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Continuous-variable beam-splitter (BS)-generated entanglement from single-mode optical states generated
by a single nonclassicality (NC)-inducing operation has been found to be immensely important in several
information processing tasks. There exists a broader class of optical states, generated from successive action
of multiple different NC-inducing operations, which show many intriguing nonclassical properties; however,
the BS conversion of the NC for such states remains unexplored. In this work we have critically analyzed the
BS-generated entanglement from such nonclassical optical states at input. Here we present a scenario where
BS output entanglement becomes nonmonotonic with the input NC parameters, accessible experimentally (e.g.,
number of photon excitation and squeezing strength), in contrast to the previous results with states comprising a
single NC-inducing operation. We explain this counterintuitive feature in terms of the competition between these
two NC-inducing operations as manifest in the contours of the Q functions associated with these states.
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I. INTRODUCTION

Quantum entanglement plays the central role in various
quantum information processing tasks such as quantum com-
munication, quantum computation, etc. [1]. States having such
nonlocal correlation can easily be obtained from single-mode
quantum light [2] by using a passive linear device such
as a beam splitter (BS) [3]. It is known that a necessary
and sufficient criterion for the output states of the BS to
be entangled is that at least one of the input ports is
nonclassical [4]. Nonclassical states are the quantum states
of light for which the Glauber-Sudarshan P distribution [5]
associated with the density operator ρ,

ρ =
∫

d2αP (α,α∗)|α〉〈α|, (1)

fails to be a true probability distribution [6], where |α〉 stands
for a coherent state. Nonclassical states of quantized light
can be generated by several nonclassicality (NC)-inducing
operations such as photon excitation [7], quadrature squeez-
ing [8], amplitude squeezing [9], etc. Thus a quantitative study
of BS-generated entanglement and input NC becomes very
important to obtain the desired amount of entanglement by
tuning experimentally accessible NC-inducing parameters.

In recent times, there has been an extensive quantitative and
qualitative study [3,4,10–12] of BS-generated entanglement
for various input nonclassical states with single NC-inducing
operations such as photon excitation, quadrature squeezing,
etc. It is worth noting that a quantitative aspect of these
studies [3,10–12] is that the BS output entanglement grows
monotonically with the input NC. Nonetheless, there exists a
broader class of optical states [13,14] that are generated under
successive action of the two different types of NC-inducing
operations, viz., photon excitation and quadrature squeezing.
These states exhibit many intriguing nonclassical effects [15–
17]. On the other hand, their two-mode versions are found to
be more entangled than the Einstein-Podolsky-Rosen (EPR)
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state |ψ〉EPR = Sab(r)|0〉a|0〉b [18] and also to improve the
efficiency of teleporting coherent states [19], with Sab(r) =
e

r
2 (a†b†−ab) being the two-mode correlated squeezing operator.

However, the BS-generated entanglement from such single-
mode states remains unexplored. Consequently, it becomes
imperative to analyze the BS-generated entanglement from
such single-mode states of light generated under multiple
NC-inducing operations in the context of quantum information
processing tasks with optical resources [20].

In this paper, we study the quantitative aspects of BS-
generated entanglement from the input single-mode photon-
added squeezed vacuum state (PASVS) [14] and the squeezed
number state (SNS) [13]. We find that the BS output entangle-
ment, from input SNS, depends monotonically on the number
of photon excitation and quadrature squeezing. On the other
hand, for input PASVS, we observe a nonmonotonic depen-
dence on both of them. To understand the specific behavior
of entanglement at the BS output, we analyze the input NC
in terms of well-known measures such as nonclassical depth,
the Hilbert-Schmidt distance from the nearest coherent state,
and negativity of the Wigner distribution. Our analytical and
numerical results show that none of these measures character-
ize the nonclassical aspects of PASVS and SNS properly to
account for corresponding BS output entanglement. Further, to
explain this counterintuitive result, we introduce the concept
of competition between the NC-inducing operations manifest
in terms of Q-function contours. We argue that, for PASVS,
such competition leads to the nonmonotonic entanglement at
the BS output, while for SNS the competition is insignificant.

In Sec. II, we briefly review the known results on BS
output entanglement from input states generated by single
NC-inducing operations, viz., photon addition and quadrature
squeezing. In Sec. III, in contrast to the cases in Sec. II,
we present the dependence of BS-generated entanglement on
the state parameters with input states composed of two NC-
inducing operations, in particular SNS and PASVS. In Sec. IV,
we present a quantitative study of effective NC of PASVS
and SNS in terms of the nonclassical depth, negativity of the
Wigner distribution, and the Hilbert-Schmidt distance from the
nearest classical state. In Sec. V, we propose a picture of these
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states in terms of contours of the Husimi-Kano Q function. We
explain the dependence of BS output entanglement on m and
r as arising from the competition between the two different
NC-inducing operations that generate the states.

II. BS-GENERATED ENTANGLEMENT FROM INPUT
STATES GENERATED UNDER SINGLE NC-INDUCING

OPERATIONS

In this section we focus on the BS-generated entanglement
from the squeezed vacuum state and the photon number
state. These states can be viewed as being generated from
the vacuum state under the action of a single NC-inducing
operation such as (i) quadrature squeezing implemented by
the squeezing operation S(r) = e

r
2 (a†2−a2) and (ii) photon

excitation given by a†m. In the squeezed vacuum state S(r)|0〉,
the variance V (X) (≡〈X2〉 − 〈X〉2) in the quadrature variable
X (= 1√

2
(a† + a)) is given by V (X) = e−r

2 . Hence r can be
taken to be a measure of squeezing in the state S(r)|0〉. It may
be noted that V (X) � 1

2 (i.e., r � 0) implies the state S(r)|0〉
is nonclassical in the sense that the Glauber-Sudarshan P

distribution corresponding to the state is not a true probability
distribution. In view of the fact that as r becomes larger
and larger, V (X) becomes smaller and smaller compared to
1
2 , it may be argued that the higher the value of r is, the
more nonclassical the state S(r)|0〉 is. In the same way, the
photon number state |m〉 = a†m√

m!
|0〉 is a nonclassical state.

Again, it is easily argued that the state |m〉 becomes more
nonclassical as m increases. This is so because, as m increases,
the Glauber-Sudarshan P distribution becomes more and more
singular compared to the δ function [2]. Thus, we see that at
least as far as the action on the vacuum state is concerned, the
two NC-inducing operations, S(r) and a†m, are NC increasing
as well, specifically in the sense that the NC of the respective
state increases as r or m increases. Recently, Rahimi-Keshari
et al. [21] described the NC of any quantum process as whether
it induces nonclassical effects on any classical state |β〉. Our
notion of a NC-increasing operation is consistent with their
definition since the vacuum state can be considered a special
case of |β〉 (β = 0).

With this background, we now visit the question of how the
BS output entanglement EBS varies with input NC when either
S(r)|0〉 or |m〉 is input at one port of the BS with vacuum |0〉
at the other. A passive (lossless) 50:50 BS is represented by
the transformation matrix

(
aout

bout

)
=

(
1/

√
2 1/

√
2

−1/
√

2 1/
√

2

)(
ain

bin

)
(2)

between the input and output modes. For any bipartite pure
entangled state |ψAB〉, entanglement is measured by the local
von Neumann entropy [1],

E(|ψAB〉) = −Tr[ρr ln(ρr)], (3)

where ρr = TrA[|ψAB〉〈ψAB|]. BS-generated entanglement
from input state |ψ〉 is thus obtained by replacing |ψAB〉 by
the corresponding state we get at the output of the BS.
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FIG. 1. Plot of (a) EBS(|m〉) with m and (b) EBS(S(r)|0〉) with r .

For a single-mode number state as input, the BS output
state [3,10] becomes

|m,0〉 BS−→ 1

2m/2

m∑
k=0

(
m

k

)1/2

|m − k,k〉. (4)

Using relations (3) and (4), one can obtain an analytic result
for BS output entanglement for |m〉 as [3,10]

EBS(|m〉) = −
m∑

k=0

1

2m

(
m

k

)
ln

[
1

2m

(
m

k

)]
. (5)

Note that in our notation EBS(|ψ〉) is the BS output entangle-
ment when state |ψ〉 is input at the BS.

Similarly, using the technique of a reduced variance matrix
for a bipartite Gaussian state [22], for an input single-mode
squeezed vacuum state, one has the analytic result

EBS(|S(r)|0〉) = e
r
2 + 1

2
ln

[
e

r
2 + 1

2

]

− e
r
2 − 1

2
ln

[
e

r
2 − 1

2

]
, (6)

and one can see that EBS given by Eq. (6) is an always
monotonically increasing function of r since the slope

∂

∂r
EBS(|S(r)|0〉) = −e

r
2

4
ln

[
1 − e

−r
2

1 + e
−r
2

]
(7)

is always positive for all r > 0.
We plot the dependence of EBS for input |m〉 in Fig. 1(a)

and S(r)|0〉 in Fig. 1(b).
Clearly, EBS increases monotonically as r or m is increased.

These results reinforce the argument made above that NC of
S(r)|0〉 or |m〉 increases with r or m, respectively, because
NC of the input is a resource from which one can extract
entanglement in the BS setting, as has been discussed by
Asboth et al. [12].

III. BS-GENERATED ENTANGLEMENT FROM INPUT
STATES GENERATED UNDER TWO NC-INDUCING

OPERATIONS

Let’s now consider the successive action of two different
NC-inducing operations, viz., quadrature squeezing and pho-
ton addition on an initial vacuum state. This leads to SNS [13]
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and PASVS [14] given by

|ψSNS〉 = S(r)|m〉 = S(r)a†m
√

m!
|0〉 =

∞∑
k=0

Cm
n |n〉,

(8)

|ψPASVS〉 = 1√
Nm

a†mS(r)|0〉,

where Nm = m!μmPm(μ),Pn(x) is the n-order Legendre poly-
nomial, and Cm

n are given in [23].
We now turn to the question of the quantitative aspects of

BS output entanglement when either SNS or PASVS is input
at one of the ports of the BS. Using relation (3), we get the BS
output states for input SNS and PASVS as

|ψSNS〉 BS−→
m∑

n=0

Cm
n

1

2n/2

n∑
p=0

(
n

p

)1/2

|n − p,p〉,

|ψPASVS〉 BS−→ 1√
Nm

∞∑
k=0

√
(2k + m)!

k!

(
τ

2

)k 1

2k+ m
2

2k+m∑
p=0

×
(

2k + m

p

)1/2

|2k + m − p,p〉. (9)

We have plotted EBS(|ψPASVS〉) and EBS(|ψSNS〉) as a function
of r for various values m in Fig. 2.

As is evident from Fig. 2(a), EBS(|ψPASVS〉) shows (except
in the case of m = 1) a nonmonotonic dependence on both r

and m. For all values of m (>1), EBS(|ψPASVS〉) first decreases
and then increases with an increase in r . For sufficiently large
r , in fact, EBS(|ψPASVS〉) depends predominantly on r .

Further, it can be seen from Fig. 2(a) that because EBS

curves depend nonmonotonically on r for various values of m,
EBS for larger values of m is, in fact, less than that for smaller
values of m, beyond r ∼ 0.60.

In contrast, EBS(|ψSNS〉) [Fig. 2(b)] increases monotoni-
cally with both r and m. This monotonic dependence is quite
similar to what one has when either S(r)|0〉 or |m〉 is input at
the BS, as discussed in Sec. II.

From a comparison of the results in the cases of SNS and
PASVS, it is evident that the dependence of BS output on r

and m depends critically on the order in which the squeezing
S(r) and the photon addition a†m operations act on the initial
vacuum state. This nonmonotonic dependence in the case
of PASVS is indeed counterintuitive given that (as we have
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FIG. 2. Dependence of E(|	〉out
BS) for (a) PASVS and (b) SNS on

r for m = 1 (black solid line), 2 (brown dashed line), 3 (green dotted
line), 4 (blue dash-dotted line), and 5 (red dash-double-dotted line).

noted in Sec. II), BS input states generated under a single
NC-inducing operation lead to monotonically increasing BS
output entanglement.

It is noteworthy that in the case of m = 1 entanglement
curves for |ψPASVS〉 and |ψSNS〉 are identical. This feature can
be understood from the following argument. For m = 1, using
the properties of the squeezing operator, one can show that

|ψPASVS〉 = a†S(r)|0〉
μ

= S(r)(μa† + νa)|0〉
μ

= S(r)|1〉 = S(r)a†|0〉, (10)

where μ = cosh(r) and ν = sinh(r). Thus we see that for m =
1, |ψPASVS〉 and |ψSNS〉 are identical. On the other hand, for
m = 2, a similar calculation yields

|ψPASVS〉 = a†2S(r)|0〉
μ

√
2(3μ2 − 1)

= S(r)(μa† + νa)2|0〉
μ

√
2(3μ2 − 1)

= S(r)[μ2a†2 + μν(2a†a + 1)]|0〉
μ

√
2(3μ2 − 1)

= 1

μ
√

2(3μ2 − 1)
[μ

√
2S(r)|2〉 + νS(r)|0〉]. (11)

Note that here |ψPASVS〉 is a superposition of two different
squeezed number states, namely, S(r)|2〉 and S(r)|0〉. For
higher photon excitation (m � 2), |ψPASVS〉 contains a su-
perposition of more SNSs and differs from the particular
S(r)|m〉 even more. As a consequence, with an increase in
m, EBS(|ψPASVS〉) differs more from EBS(|ψSNS〉), as observed
in Fig. 2.

IV. EFFECTIVE SINGLE-MODE NC GENERATED UNDER
TWO NC-INDUCING OPERATIONS

In a first attempt to resolve the nonmonotonic dependence
mentioned above, we argue that for states generated under
multiple NC-inducing operations, SNS and PASVS in particu-
lar, r and m individually may not measure the nonclassicality
of these states, but one should perhaps work with an effective
measure. Several nonclassicality measures have been proposed
in the literature such as the nonclassical depth [24], Wigner
negativity [25], and the Hilbert-Schmidt distance [26] from
the nearest classical state. In this section we shall investigate
if any of these measures faithfully captures the NC of these
states, and if they do, working with such effective measures
will allow us to understand this nonmonotonic dependence.

A. Nonclassical depth

The nonclassical depth of any quantum state of light
is defined as the minimal smoothing needed to wash out
the negativity (and singularity) of the Glauber-Sudarshan P

distribution. From the P distribution one can define a general

η convoluted distribution, R(z,η) = 1
η

∫
d2ω
π

e
− |z−ω|2

η P (ω). The
nonclassical depth ηmin is defined as the minimum value
of η needed to make R(z,η) a positive semidefinite regular
function [24].
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The functions R(z,η) for PASVS and SNS (Appendix A)
are given as

R(z,η)PASVS = Am
1 e

|z|2
1−η W0(z,z∗,η)

μNm

√
η2 − τ 2(1 − η)2

m∑
k=0

(−1)mm!

k!(m − k)!

×
(

D1

A1

)k

Lm−k

( |B1|2
4A1

)
,

R(z,η)SNS = Am
2 e

|z|2
1−η W0(z,z∗,η)

μ
√

η2 − τ 2(1 − η)2

m∑
k=0

(−1)m−km!

k!(m − k)!

×
(

D2

A2

)k

Lm−k

( |B2|2
4A2

)
, (12)

where

W0(z,z∗,η) = exp

(
−

η

1−η
|z|2 − τ

2 [z2 + z∗2]

η2 − τ 2(1 − η)2

)
,

A1 = τ (1 − η)2

2[η2 − τ 2(1 − η)2]
,A2 = A1

μ2
− τ

2
,

B1 = ηz − τ (1 − η)z∗

η2 − τ 2(1 − η)2
,B2 = B1

μ
, (13)

D1 = η(1 − η)

η2 − τ 2(1 − η)2
,D2 = D1

μ2
,

μ = cosh r,τ = tanh r, and Ln(x) is the nth-order Laguerre
polynomial.

Because of the presence of the Laguerre polynomial
[Eq. (12)], the positiveness of the function R(z,η) is not
guaranteed for all choices of η. In such cases, as prescribed
in [24], the nonclassical depth has to be taken to be unity.
Thus we have a situation where the nonclassical depth for
both |ψSNS〉 and |ψPASVS〉 is the same as the photon number
state, and hence it is independent of the squeezing strength r .
Clearly, nonclassical depth fails to be a faithful measure of NC
as far as these states are concerned. Further, our conclusion,
specifically in the context of these states, is in agreement with
the general conclusion that nonclassical depth is always unity
for all non-Gaussian pure states [27].

B. Negativity of the Wigner function

It is well known that the Wigner function Wρ(z,z∗) of any
state of light ρ, being negative in phase space, indicates that
the state ρ is nonclassical. This criterion of course fails for
Gaussian states. The phase-space integral of the negative part
of the Wigner function, the Wigner negativity

δ =
∫

d2z
π

|Wρ(z,z∗)| − 1

2
, (14)

may be considered a measure of NC [25]. A larger δ implies
that the state is more nonclassical.

 0.2
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 0.25  0.5  0.75

δ

r

FIG. 3. Dependence of δ on r for m = 1 (black solid line), 2
(brown dashed line), 3 (green dotted line), 4 (blue dash-dotted line),
and 5 (red dash-double-dotted line) for PASVS.

The Wigner functions of PASVS and SNS (Appendix B)
are given by

WSNS(α,α∗) = (−1)me−2|β|2Lm(4|β|2),

WPASVS(α,α∗) = 2(−1)mm!e−2|β|2μmνm

2mNm

m∑
k=0

m!
(

τ
2

)−k

k!(m − k)!

×Lm−k

(
2|β|2

τ

)
, (15)

where μ = cosh r,ν = sinh r,β = μα − να∗.
In Fig. 3, the Wigner negativity of PASVS is plotted as a

function of the squeezing strength r for various values of the
photon addition number m. For all values of m, the Wigner
negativity falls off with increasing r . This can be understood
as being due to the photon addition operation for large r . In
the case of SNS, however, Wigner negativity is independent of
r , and hence it is the same as that of the number state |m〉. The
independence of Wigner negativity on r , in the case of SNS,
can be easily understood from the following fact. If Wρ(x,p) is
the Wigner function of a given state ρ, then the Wigner function
of the state ρ ′ = S(ζ )ρS†(ζ ) is Wρ(x ′,p′), where x ′,p′ and x,p

are related to each other by a linear canonical transformation.
Since the Jacobian of any linear canonical transformation is
unity, Wigner negativities of ρ and ρ ′ are the same.

As in the case of the nonclassical depth, again, we have
a situation where the Wigner function negativity fails to be a
faithful measure of NC as far as SNS is concerned. As our aim
is to do a comparative study of PASVS and SNS in the context
of entanglement of the BS output state with these states as the
input, it is desirable that we have a measure of NC that works
equally well for both the NC-inducing operations, i.e., photon
excitation and quadrature squeezing.

C. Hilbert-Schmidt distance from the nearest coherent state

A measure of NC based on the Hilbert-Schmidt distance
between density operators has been proposed in the litera-
ture [26]. This measure is defined as the Hilbert-Schmidt
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FIG. 4. Dependence of dNC for (a) PASVS and (b) SNS on r for
m = 1 (black solid line), 2 (brown dashed line), 3 (green dotted line),
4 (blue dash-dotted line), and 5 (red dash-double-dotted line).

distance of a given density operator ρ from the nearest classical
state. Since coherent states |β〉 are the only pure classical states
|β〉 [28], dNC for a pure state |ψ〉 is defined as

dNC = inf
√

2[1 − 〈β|ψ〉]1/2, (16)

where infimum is taken over the set of all coherent states |β〉,
with β being a complex number.

We have calculated dNC for the two states, PASVS and SNS.
While dNC for PASVS has a closed-form analytic expression
given by

dNC)PASVS =
√

2

[
1 − mme−m

(1 − τ )mNm

] 1
2

, (17)

dNC for SNS can at best be reduced to the simple form

dNC)SNS = inf
β

√
2

[
1 − τme−|β|2+ τ

2 (β2+β∗2)

μ2m
Lm

( |β|2
2μν

)] 1
2

,

(18)

from which the computation proceeds via a numerical opti-
mization.

In Figs. 4(a) and 4(b) we have plotted dNC for PASVS
and SNS. For PASVS, dNC first decreases and then increases
with an increase in r for all m; however, for r � 0.20, we
observe a monotonic dependence of dNC upon m, while for
larger r (� 0.20) such monotonicity breaks down. For m � 2,
dNC shows a nonmonotonic behavior [Fig. 4(a)] consistent
with that of EBS [Fig. 2(a)]. In contrast, in the case of m = 1,
dNC reveals nonmonotonic behavior that is inconsistent with
EBS. Here we have a situation, in particular, for m = 1, in the
case of PASVS where NC (as measured by dNC) decreases
while the corresponding EBS [Fig. 2(a)] increases, which
is unphysical. On the other hand, for SNS, we observe a
nonmonotonic dependence of dNC [Fig. 2(b)] on r but a
monotonic dependence on m. For all m, as r increases, it
first decreases and then increases. Similar to the case for
PASVS, for SNS, we also have an unphysical situation where
the NC (as measured by dNC) decreases while EBS [Fig. 2(b)]
increases with r for all m. This leads us to the conclusion that
dNC is not an acceptable measure of NC of states generated
under multiple NC-inducing operations, in particular SNS and
PASVS.

It appears from the above discussion that none of the three
measures considered above is an acceptable measure of NC
of the states we have studied in this paper. Whether a suitable
measure of NC can be given that shows a dependence on r and
m for such states that is consistent with the dependence of EBS

on these parameters remains an open question.

V. MONOTONICITY VERSUS NONMONOTONICITY
QUESTION: ROLE OF COMPETING

NONCLASSICALITIES

In this section we shall outline our point of view that the
nonmonotonicity in the EBS curves (in the case of PASVS)
is a consequence of a competition between the two different
kinds of NC-inducing operations underlying these states.

Various counterintuitive features seen in Fig. 2(a) can be
attributed to the effects of such a competition, in particular the
feature that we discussed after Fig. 2, i.e., that EBS for larger
values of m is, in fact, less than that for smaller values of m

beyond r ∼ 0.60.
We illustrate this competition in terms of contours of the

Q function associated with these states. To begin with, it
is helpful to visualize the effect of the two NC-inducing
operations acting individually on an initial vacuum state in
terms of the deformation induced in the circular Q-function
contour of the vacuum state. As is well known, light (initially
in a coherent state) propagating through a medium with a
Kerr nonlinearity undergoes radial squeezing [29], and the
photon number state can be thought of as an extreme case
of a radially squeezed state. Here, figuratively speaking, the
photon excitation (addition) operation (a†)m can be thought of
as deforming the circular Q-function contour of the vacuum
state into an extreme crescent shape. On the other hand, the
squeezing operation S(r) can be thought of as deforming the
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FIG. 5. Contour plots of the Q function for PASVS for different
m and r . The axes of the subplots are the quadrature components
given by X1 = β+β∗√

2
and X2 = β−β∗

i
√

2
.
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FIG. 6. Contour plots of the Q function for SNS for different m

and r . The axes are the same as in Fig. 5.

initial circular Q-function contour of the vacuum state into an
ellipse [30].

The above picture can now be applied to states with two
NC-inducing operations applied in succession. As is evident
from Fig. 5, in the case of PASVS, for small r , with an
increase in m, the contours become more crescent shaped,
indicating the dominant number state character. However, as
r increases, except for the case of m = 1, the crescent-shaped
contours smooth out and become more elliptic. This points
to a crossover in the dominant character of the state, from
a photonic to a quadrature squeezed one. Such a crossover
arises due to an overwhelming competition between photon
addition and quadrature squeezing operations. For higher r

(� 0.60), the Q-function contours tend to become more and

more elliptic. It is our view that this competition, as manifest
in terms of the crossover from crescent-shaped to elliptic
contours of the Q function, is what is behind the change in
slope that is evident in the EBS curve for PASVS [Fig. 2(a)].

On the other hand, in the case of SNS (Fig. 6), unlike in the
case of PASVS, there does not appear to be any significant
crossover from crescent-shaped to predominantly elliptic
Q-function contours. This points to a rather insignificant
competition between the two NC-inducing operations, namely,
photon excitation and quadrature squeezing. Consequently, no
change in slope is evidenced in the corresponding EBS curve
[Fig. 2(b)].

To sum up, the key to understanding the monotonicity
vs nonmonotonicity question is therefore the degree of
competition between the two NC-inducing operations. An
overwhelming competition leads to a slope change in the EBS

curve and hence a nonmonotonic dependence. Whether this
competition is overwhelming or insignificant can be inferred
from the contours of the Q functions associated with the states
depending on whether or not they undergo a crossover from
crescent shaped to elliptic as r or m is increased.

VI. CONCLUSION

In conclusion, we have quantitatively studied the BS output
entanglement for states generated from successive application
of two different NC-inducing operations that lead to, in
particular, SNS and PASVS. We have observed that while
BS output entanglement shows a monotonic dependence on
squeezing strength and the number of photon addition in the
case of SNS, this dependence is nonmonotonic in the case of
PASVS. We show that any attempt to understand this issue
of monotonicity vs nonmonotonicity fails since none of the
measures such as the nonclassical depth, Wigner negativity,
and Hilbert-Schmidt distance proves to be an acceptable
measure of NC of these states. We have offered an intuitive
picture in terms of contours of the associated Q function of
these states and pointed out that the competition between
these two different NC-inducing operations is the key to
understanding the monotonicity vs nonmonotonicity issue.

APPENDIX A: R(z,η) FOR PASVS AND SNS

Introducing the expression of P (γ ) in terms of the density operator ρ, the η-convoluted function R(z,η) can be written in
terms of ρ as

R(z,η) = e
|z|2
1−η

1 − η

∫
d2β

π
〈−β|ρ|β〉e− (2η−1)|β|2+(z∗β−zβ∗)

1−η . (A1)

For PASVS, we have 〈β|ψPASVS〉 = β∗m√
μNm

e− |β|2
2 + τ

2 β2
. Thus the R(z,η) for PASVS becomes

R(z,η)PASVS = 1

1 − η
e

|z|2
1−η

∫
d2β

π
〈−β|ψPASVS〉〈ψPASVS|β〉 exp

(
− (2η − 1)|β|2 + (z∗β − zβ∗)

1 − η

)

= 1

μNm(1 − η)
e

|z|2
1−η

∫
d2β

π
(−|β|2m) exp

(
− η|β|2

1 − η
+ τ (β2 + β∗2)

2
+ zβ∗ − z∗β

1 − η

)
.
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One can derive the above non-Gaussian integral using parametric differentiation as

R(z,η)PASVS = (−1)m

μNm(1 − η)
e

|z|2
1−η ∂m

a ∂m
b

[
exp

(
− η

1 − η
|β|2 + τ

2
(β2 + β∗2) − z∗

1 − η
β + z

1 − η
β∗

)
exp(aβ + bβ∗)

]
a=0,b=0

= (−1)m

μNm(1 − η)
e

|z|2
1−η ∂m

a ∂m
b

{ ∫
d2β

π
exp

(
− η

1 − η
|β|2 + τ

2
(β2 + β∗2)

)

× exp

[(
a − z∗

1 − η

)
β +

(
b + z

1 − η

)
β∗

]}
a=0,b=0

.

For any Gaussian integral, we know that

∫
d2z

π
eζ |z|2+ξz+ηz∗+f z2+gz∗2 = e

−ζ ξη+f η2+gξ2

ζ2−4fg√
ζ 2 − 4fg

, (A2)

provided ζ 2 − 4fg > 0. Using formula (A2), for R(z,η)PASVS, we get

R(z,η)PASVS = Am
1 e

|z|2
1−η

μNm

√
η2 − τ 2(1 − η)2

W0(z,z∗,η)∂m
a ∂m

b [eA1a
2+B1a−B∗

1 +D1ab+A1b
2
]a=0,b=0

= Am
1 e

|z|2
1−η

μNm

√
η2 − τ 2(1 − η)2

W0(z,z∗,η)
m∑

k=0

(−1)m
m!

k!(m − k)!

(
D1

A1

)k

Lm−k

( |B1|2
4A1

)
, (A3)

where

W0(z,z∗,η) = exp

(
−

η

1−η
|z|2 − τ

2 (z2 + z∗2)

η2 − τ 2(1 − η)2

)
, A1 = τ (1 − η)2

2[η2 − τ 2(1 − η)2]
,

B1 = ηz − τ (1 − η)z∗

η2 − τ 2(1 − η)2
, D1 = η(1 − η)

η2 − τ 2(1 − η)2
. (A4)

Similarly, using the technique of parametric differentiation, one can easily derive R(z,η) for an SNS. Since 〈β|ψSNS〉 =
e
− |β|2

2 + τ
2 β∗2

√
μm!

∂m
a [e− τ

2 a2+ β∗
μ

a]
a=0

, we have

R(z,η)SNS = 1

1 − η
e

|z|2
1−η

∫
d2β

π
〈−β|ψSNS〉〈ψSNS|β〉exp

(
− (2η − 1)|β|2 + (z∗β − zβ∗)

1 − η

)

= e
|z|2
1−η

μm!(1 − η)
∂m
a ∂m

b

{
exp

(
− τ

2
(a2 + b2)

) ∫
d2β

π
exp

[
− η

1 − η
|β|2 +

(
b

μ
− z∗

1 − η

)
β

−
(

a

μ
− z

1 − η

)
β∗ + τ

2
(β2 + β∗2)

]}
a=0,b=0

= Am
2 e

|z|2
1−η

μ
√

η2 − τ 2(1 − η)2
W0(z,z∗,η)∂m

a ∂m
b [eA2a

2+B2a+B∗
2 −D2ab+A2b

2
]a=0,b=0

= Am
2 e

|z|2
1−η

μ
√

η2 − τ 2(1 − η)2
W0(z,z∗,η)

m∑
k=0

(−1)m−k m!

k!(m − k)!

(
D2

A2

)k

Lm−k

( |B2|2
4A2

)
, (A5)

where

W0(z,z∗,η) = exp

(
−

η

1−η
|z|2 − τ

2 (z2 + z∗2)

η2 − τ 2(1 − η)2

)
, A2 = A1

μ2
− τ

2
, B2 = B1

μ
, D2 = D1

μ2
. (A6)

APPENDIX B: W (z,z∗) FOR PASVS AND SNS

Here, using the technique discussed in Appendix A, we calculate the Wigner function for PASVS and SNS. The Wigner
distribution for any density operator is given as

W (z,z∗) = 2e2|z|2
∫

d2β

π
〈−β|ψSNS〉〈ψSNS|β〉e2(zβ∗−z∗β). (B1)
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Thus, the Wigner distributions for PASVS and SNS are given as

WPASVS(α,α∗) = 2e2|α|2
∫

d2β

π
〈−β|ψPASVS〉〈ψPASVS|β〉 exp[2(αβ∗ − α∗β)]

= 2e2|α|2

Nmμ

∫
d2β

π
e−|β|2+2(αβ∗−α∗β)∂m

p

[ ∫
d2γ

π
e−|γ |2−β∗γ+pγ ∗+ τ

2 γ ∗2

]
p=0

∂m
q

[ ∫
d2η

π
e−|η|2+qη+βη∗+ τ

2 η

]
q=0

= 2e2|α|2

Nmμ
∂m
p ∂m

q

[
1√

1 − τ 2
e

1
1−τ2 [−(p−2α)(q−2α∗)+ τ

2 (p−2α)2+(q−2α∗)2]
]

p=0,q=0

= 2e2[(μ2+ν2)|α|2−μν(α2+α∗2)]

Nm

∂m
p ∂m

q [e
μν

2 (p2+q2)−μ2pq+2μq(μα−να∗)+p(μα∗−να)]p=0,q=0

= 2(−1)mm!e−2|β|2μmνm

2mNm

�m
k=0

m!( τ
2 )−k

k!(m − k)!
Lm−k

(
2|β|2

τ

)
. (B2)

WSNS(α,α∗) = 2e2|α|2
∫

d2β

π
〈−β|ψSNS〉〈ψSNS|β〉e2(αβ∗−α∗β)

= 2e2|α|2

m!μ
∂m
p ∂m

q

[
e− τ

2 (p2+q2)
∫

d2β

π
e
−|β|2+( q

μ
−2α∗)β−( p

μ
−2α)β∗+ τ

2 (β2+β∗2)
]

p=0,q=0

= 2e2[(μ2+ν2)|α|2−μν(α2+α∗2)]

m!
∂m
p ∂m

q [e−pq+2q(μα−να∗)+2p(μα∗−να)]p=0,q=0 = 2(−1)me−2|β|2Lm(4|β|2), (B3)

where μ = cosh r,ν = sinh r,β = μα − να∗. Evidently, for η = 1
2 , Eqs. (A3) and (A5) coincide with Eqs. (B2) and (B3),

respectively, since for η = 1
2 , R(z,η) coincides with the respective Wigner function, W (z,z∗).
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