Kelly et al., Phys. Rev. Lett. 112, 240504 (2014).
[18] P. B. Wigley, P. J. Everitt, A. van den Hengel, J. W. Bastian,

M. A. Sooriyabandara, G. D. McDonald, K. S. Hardman, C. D.
Quinlivan, P. Manju, C. C. N. Kuhn, I. R. Petersen, A. N. Luiten,
J. J. Hope, N. P. Robins, and M. R. Hish, Sci. Rep. 6, 25890
(2016).

[19] J. Combes, C. Ferrie, C. Cesare, M. Tiersch, G. J. Milburn, H. J.
Briegel, and C. M. Caves, arXiv:1405.5656.

[20] D. Orsucci, M. Tiersch, and H. J. Briegel, Phys. Rev. A 93,
042303 (2016).

[21] M. Tiersch, E. J. Ganahl, and H. J. Briegel, Sci. Rep. 5, 12874
(2015).

[22] L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999).
[23] A. M. Souza, G. A. Alvarez, and D. Suter, Phys. Rev. Lett. 106,

240501 (2011).
[24] G. Quiroz and D. A. Lidar, Phys. Rev. A 88, 052306 (2013).

[25] G. de Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, and R.
Hanson, Science 330, 60 (2010).

[26] A. Karpathy, J. Johnson, and L. Fei-Fei, arXiv:1506.02078.
[27] Z. C. Lipton, J. Berkowitz, and C. Elkan, arXiv:1506.00019.
[28] C. A. Ryan, J. S. Hodges, and D. G. Cory, Phys. Rev. Lett. 105,

200402 (2010).
[29] M. D. Grace, J. Dominy, R. L. Kosut, C. Brif, and H. Rabitz,

New J. Phys. 12, 015001 (2010).
[30] A. M. Souza, G. A. Álvarez, and D. Suter, Philos. Trans. R. Soc.

A 370, 4748 (2012).
[31] C. Shannon, Bell Syst. Tech. J. 27, 379 (1948).
[32] A. Graves, arXiv:1308.0850.
[33] J. B. Pollack, On connectionist models of natural language

processing, Ph.D. thesis, New Mexico State University, 1987.
[34] M. A. Nielsen, Neural Network and Deep Learning

(Determination Press, 2015).
[35] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J.

Schmidhuber, arXiv:1503.04069.
[36] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning

(MIT Press, Cambridge, 2016).
[37] M. Pelikan, D. E. Goldberg, and F. G. Lobo, Comput. Optim.

Appl. 21, 5 (2002).
[38] A. P. Dempster, N. M. Laird, and D. B. Rubin, J. R. Stat. Soc.

Ser. B 39, 1 (1977).
[39] D. Kingma and J. Ba, arXiv:1412.6980.
[40] A. M. Souza, G. A. Álvarez, and D. Suter, Phys. Rev. A 85,

032306 (2012).
[41] M. Pelikan, in Hierarchical Bayesian Optimization Algorithm

(Springer, Berlin, 2005), pp. 31–48.
[42] M. Welling and Y. W. Teh, in Proceedings of the 28th Inter-

national Conference on Machine Learning (ICML-11) (ICML,
Bellevue, 2011), pp. 681–688.

[43] M. Pelikan and A. K. Hartmann, in Scalable Optimization via
Probabilistic Modeling (Springer, Berlin, 2006), pp. 333–349.

[44] R. J. Williams and D. Zipser, Neural Comput. 1, 270 (1989).
[45] P. J. Werbos, Proc. IEEE 78, 1550 (1990).
[46] Y. Bengio and Y. LeCun, in Large-Scale Kernel Machines,

edited by L. Bottou, O. Chapelle, D. DeCoste, and J. Weston
(MIT Press, Cambridge, MA, 2007), Chap. 14.

[47] K. Hornik, M. Stinchcombe, and H. White, Neural Networks 2,
359 (1989).

[48] K. Hornik, Neural Networks 4, 251 (1991).
[49] S. Hochreiter and J. Schmidhuber, Neural Comput. 9, 1735

(1997).
[50] H. Sak, A. Senior, and F. Beaufays, arXiv:1402.1128.
[51] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, Proceedings of

the 30th International Conference on Machine Learning (ICML-
13) (ICML, Bellevue, 2013), pp. 1139–1147.

[52] D. Saad, On-line Learning in Neural Networks (Cambridge
University Press, Cambridge, 2009), Vol. 17.

[53] S. Van Der Walt, S. C. Colbert, and G. Varoquaux, Comput. Sci.
Eng. 13, 22 (2011).

[54] E. Jones, T. Oliphant, and P. Peterson (unpublished).
[55] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,

G. S. Corrado, A. Davis, J. Dean, M. Devin et al., software
available from TensorFlow.org.

012335-15

http://arxiv.org/abs/arXiv:1312.5602
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1103/PhysRevLett.68.1500
https://doi.org/10.1103/PhysRevLett.68.1500
https://doi.org/10.1103/PhysRevLett.68.1500
https://doi.org/10.1103/PhysRevLett.68.1500
https://doi.org/10.1103/PhysRevLett.116.230504
https://doi.org/10.1103/PhysRevLett.116.230504
https://doi.org/10.1103/PhysRevLett.116.230504
https://doi.org/10.1103/PhysRevLett.116.230504
https://doi.org/10.1063/1.4808213
https://doi.org/10.1063/1.4808213
https://doi.org/10.1063/1.4808213
https://doi.org/10.1063/1.4808213
https://doi.org/10.1007/s11128-016-1242-y
https://doi.org/10.1007/s11128-016-1242-y
https://doi.org/10.1007/s11128-016-1242-y
https://doi.org/10.1007/s11128-016-1242-y
https://doi.org/10.1088/0953-4075/40/9/S06
https://doi.org/10.1088/0953-4075/40/9/S06
https://doi.org/10.1088/0953-4075/40/9/S06
https://doi.org/10.1088/0953-4075/40/9/S06
https://doi.org/10.1103/PhysRevLett.116.090405
https://doi.org/10.1103/PhysRevLett.116.090405
https://doi.org/10.1103/PhysRevLett.116.090405
https://doi.org/10.1103/PhysRevLett.116.090405
https://doi.org/10.1155/2013/869285
https://doi.org/10.1155/2013/869285
https://doi.org/10.1155/2013/869285
https://doi.org/10.1155/2013/869285
https://doi.org/10.1038/srep07873
https://doi.org/10.1038/srep07873
https://doi.org/10.1038/srep07873
https://doi.org/10.1038/srep07873
https://doi.org/10.1038/npjqi.2016.19
https://doi.org/10.1038/npjqi.2016.19
https://doi.org/10.1038/npjqi.2016.19
https://doi.org/10.1038/npjqi.2016.19
https://doi.org/10.1103/PhysRevA.84.022305
https://doi.org/10.1103/PhysRevA.84.022305
https://doi.org/10.1103/PhysRevA.84.022305
https://doi.org/10.1103/PhysRevA.84.022305
https://doi.org/10.1103/PhysRevLett.112.240503
https://doi.org/10.1103/PhysRevLett.112.240503
https://doi.org/10.1103/PhysRevLett.112.240503
https://doi.org/10.1103/PhysRevLett.112.240503
https://doi.org/10.1038/nature07951
https://doi.org/10.1038/nature07951
https://doi.org/10.1038/nature07951
https://doi.org/10.1038/nature07951
https://doi.org/10.1103/PhysRevLett.106.190501
https://doi.org/10.1103/PhysRevLett.106.190501
https://doi.org/10.1103/PhysRevLett.106.190501
https://doi.org/10.1103/PhysRevLett.106.190501
https://doi.org/10.1103/PhysRevLett.112.240504
https://doi.org/10.1103/PhysRevLett.112.240504
https://doi.org/10.1103/PhysRevLett.112.240504
https://doi.org/10.1103/PhysRevLett.112.240504
https://doi.org/10.1038/srep25890
https://doi.org/10.1038/srep25890
https://doi.org/10.1038/srep25890
https://doi.org/10.1038/srep25890
http://arxiv.org/abs/arXiv:1405.5656
https://doi.org/10.1103/PhysRevA.93.042303
https://doi.org/10.1103/PhysRevA.93.042303
https://doi.org/10.1103/PhysRevA.93.042303
https://doi.org/10.1103/PhysRevA.93.042303
https://doi.org/10.1038/srep12874
https://doi.org/10.1038/srep12874
https://doi.org/10.1038/srep12874
https://doi.org/10.1038/srep12874
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevLett.106.240501
https://doi.org/10.1103/PhysRevLett.106.240501
https://doi.org/10.1103/PhysRevLett.106.240501
https://doi.org/10.1103/PhysRevLett.106.240501
https://doi.org/10.1103/PhysRevA.88.052306
https://doi.org/10.1103/PhysRevA.88.052306
https://doi.org/10.1103/PhysRevA.88.052306
https://doi.org/10.1103/PhysRevA.88.052306
https://doi.org/10.1126/science.1192739
https://doi.org/10.1126/science.1192739
https://doi.org/10.1126/science.1192739
https://doi.org/10.1126/science.1192739
http://arxiv.org/abs/arXiv:1506.02078
http://arxiv.org/abs/arXiv:1506.00019
https://doi.org/10.1103/PhysRevLett.105.200402
https://doi.org/10.1103/PhysRevLett.105.200402
https://doi.org/10.1103/PhysRevLett.105.200402
https://doi.org/10.1103/PhysRevLett.105.200402
https://doi.org/10.1088/1367-2630/12/1/015001
https://doi.org/10.1088/1367-2630/12/1/015001
https://doi.org/10.1088/1367-2630/12/1/015001
https://doi.org/10.1088/1367-2630/12/1/015001
https://doi.org/10.1098/rsta.2011.0355
https://doi.org/10.1098/rsta.2011.0355
https://doi.org/10.1098/rsta.2011.0355
https://doi.org/10.1098/rsta.2011.0355
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://arxiv.org/abs/arXiv:1308.0850
http://arxiv.org/abs/arXiv:1503.04069
https://doi.org/10.1023/A:1013500812258
https://doi.org/10.1023/A:1013500812258
https://doi.org/10.1023/A:1013500812258
https://doi.org/10.1023/A:1013500812258
http://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.1103/PhysRevA.85.032306
https://doi.org/10.1103/PhysRevA.85.032306
https://doi.org/10.1103/PhysRevA.85.032306
https://doi.org/10.1103/PhysRevA.85.032306
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1109/5.58337
https://doi.org/10.1109/5.58337
https://doi.org/10.1109/5.58337
https://doi.org/10.1109/5.58337
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/arXiv:1402.1128
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://www.TensorFlow.org

