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Quantum efficiency of a single microwave photon detector based
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Motivated by recent interest in implementing circuit quantum electrodynamics with semiconducting quantum
dots, we consider a double quantum dot (DQD) capacitively coupled to a superconducting resonator that is driven
by the microwave field of a superconducting transmission line. We analyze the DQD current response using
input-output theory and show that the resonator-coupled DQD is a sensitive microwave single photon detector.
Using currently available experimental parameters of DQD-resonator coupling and dissipation, including the
effects of 1/f charge noise and phonon noise, we determine the parameter regime for which incident photons are
completely absorbed and near-unit �98% efficiency can be achieved. We show that this regime can be reached
by using very high quality resonators with quality factor Q � 105.
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I. INTRODUCTION

High-performance, single-photon detectors are essential
tools in quantum optics, with applications in optical quantum
information processing, communication, cryptography, and
metrology [1]. Single-photon detection in the microwave
regime has similar applications in the emerging field of mi-
crowave quantum photonics, made possible by recent advances
in implementing circuit quantum electrodynamics (cQED)
with superconducting circuit technology [2,3], but are more
difficult to achieve because microwave photons have energy
five orders of magnitude less than optical photons. Besides
photonics, microwave photon detectors have applications in
astronomy and cosmology, for example, in measuring the
cosmic microwave background [4]. Microwave radiometers
are commonly used in meteorological and oceanographic
remote sensing.

Recent theoretical proposals and experimental develop-
ments in microwave photon detectors include those based
on Josephson junctions [5–10] and opto-electromechanical
systems [11–13]. At the same time, experimental progress
in implementing cQED with semiconducting quantum dots
is showing promise [14–24]. Currently available resonator–
quantum dot systems already allow for some interesting
quantum optics applications such as on-chip single-emitter
masers [25,26] and tunable self-interaction and dissipation of
the resonator photons induced by the quantum dot [27,28].
When a quantum dot is connected to electric leads, this
system provides a platform for studying the interplay between
quantum impurity physics and quantum optics [29].

In this paper, we propose a photon detector based on
photon-assisted tunneling of electrons through a double
quantum dot (DQD) and determine the quantum efficiency
of single-photon detection. We identify the parameter regime
where reflection of input photons from the resonator vanishes,
so that near-unit efficiency can be achieved with currently
available experimental parameters. Such a high efficiency
is possible even in the presence of strong DQD dissipation
because the detection process takes advantage of fast dot-lead

tunneling relative to the DQD inelastic decay rate, and does
not require strong DQD-resonator coupling relative to the
DQD dissipation rates. The photon detector utilizes only
charge states of the DQD and does not require magnetic fields
that would degrade the quality factor of the superconducting
resonator cavities.

The zero-reflection regime is also relevant in the context
of quantum computation, since it enables distant transmission
of quantum information required in quantum cryptography
and communication [30,31]. We also note that when the input
photons come from a hot thermal source, this device acts as a
quantum heat engine [32,33].

This paper is organized as follows. In Sec. II, we introduce
our theoretical model for the transmission line carrying incom-
ing photons and the photon detector. In Sec. III, we present
the equations of motion governing the system dynamics, and
in Sec. IV, we present the steady-state solution, which is used
to derive an analytic expression for the quantum efficiency of
photon detection in Sec. V. In Sec. VI, we discuss how the
reflected signal is incorporated in our model, and in Sec. VII,
we find the optimal parameter regime. A brief summary of
the decoherence model we used for the DQD is given in the
Appendix.

II. MODEL

We consider a microwave photon detector consisting of
a superconducting microwave resonator coupled to a DQD,
which receives photons from a semi-infinite microwave
transmission line, as shown in Fig. 1. The DQD is operated
in the “pumping” configuration, with zero source-drain bias
and near the charge transition between the charge states
|L〉 = |N + 1,M〉 and |R〉 = |N,M + 1〉, where |N,M〉 de-
notes N (M) electrons in the left (right) dot. The electron
Hamiltonian governing behavior of the dot with M + N + 1
electrons is

HDQD = �
ετz + 2tcτx

2
= �ωσσz

2
, (1)
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FIG. 1. Top left: A transmission line carries a continuous wave of
microwave photons with flux Ṅ and frequency ωin. Right dashed box:
The photon detector is a single-port superconducting resonator with
frequency ωa , capacitively coupled to a double quantum dot (DQD)
with a coupling g. The DQD is set to zero source-drain bias, with
the lead chemical potentials set in between the ground and excited
state. Absorption of a resonator photon causes transitions between
the DQD states |g〉 and |e〉, resulting in current flow. Lower left
box: Energy levels (horizontal lines) and transition processes (single
directed arrows) in the resonator-DQD system. A single photon
received by the resonator (|g〉|n + 1〉) can be emitted at the rate κ

or be absorbed by the DQD at the rate g2/�2, exciting the metastable
state |e〉|n〉 and then decaying back to the system ground state |g〉|n〉
at the inelastic decay rate �1.

where τx,z are the Pauli matrices in the charge basis, |L,R〉,
while σz = |e〉〈e| − |g〉〈g| is the diagonal Pauli matrix in the
basis of eigenstates of HDQD:(|g〉

|e〉
)

=
(

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

)(|L〉
|R〉

)
. (2)

We introduced the following notations: ε is the DQD voltage
bias across the dots, counted from the charge degeneracy point,
tc is the interdot tunnel coupling, and ωσ = √

4t2
c + ε2 is the

DQD excitation energy and cos θ = −ε/ωσ .
We consider zero bias across the leads, when electrons in the

excited state can tunnel out incoherently to the leads, resulting
in the “empty” state |0〉 = |N,M〉, and then, the ground state
|g〉 can be loaded by electron tunneling from the leads. The
Hamiltonian describing tunneling to the leads is given by

H� =
∑

i=L,R

∑
k

(εkc
†
ikcik + tic

†
ikdi + t∗i cikd

†
i ),

where d
†
i = |i〉〈0|, c

†
ik = |k〉〈i|, εk is the dispersion for an

electron state |k〉 with wave vector k in the leads, and |i〉 is a
state in the L/R dot. The resulting incoherent tunneling rates
from |e〉 to |0〉 (�0e) and from |0〉 to |g〉 (�g0) are given by
[19,20,34]

�0e = �L cos2(θ/2) + �R sin2(θ/2), (3a)

�g0 = �L sin2(θ/2) + �R cos2(θ/2), (3b)

where �R(L) are tunneling rates to the right (left) leads.
Taking into account opposite currents due to loading from

and tunneling to the leads, the time-averaged electron current

through the DQD can be written as

〈I 〉 = e�R{〈pe〉|〈R|e〉|2 − 〈p0〉|〈R|g〉|2}, (4)

where pα = |α〉〈α| is the projection operator to state |α〉, 〈. . . 〉
denotes the quantum mean value and time average.

In the absence of photon excitation of the dot and at
temperature T = 0, the DQD is in the ground state, 〈pg〉 = 1
and 〈pe〉 = 〈p0〉 = 0, and no current flows. However, photons
in the microwave resonator cause transitions between the
ground and excited states of the DQD, which enables sequen-
tial tunneling (N,M) → (N + 1,M) → (N,M + 1), resulting
in a finite current. Photon arrivals can thus be detected
by measuring the DQD source-drain current. We note that,
because the DQD is operated in the limit of relatively strong
coupling to the leads, spin is not conserved [35] and the spin
blockade does not occur in the proposed device. At finite
temperature, the tunneling rates Eq. (3a) and Eq. (3b) should be
modified with appropriate Fermi functions for the leads. When
thermal broadening in the leads becomes comparable to the
photon energy, there can be a back current due to electrons that
tunnel from the lead to the excited state, emit a photon followed
by the transition to the ground state, and then tunneling from
the ground state to the lead. However, this effect is negligible
at an operating temperature of 40 mK = 0.8 GHz h/kB , an
order of magnitude lower than the photon energy we consider.

The Hamiltonian of noninteracting photons and the DQD
in the rotating frame at the frequency of input photons ωin are

Hfree =
∫ ∞

−∞

dω

2π
�ωb†ωbω + ��ab

(
a†a + 1

2

)
, (5)

H̃DQD = ��σb

2
σz, (6)

where �ab = ωa − ωin (�σb = ωσ − ωin) is the detuning of
the resonator frequency (DQD) ωa (ωσ ) from ωin. Here, we
used the mode expansions

VTL =
∫ ∞

−∞

dω

2π

√
�ωZTL

2
(bω + b†ω), (7)

Va =
√

�ωa

2Ca

(a+a†), (8)

for the resonator (Va) and transmission line (VTL) voltage
operator at the coupling capacitor Cκ , where a is the resonator
photon annihilation operator and bω is the transmission
line photon annihilation operator with frequency ω [36].
Furthermore, ZTL = √

l/c is the characteristic impedance of
the line, l is the inductance per unit length, c is the capacitance
to ground per unit length, and Ca is resonator capacitance.
We assume the transmission line dispersion ωk = vk, where
v = 1/

√
lc is the group velocity.

The resonator-DQD coupling is described by the Jaynes-
Cummings Hamiltonian:

HJC = �g(σ †a + a†σ ), (9)

where σ = |g〉〈e| is the DQD lowering operator. Here, the
interaction strength g = g0 sin θ is defined by the dipole matrix
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element in the basis of energy eigenstates, and

g0 = ωaβg

√
πZa

RQ

,

where Za is the resonator characteristic impedance, RQ =
h/2e2 = 12.9 k
 is the resistance quantum, βg = Cg/(Cg +
C�), Cg is the gate capacitance between the resonator and the
DQD, and C� is the total capacitance of the DQD [24].

The photon mode in the resonator is driven by photons
exchange with the transmission line. Assuming a weak, local
coupling capacitance Cκ between transmission line photons
and the resonator, the interaction Hamiltonian in the rotating
wave approximation is given by

HTL = CκVaVT L = �
√

κ

∫
dω

2π
[b†ωa + a†bω], (10a)

where

κ = C2
κω

3
in

ZTLZa

4
(10b)

is the photon leakage rate from the resonator, Za = √
La/Ca

is the impedance of the coplanar waveguide resonator, and
La is the resonator inductance. We notice that the resonator
quality factor can be expressed as

Q = ωin

κ
= 4ZTL

Za(ωinτRC)2 ,

where τRC = CκZTL is the recharging time of the coupling
capacitor Cκ .

To finalize the description of the model, we present the full
Hamiltonian of the system:

H = Hsys + HTL + H� + Hγ , (11a)

Hsys = H̃DQD + HJC + Hfree. (11b)

In Eq. (11a), Hγ is the Hamiltonian describing the DQD
dissipative environment, which consists of voltage fluctuations
and phonons.

III. EQUATIONS OF MOTION

We will employ input-output theory [37–40] to model the
resonator–transmission line interaction. This formalism will
enable us to optimize the quantum efficiency of photon de-
tection including interference effects between the microwave
signals reflected by the resonator-DQD system, which is
not captured by density matrix master equations. The key
assumptions in this formalism are the rotating wave and
Markov approximation.

The equation of motion for the transmission line modes that
follows from the Hamiltonians in Eq. (10a) and Eq. (5) can be
solved analytically to yield

bω(t) = e−iω(t−t0)bω(t0) + i
√

κ

∫ t

t0

dt ′e−iω(t−t ′)a(t ′), (12)

which is a solution that can be specified by initial t0 = ti < t

or final condition t0 = tf > t , at time ti (tf ) long before (after)
the transmission line photons interact with the resonator. The

input field in the rotating frame is defined by the initial field
configuration as

bin(t) =
∫ ∞

−∞

dω

2π
bω(ti)e

−iω(t−ti ). (13)

We will consider the case where the input field is formed by
a continuous flux of photons in a narrow spectral band around
ωin, corresponding to the initial state [41]

|βi〉 = 1√
nb!

[∫
dωf (ω)b†ω(ti)

]nb

|0〉TL,

where |f (ω)|2 = δ(ω − ωin) and |0〉TL is the vacuum state of
the transmission line. The flux of incoming photons is given
by the expectation value in |βi〉, Ṅ = 〈b†in(t)bin(t)〉. In terms
of experimental parameters, Ṅ = vnb/L = nb/ZTLcL, where
nb is total input photon number of the waveguide and the
transmission line impedance is ZTL = 50 
.

Using the solution Eq. (12) specified by bin leads to
the Heisenberg-Langevin equations for the system operators
{X} = {a,σ,σz,p0} given by [37,39,40]

Ẋ = i

�
[Hsys,X] + (Dγ + D�)X

+ (κ/2−i
√

κb†in)[X,a] + [a†,X](κ/2 + i
√

κbin), (14)

where D(A) is the Lindblad superoperator defined by
D(A)ρ = AρA† − (A†Aρ + ρA†A)/2. Here, D� is the dis-
sipative operator describing incoherent tunneling to the leads,
given by

D� = �0eD(|0〉〈e|) + �g0D(|g〉〈0|). (15)

Other incoherent processes in the dynamics of the DQD
originate from interaction of charge degrees of freedom of
the DQD with its environment, such as the phonon system
and charge noise in dielectric. The DQD charge coupling to
phonons is similar to the coupling to the resonator field; see
Appendix A 1 and Refs. [19,42,43]. The charge noise results
in an additional component δε(t) of the bias between the
dots, ε → ε + δε(t). This noise typically exhibits a 1/f power
spectrum; see Appendix A 2. The Lindblad superoperator Dγ

accounts for these incoherent processes

Dγ = γ↑(ε)D(σ †) + γ↓(ε)D(σ ). (16)

Here, γ↑(ε) and γ↓(ε) are the bias-dependent excitation and
relaxation rates, respectively. We describe contributions to
these rates from electron-phonon interaction and the high-
frequency component of the charge noise in Appendixes A 1
and A 2.

From Eq. (14) and Eq. (15), the equations of motion for the
photon and DQD operators are [37]

ȧ = −
(

κ

2
+ i�ab

)
a − igσ+i

√
κbin, (17a)

σ̇ = −(�2 + i�σb)σ+igaσz, (17b)

where

�2 = γ1 + �0e

2
(18)

is the transverse relaxation rate, which includes incoherent
dynamics of the DQD between states |e〉 and |g〉 with the
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combined rate γ1 = γ↑ + γ↓ and lifetime broadening due to
incoherent tunneling to the leads at the rate �0e, Eq. (3a).

The low-frequency component of charge 1/f noise causes
non-Markovian dynamics, which strictly speaking should be
described by a nonlocal damping kernel in Eq. (17b) of
the form σ̇ = −[�2 + ∫ t

0 dt ′�(t − t ′)]σ (t ′) + · · · [44], where
�(t) = γφωle

−ωl t , ωl being the noise correlation time, and
γφ can be estimated with the pure dephasing rate given in
Eq. (A7). However, we will only need the steady-state solution,
which is determined by the zero mode in the Laplace transform
of the equations of motion. This zero-mode equation is
consistent with Eq. (17b) with the total damping rate �2 + γφ ,
where γφ = ∫ ∞

0 dt�(t) is the zero-mode component of the
damping kernel. Thus, to take into account low-frequency
1/f -type noise in our proposed device, it is sufficient to
take �2 → �2 + γφ , where γφ is given by Eq. (A7) of
Appendix A 2.

We note that it has been established both experimentally and
theoretically that noise in the DQD bias ε is much stronger than
tunnel-coupling noise, and in most cases, DQD decoherence
can be modeled by only ε noise [45,46]. Furthermore, our
device operates in the regime ε � tc, where the DQD frequency
depends very weakly on tc, so that any dephasing due to noise
in tc is strongly suppressed. Finally, we note that since we
are not detecting the quantum state of the photon, details of
the DQD coherence are not of central importance. As we will
show below in Eq. (36), the decoherence rate �2 can change
the optimal parameter regime but does not necessarily limit
performance, since the resonator leakage rate κ can be adjusted
to maintain the optimal condition.

The equations of motion the DQD polarization and “empty”
state projection operators are

σ̇z = 2ig(a†σ − σ †a)

+
(

γ− − �0e

2

)
pσ −

(
γ1 + �0e

2

)
σz − p0�g0, (19a)

ṗ0 = �0e

pσ + σz

2
− �g0p0, (19b)

where pσ = |e〉〈e| + |g〉〈g| is the projection operator into the
charge qubit subspace, determined by the constraint p0 +
pσ = |e〉〈e| + |g〉〈g| + |0〉〈0| = 1, which represents conser-
vation of probability in the DQD-state space.

IV. STEADY-STATE SOLUTION

We will compute the detection efficiency for the case of
continuous flux of photons using the steady-state solution to
the equations of motion [1]. Here, we present the steady-state
solution for the polarization mz ≡ 〈σz〉, for a purely quantum
input field with zero classical component 〈bin〉 = 0, and then
relate mz to the detection efficiency of the device [47].

We eliminate the “empty” dot operator p0 using the steady-
state solution of Eq. (19b), which yields

pσ = 2�g0 − �0eσz

�0e + 2�g0
. (20)

Then, substituting Eq. (20) into Eq. (19a) yields effective
equations of motion for the polarization

ṁz = �1(m0 − mz) + 2ig〈a†σ − σ †a〉, (21a)

�1 = γ1 + 2�0e�g0 − γs�0e

�0e + 2�g0
, (21b)

m0 = − (γs + �0e)�g0

(γ1 + �0e)�g0 + �0e(γ1 − γs)/2
, (21c)

where �1 is the effective depolarization rate and γs = γ↓ − γ↑
is the phonon-induced spontaneous emission rate; cf. Eq. (16).

At this point, the three-level DQD system consisting
of {|e〉,|g〉,|0〉} is reduced to a two-level system described
by Eqs. (17b) and (21a) with longitudinal and transverse
relaxation rates �1 and �2, respectively. The equilibrium
polarization m0 gives the value of mz in the absence of coupling
to resonator photons, g = 0. The effective DQD excitation,
relaxation, and dephasing rates are �↑ = �1(1 + m0)/2, �↓ =
�1(1 − m0)/2, and �φ = �2 − �1/2, respectively.

The steady-state photon and DQD operators satisfy

a = χa(
√

κbin − gσ ), (22a)

σ = gχσ (aσz), (22b)

where χa = (�ab − iκ/2)−1 and χσ = (�σb − i�2)−1 are the
resonator and DQD susceptibilities [40]. To solve these
equations, we apply the mean-field approximation to Eq. (22b)
by taking aσz → amz, and substitute Eq. (22b) into Eq. (22a)
to find the resonator photon field

a = χabbin, (23a)

χab =
√

κ

�ab − iκ/2 + g2mzχσ

. (23b)

This solution, together with the steady-state solution of
Eq. (21a), yields the mean-field equation

mz = m0

1 + G〈na〉 , (24a)

〈na〉 = |χab|2〈b†inbin〉, (24b)

where G = (4g2/�1)Imχσ and na = a†a is the resonator
photon number operator.

Due to the dependence on mz in Eq. (23b), the mean-field
equation (24a) is a cubic equation for mz [39]. However, a
simple estimate based on the perturbative parameter G �
g2/�1�2 � 10−4 will show that it is sufficient to take mz = m0

in Eq. (23b), so that Eq. (24a) yields an explicit solution for
mz. The photon-induced polarization is

�mz = mz − m0 = −m0
G〈na〉

1 + G〈na〉 , (25)

which to leading order yields �mz ≈ |m0|G〈na〉 � GṄ/κ ,
where we kept 〈na〉 � Ṅ/κ to O(1). Substituting this in
Eq. (23b) yields the leading order correction to the photon
number 〈�na〉 � CG(Ṅ/κ)2, where

C = g2/�2κ (26)

is the cooperativity. As shown in Sec. V, C = O(1), and,
since we will consider input flux Ṅ and leakage rate κ
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FIG. 2. As a function of the double-dot bias ε, for
(tc,g)/2π = (2,0.05) GHz and Ṅ = 1 MHz: (a) Jaynes-Cummings
energy levels E1± of the DQD-resonator system. (b) DQD-resonator
coupling g = g0 sin θ for g0/2π = 50 MHz, transverse relaxation
rate �2 and depolarization rate �1 of the effective two-level DQD.
(c) Cooperativity of the DQD-resonator system C = g2/�2κ; the
real and imaginary parts of the DQD susceptibility χσ . (d) DQD
polarization mz and photon-induced polarization �mz.

in the MHz range, 〈�na〉 = O(G), which results in the
subleading term of O(G2) in �mz. The O(G) estimate for
the induced polarization will be verified numerically below
[see Fig. 2(d)]. The linearization of Eq. (22b) is justified by
the same perturbative expansion.

V. QUANTUM EFFICIENCY

The detector efficiency is defined by the ratio of the steady-
state mean DQD current per input photon flux,

η = |〈�I 〉|
eṄ

, (27)

where e is the electron charge, 〈�I 〉 = 〈I − I0〉 is the mean
polarization and current caused by absorbing photons, and 〈I0〉
are the dark counts due to the current at zero photon input flux.
The electron current Eq. (4) can be expressed in terms of the

polarization as

〈I 〉 = −e�R(1 + mz)

�0e + 2�g0

(
�0e cos2 θ

2
− �g0 sin2 θ

2

)
. (28)

As one would expect, the current is proportional the probability
for the DQD to be excited, 〈pe〉 = (1 + mz)/2. The last factor
in Eq. (28) takes into account the cancellation of the left and
right moving electrons.

We will henceforth consider symmetric dot-lead tunneling
at the rate �l = �L = �R . Then �0e = �g0 = �l , the photon
induced current is

〈�I 〉 = −e
�l cos θ

3
�mz, (29)

and Eqs. (21c) and (21b) become

�1 = γ1 + 2�l − γs

3
, m0 = − γs + �l

3γ1/2 − γs/2 + �l

. (30)

We will be interested in the linear regime with respect to Ṅ ,
where single-photon detection occurs. This regime coincides
with the leading order expansion of G〈na〉 in Eq. (25), where
the efficiency is given by

η = 4

3

κg2(�l/�1)|cos θ Imχσ |
(�ab − g2|m0|Reχσ )2 + (κ/2 + g2|m0|Imχσ )2

. (31)

Next, we analyze quantities that characterize the DQD-
resonator coupling, dissipation, and response as a function of
bias; see Figs. 2(a)–2(c). As a point of reference, we show in
Fig. 2(a) the Jaynes-Cummings energy levels in the zero and
one photon subspace:

E1,± = �ωa ± �

2

√
4g2 + �2

aσ ,

where g = g0 sin θ and we take the parameters
ωa/2π = 7 GHz and g0/2π = 50 MHz, which is a value
that has been reported in experiments [16,22,48]. In Fig. 2,
we choose a tunnel coupling of tc/2π = 2 GHz, but we will
optimize this parameter below. Note that since �2 � g, the
resonances at the Jaynes-Cummings energies are destroyed;
the subspace of the resonator-DQD system with n photons is
specified by the uncoupled basis {|g〉|n〉,|e〉|n − 1〉}, where
|e〉 denotes the DQD excited state that is strongly broadened
with a linewidth �2, as shown in Fig. 1 (lower left box).

We use DQD relaxation parameters appropriate for
silicon DQD [43,49]: phonon noise spectral density
Jph/2π = 0.1 GHz [cf. Eq. (A4)], quasistatic bias noise
variance εrms/2π = 1.2 GHz, and take dot-lead tunnel rate
�l/2π = 1 GHz. The DQD-resonator coupling g [Fig. 2(b)]
has a broad peak centered at ε = 0, due to a strong dipole
moment at the charge degeneracy point, while the transverse
relaxation rate �2 has a minimum due to a sweet spot
where dephasing is to the first order insensitive to quasistatic
bias noise. These effects combined lead to a broad peak
around ε = 0 in the cooperativity C = g2/�2κ , shown in
Fig. 2(c), indicating strong DQD-resonator interaction. The
strong charge dipole also increases transitions driven by
phonons and 1/f charge noise, leading to a peak in the
equilibrium polarization of m0 � −0.95 at ε = 0 [Fig. 2(d)]
and a peak in the depolarization rate �1 [Fig. 2(b)], which
is otherwise dominated by dot-lead tunneling. The real and
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FIG. 3. For optimal parameters κ/2π = 76 kHz and
tc/2π = 0.5 GHz, on resonance �ab = 0: (a) Logarithmic
plot of the photon-induced current 〈�I 〉 as a function of input flux
Ṅ for �l = 1 GHz. (b) Maximum efficiency as a function of the
incoherent dot-lead tunnel rate �l with Ṅ = 1 MHz.

imaginary parts of χσ , which modify the effective resonator
frequency and decay rate, respectively, are plotted in Fig. 2(c).

We conclude this section by considering the detector
response as a function of input flux Ṅ and dot-lead tunnel
rate �l . Nonlinear response at large flux will cause �I to
saturate and sets the detector dead time [1]. At the same time, a
sufficiently large flux is necessary for the current �I = ηeṄ to
be measurable. Figure 3(a) shows the photon-induced current

�I = 0.16ηṄ pA/MHz

as a function of Ṅ at �l = 1 GHz using Eq. (37) for the
optimal efficiency η∗

res found below. The response is linear
up to Ṅ = 100 MHz, and saturates as the flux approaches the
effective inelastic decay rate Ṅ � �1. Figure 3(b) shows η∗

res as
a function of the lead tunnel rate �l at fixed Ṅ = 1 MHz. The
optimal rate occurs near �l = 1 GHz, and is determined by the
competition between two effects: when �l is too low, the elec-
tron relaxes back to |g〉, but when �l is too high, the efficiency
suffers due to level broadening, �2 ∝ �l ; see Eq. (18).

Maximum photon absorption by the DQD occurs on
resonance, as shown by the peaks at εres in the photon-
induced DQD polarization �mz plotted in Fig. 2(d), which
are accompanied by minima in photon number with na � 1,
indicating perfect photon to electron conversion. Note that
induced polarization is very small, �mz(εres) � 10−4 � m0,
which justifies our approximation of taking mz = m0

z in
Eq. (23b), and agrees with our previous estimate below Eq. (26)
that �mz = O(G).

Figure 6(a) shows the photon detector efficiency as a
function of bias for κ = 1 MHz, computed using Eqs. (25),
(27), and (29). When the charge transition is sharp, at
tc/2π = 0.5 GHz, a double-peak behavior emerges: one peak
is due to resonance and the other is due to the competition
between enhanced cooperativity and cancellation of left and
right moving currents, which goes as sin2 θ cos θ . As expected,
the maximum efficiency occurs on resonance: ηres � 80% at
ε = εres and tc/2π = 1.5 GHz. This efficiency will be further
optimized in Sec. VII.

VI. REFLECTED SIGNAL

The field of the transmission line, see Eq. (12), can be
described in terms of its final configuration at t0 = tf > t . In

ph
as

e
φ

r

re
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ct
io

n,
|r
|

n
a

P
a

(d
B

m
)

DQD bias, /2π (GHz)

(a)

(b)

FIG. 4. As a function of the double-dot bias ε, for
(tc,g)/2π = (2,0.05) GHz and Ṅ = 1 MHz: (a) Magnitude |r| and
phase φr of the reflection coefficient. (b) Photon number na and power
absorbed Pa .

this case, we can introduce the output field as a counterpart of
the input field, Eq. (13):

bout(t) =
∫ ∞

−∞

dω

2π
bω(tf )e−iω(t−tf ). (32)

The equation of motion for the resonator field has a structure
similar to that of Eq. (17a), but an opposite sign in front of the
term describing spontaneous emission:

ȧ =
(

κ

2
− i�ab

)
a − igσ+i

√
κbout. (33)

By subtracting the above equation from Eq. (17a), we obtain
the relation between input and output modes [40],

bout(t) = bin(t) + i
√

κa(t), (34)

where on the right-hand side, the first term is the reflection
of the input field and the second is the field radiated by the
resonator. The reflection coefficient r is defined by bout = rbin.

A system of a coupled DQD and microwave resonator can
be also used to control the output microwave field [27,50].
Here, we briefly analyze the suppression of the reflected
signal from the resonator when the DQD device acts as an
adjustable dissipating element. We consider the reflecting
signal of microwave photons for input photon frequency equal
to the resonator frequency, �ab = 0, and for input flux Ṅ = 1
MHz, which is well within the linear regime, as shown below.
In Fig. 4(a), we plot the magnitude |r| and phase φr of the
reflection coefficient, computed by using the general relation
between input and output modes Eq. (34) with a given by
Eq. (23b), which yields

r = |r|eiφr = 1 + √
κχab. (35)

The mean photon number 〈na〉 Eq. (24b) and absorbed input
power Pa = �ωin(1 − |r|2)Ṅ is plotted in Fig. 4(b). When the
input frequency is on resonance with the DQD excitation at
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ε = εres = √
ω2

in − 4t2
c , reflection |r| is minimal and power

absorption Pa is maximal.

VII. OPTIMAL CONDITIONS

The photon detector efficiency can be further improved
by reducing the reflection of input photons, which for the
parameters chosen so far is nonzero even on resonance,
as shown in Fig. 4(a). Using Eq. (23b) and (35), we find
r(εres) = 0 when the resonator leakage rate κ matches the
DQD-mediated photon dissipation rate,

κ = 2(g0 sin θres)2
∣∣m0

z

∣∣
�2(εres)

. (36)

The latter can be understood from the Fermi golden rule as
a transition from the one-resonator photon state |g〉|1〉 to the
broadened DQD excited state |e〉|∅〉 where |∅〉 denotes the
empty resonator state. The factor m0 takes into account that this
transition can occur only when |g〉 (|e〉) is (un)occupied. These
transitions are illustrated in Fig. 1. We note that Eq. (36) can be
expressed as the condition on the cooperativity [cf. Eq. (26)]

C(εres) = 1

2|m0(εres)| ≈ 1

2
,

so the optimal point does not require strong resonator-DQD
coupling.

When Eq. (36) is satisfied, the efficiency on resonance is
given by

η∗
res = |cos θres| 2�l/3�1

1 + 2Ṅ/|m0|�1
. (37)

For a sufficiently fast dot-lead tunnel rate �l � γ↑,↓,
�1 � 3�l/2, see Eq. (30), so that ηres is limited mainly by
the factor

|cos θres| =
√

1 − 4t2
c

/
ω2

in. (38)

Higher maximum efficiency ηres can be thus achieved by
lowering tc, but at the cost of increasing the optimal coupling
g∗

0 , due to the reduction in the DQD-resonator coupling by
sin θres = 2tc/ωin. This behavior is shown in Fig. 5(a), where
we plot efficiency on resonance ηres as a function of tc and g0.

The optimal regime defined by Eq. (36) can be reached by
tuning DQD-resonator parameters tc, g0, and κ . At κ = 1 MHz,
it can satisfied at (tc,g∗

0 ) � 2π (0.5,0.2) GHz, but this g∗
0 is

larger than presently available DQD-resonator couplings. We
therefore propose lowering the resonator leakage rate κ at fixed
g0. Figure 5(b) shows η∗

res plotted as a function of κ for several
values of tc. The maximum efficiency is ηmax = 98.4% and
occurs at κ∗/2π = 76 kHz and tc/2π = 0.5 GHz. We note that
this value of κ∗ is well within the range of three-dimensional
superconducting resonators which can have leakage rates as
low as κ = 0.1 kHz [51]. Figure 6(b) shows the detector
efficiency as a function of DQD bias in the optimal regime.

VIII. CONCLUSIONS AND DISCUSSION

In summary, we have theoretically proposed and optimized
a microwave photon detector based on a resonator-coupled
double quantum dot, which could readily be integrated with
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FIG. 5. (a) Photon detector efficiency on resonance ηres as a
function of DQD-resonator coupling g0 and interdot DQD tunnel
coupling tc, for κ/2π = 1 MHz. (b) Efficiency ηres as a function of
resonator leakage rate κ .

current cQED technology. We show that very high quantum
efficiency is possible with currently achievable values of the
DQD-resonator coupling and DQD dissipation, and deter-
mined the parameter regime for near-unit efficiency. While
we utilized pure charge states of the DQD in this work,
our theoretical model can readily be applied to spin-charge
hybridized DQD states, for example, the singlet and triplet
states of Ref. [52], which are protected from charge noise
dephasing and hence have advantages for applications in
quantum communication.

The proposed photon detector allows measurements of the
input photon statistics as well, so that one could distinguish
pure input Fock states from classical states by measuring the
second-order photon correlation [39]. However, determining
the exact relation between photon and electric current noise
is beyond the scope of this paper. To address this relation,
one has to analyze the effect of fluctuations in the resonator
photon number due to fluctuations in Ṅ , which results in σz and
current fluctuations and also in the backaction of the DQD on
the resonator photons. Note also that multiphoton states with
k photons in the resonator can also be detected by tuning the
DQD to resonance with kωin, but result in weaker signal since
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FIG. 6. Efficiency of photon detector η as a function of DQD
bias ε, with the tunnel couplings tc/2π = (0.5,1,1.5) GHz and DQD-
resonator coupling g0 = 50 MHz, for (a) nominal resonator leakage
rate, κ/2π = 1 MHz, and (b) optimal resonator leakage rate, κ/2π =
76 kHz, Eq. (36).

the multiphoton absorption transition amplitudes are reduced
by the factor gk at weak coupling [53].
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APPENDIX: DQD DEPOLARIZATION
AND DEPHASING RATES

In this section, we discuss dependence on the DQD bias
ε of the total DQD depolarization rate γ1, the spontaneous
relaxation rate γs , and the charge noise induced pure dephasing
γφ . The depolarization rate is the sum of the relaxation and
excitation rates γ1 = γ↑ + γ↓ and originates due to a variety
of processes including electron-phonon interactions and bias
noise contributions. Because charge noise and phonons couple
to the DQD charge dipole matrix element, the associated
relaxation is proportional sin2 θ = 4t2

c /ω2
σ , leading to the peak

in γ1 and γs at ε = 0. In contrast, bias noise induced pure
dephasing is strongest at large ε where the DQD frequency
ωσ is more sensitive to bias noise δε, and smallest at ε = 0
where the DQD energy is first-order-insensitive to bias noise.
The physical reason for this dependence on ε is that at large ε

the DQD eigenstates are pure charge states |L〉 or |R〉, while
at the charge transition ε = 0 the eigenstates are fully hy-
bridized charge states (|L〉 ± |R〉)/√2. The qualitative bias
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FIG. 7. The DQD charge relaxation rates, T1 relaxation rate γ1,
difference in excitation and relaxation rates due to thermal phonons
γs , and quasistatic dephasing rate due to charge noise γφ as a function
of the DQD bias ε.

dependence of �2 [cf. Eq. (18)] follows that of γφ , since the
dip in γφ near ε = 0 is typically greater than the peak in γ1.

Below we describe the minimal phenomenological model
we used to incorporate phonons and charge noise in the
DQD dissipation and decoherence, and provide explicit for-
mulas for the relaxation rates γ

ph
↑,↓, γ ch

1 , γs , and γφ . Using
these formulas, we plot γ1, γs , and γφ as a function of
the DQD bias ε in Fig. 7 for the following choice of
parameters: DQD frequency ωσ /2π = 7 GHz, DQD-resonator
coupling g0/2π = 50 MHz, phonon noise spectral density
Jph/2π = 0.1 GHz, temperature T = 50 mK, quasistatic bias
noise variance εrms/2π = 1.2 GHz, and 1/f noise strength
cε = 2.4 μeV.

1. Relaxation rates due to phonons

The electron-phonon interaction Hamiltonian can be writ-
ten as [54]

Hph = sin θ
∑
kλ

βkλ(σ †akλ + a
†
kλσ ), (A1)

where λ labels the phonon branches,

βkλ = vkλ

∫
dreik·r |φL(r)|2 − |φR(r)|2

2
,

where φi(r) are the localized (Wannier) basis functions for the
DQD electrons, and vkλ are coupling coefficients that depend
on phonon parameters [55].

From Fermi’s golden rule, the stimulated emission and
absorption rates are given by(

γ
ph
↑

γ
ph
↓

)
= γs

(
nph(ωσ )

1 + nph(ωσ )

)
, (A2)

where nph(ω) = (e�ω/kBT − 1)−1 is the phonon thermal dis-
tribution. The phonon-induced spontaneous emission rate is
given by

γs = sin2 θJph(ωσ ), (A3)

where Jph(ω) = 2π
∑
kλ

|βk|2δ
(
ω − ω

ph
kλ

)
(A4)
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is the phonon spectral density and ω
ph
kλ are the phonon

dispersions. We assume a typical temperature of 50 mK. Note
that phonons do not cause pure dephasing due to the vanishing
phonon density of states at zero frequency [56].

The phonon spectrum is material dependent. For silicon
quantum dots, Ref. [43] measures charge relaxation times of
up to 10 ns at the DQD excitation frequency ωσ/2π = 12 GHz
with the tunnel coupling 2tc = 5.9 GHz. We take a nominal
value of Jph(ω) = 0.1 GHz.

2. Relaxation rates due to charge noise

We assume a 1/f charge noise spectrum

Sε(ω) = c2
ε

|ω| , ωl < |ω| < ωh, (A5)

where cε = 2.4 μeV [57]. The depolarization rate is given

by [58]

γ ch
1 (ε)

2π
= sin2 θ

Sε(ωσ )

2�2
. (A6)

If the subsystem that produces this noise is thermal at the
low temperature, spontaneous relaxation rate γ ch

s (ε) due to
this noise would coincide with γ ch

1 (ε). For the case in which
the source of the noise is a high-temperature environment, we
expect γ ch

s (ε) � γ ch
1 (ε).

The low-frequency part of the noise spectrum causes
quasistatic fluctuations δωσ of the DQD excitation frequency.
The associated dephasing rate is given by [57]

γφ

2π
=

√(
∂ωσ

∂ε

εrms√
2

)2

+
(

∂2ωσ

∂ε2

ε2
rms

2

)2

. (A7)
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