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Resource consumption of the conventional surface code is expensive, in part due to the need to separate
the defects that create the logical qubit far apart on the physical qubit lattice. We propose that instantiating
the deformation-based surface code using superstabilizers will make it possible to detect short error chains
connecting the superstabilizers, allowing us to place logical qubits close together. Additionally, we demonstrate
the process of conversion from the defect-based surface code, which works as arbitrary state injection, and
a lattice-surgery-like controlled NOT (CNOT) gate implementation that requires fewer physical qubits than the
braiding CNOT gate. Finally, we propose a placement design for the deformation-based surface code and analyze its
resource consumption; large-scale quantum computation requires 25d2+170d+289

4 physical qubits per logical qubit,
where d is the code distance of the standard surface code, whereas the planar code requires 16d2 − 16d + 4
physical qubits per logical qubit, for a reduction of about 50%.

DOI: 10.1103/PhysRevA.95.012321

I. INTRODUCTION

The surface code is, to date, the most feasible proposal
[1–5] to tolerate the inevitable imperfections in qubit states in
a quantum computer [6–14]. The surface code has advantages
for implementation over other quantum error-correcting codes;
the surface code requires only a two-dimensional (2D) lattice
of physical qubits with nearest-neighbor interactions, sustains
scalability across a large range since the surface code can
be enlarged by lengthening the columns and the rows of the
2D lattice, and has a higher error threshold than other codes.
There are several proposals for producing a logical qubit on
the surface-code lattice; the planar code produces a logical
qubit on an independent, finite, regular lattice with two types
of boundaries (X and Z) that give a degree of freedom [15,16].
The defect-based code produces a logical qubit by cutting two
holes in a large regular lattice in which the holes are made from
only an X or a Z boundary [4,17]. They achieve universality
by providing arbitrary state injection and a basic set of one-
and two-qubit fault-tolerant gates.

Bombin and Delgado introduced another way to produce
a qubit on the surface code, the deformation-based surface
code [18]. The deformation-based code produces a logical
qubit by cutting a hole in a large regular lattice in which the
boundary of the unused region is composed of both types
of boundaries; hence it is like turning a planar code qubit
inside out. They showed Clifford gates and initialization to
|0〉 and |+〉. They demonstrated a controlled NOT (CNOT)
gate by braiding, which can be executed between two logical
qubits in the deformation-based code and even between the
deformation-based code and the defect-based code. Since a
SWAP gate can be implemented with three CNOT gates, arbitrary
state injection to the deformation-based code can be achieved
utilizing this heterogeneous CNOT gate. The first step is to
use the standard state-injection method in the defect-based
code, then swap into the deformation-based code. However,
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this method is an indirect way to achieve state injection to the
deformation-based code.

In this paper we show a conversion from the defect-
based code to the deformation-based code that enables the
deformation-based code to hold an arbitrary state and demon-
strate that a crossed pair of an X superstabilizer and a Z

superstabilizer produces a deformation-based qubit without
sacrificing the advantages above. We employ the fault-tolerant
stabilization utilizing a cat state generated by parallel ZZ

stabilization. Additionally, we demonstrate a lattice-surgery-
like CNOT gate for the deformation-based code [16]. Lattice
surgery is a nontransversal, scalable means of executing a
CNOT gate on the planar code that requires fewer resources than
the braiding of the defect-based code. Our lattice-surgery-like
CNOT gate for the deformation-based code requires fewer
qubits than the conventional braiding. Nevertheless, the error
suppression ability is similar to conventional surface code
since the logical state is protected by normal stabilizers. Our
proposals may reduce the resource requirements of the surface
code in spatial accounting.

II. OVERVIEW OF THE DEFORMATION-BASED
SURFACE CODE

Figure 1 shows a distance-3 deformation-based qubit that
exists on the surface-code lattice. The surface code uses
physical qubits placed on a 2D lattice. The black dots are
data qubits, and the white dots are ancilla qubits. The lattice is
separated into plaquettes, as shown by black lines in Fig. 1. A
stabilizer U is an operator which does not change a state,

U |ψ〉 = |ψ〉. (1)

An ancilla qubit in the center of a plaquette is used to measure
the eigenvalue of a Z stabilizer such as ZaZbZcZd , where a–d

denote the surrounding four data qubits. An ancilla qubit on
the vertex is used for an X stabilizer.

The number of logical qubits k on a state of n physical
qubits is k = n − s, where s is the number of independent
stabilizers. In Fig. 1, there are 48 data qubits, 19 Z stabilizers,

2469-9926/2017/95(1)/012321(13) 012321-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.012321


SHOTA NAGAYAMA, TAKAHIKO SATOH, AND RODNEY VAN METER PHYSICAL REVIEW A 95, 012321 (2017)

X operator 

Z operator 

X operator 

Z operator 

X operator 

FIG. 1. The deformation-based qubit of distance 3. Black dots
depict data qubits, and white dots are ancilla qubits. Each red diamond
describes a Z stabilizer, and each blue diamond describes an X

stabilizer. The gray dot in the center depicts the unused data qubit,
and the two four-qubit Z stabilizers the unused data qubit originally
belonged to are merged to form the six-qubit Z stabilizer shown.
The two four-qubit X stabilizers the unused data qubit originally
belonged to are also merged to form the six-qubit X stabilizer shown.
The thick lines are logical operators of the superstabilizer qubit. Any
blue or red path serves as a logical X operator or a logical Z operator,
respectively.

and 28 independent X stabilizers since any of the X stabilizers
is the product of all the others, leaving a single degree of
freedom for one logical qubit.

Two ZL operators of a deformation-based qubit are shown
in Fig. 1, either of which acts on the logical qubit. Three
XL operators are shown in the figure, also working on the
same logical qubit. Two of the XL operators are the same
shape as the described ZL operators, while the third crosses
the Z superstabilizer ends at the boundaries of the lattice.
Those two ZL and two XL logical operators surrounding the
superstabilizers correspond to the logical operators shown in
Fig. 5(a) in [18], except that our deformation-based qubit
employs superstabilizers. As with other surface-code qubits,
the products of a logical operator and stabilizers produce the
redundancy for measurements of logical operators.

Figure 1 shows another important characteristic of the
deformation-based qubit, how to count its code distance. Each
logical operator consists of operations on three physical qubits;
therefore the code distance of this deformation-based qubit is
3. An example of a longer code distance is shown in Fig. 2,
which depicts two deformation-based qubits of distance 5.

Figure 2 shows an advantage of deformation-based
qubits compared to defect-based surface-code qubits. The
deformation-based qubit exists at the junction of two su-
perstabilizers, so that every data qubit alive in the lattice
belongs to two X stabilizers and two Z stabilizers. The two Z

superstabilizers find the X error on the marked qubit in Fig. 2;
hence the deformation-based qubits can be placed close to
each other without being susceptible to logical errors, although

-1

-1

FIG. 2. Neighboring distance-5 deformation-based qubits. Place-
ment code distance apart from the boundary of the lattice is assumed.
An X error on the marked qubit results in −1 eigenvalues of the two
red Z superstabilizers. The two-defect surface code cannot correct
an X error on a data qubit which belongs to two defects, but the
superstabilizers of the deformation-based code can.

other surface-code qubits must be placed code distance
away.

III. TRANSFORMATION

We have shown the “four-fin”-style deformation-based
qubits. Figure 3 shows two transformed deformation-based
qubits of distance 5. The deformation-based qubit in Fig. 3(a)
is extended in the horizontal direction and compressed in the
vertical direction. The perimeter of the Z (X) superstabilizer
can be considered to be separated by the X (Z) superstabilizer.
The logical Z (X) operator exists at any path connecting the
separated halves. The deformation-based qubit in Fig. 3(b)
has a single, skewed Z superstabilizer. This transformation is
achieved with more or less the defect-moving operations of the
defect-based surface code [1]. The only difference is that the
defect that does not have a stabilizer measurement is replaced
with the superstabilizer here.

IV. CONVERSION FROM A TWO-DEFECT-BASED QUBIT

Direct conversion from a two-defect surface-code qubit
to a deformation-based qubit can be achieved. This
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FIG. 3. (a) “Bar-form” deformation-based qubit, which has code
distance 5. The Z (X) logical operators exist between halves of the
X (Z) superstabilizer separated by the Z (X) superstabilizer. (b) A
deformation-based qubit of code distance 5 that has “skew fin.” The Z

(X) logical operators exist between halves of the X (Z) superstabilizer
separated by the Z (X) superstabilizer.

conversion works as the state injection for the deformation-
based qubit and, e.g., to support networking among mul-
tiple quantum computers that employ heterogeneous error-
correcting codes [19]. To complete the universality of the
deformation-based surface code, we demonstrate the arbitrary
state injection in this section. We first inject an arbitrary qubit
into a two-defect surface code following Fowler et al. [1], as
depicted on a fragment of surface code in Fig. 4.
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FIG. 4. Surface-code fragment to inject an arbitrary qubit. The
lattice has only normal stabilizers at first. The shown superstabilizers
are introduced in several steps, as described in Sec. IV.

The surface begins in normal operation, using qubit 5 and
measuring all four-qubit stabilizers,

1 2 3 4 5 6 7 8 9
X X X X

X X X X

Z Z Z Z

Z Z Z Z

, (2)

where each number corresponds to the same number in Fig. 4.
First, we measure qubit 5 in the X basis, disentangling it from
the larger state where Mb

a denotes a measured value, where a

is the measurement basis and b is the qubit index.

1 2 3 4 5 6 7 8 9
X X X X

X X X X

(−1)M
5
X X

Z Z Z Z Z Z

. (3)

If the −1 eigenvalue is measured, apply either Z2Z4Z5Z7 or
Z3Z5Z6Z8 to restore X1X2X3 and X7X8X9 to +1 eigenvalues,

1 2 3 4 5 6 7 8 9
X X X

X X X

X

Z Z Z Z Z Z

. (4)

Next, qubit 5 is rotated to the arbitrary desired state [20],
α(Z) + β(−Z),

α

⎛
⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9
X X X

X X X

+ Z

Z Z Z Z Z Z

⎞
⎟⎟⎟⎠ + β

⎛
⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9
X X X

X X X

− Z

Z Z Z Z Z Z

⎞
⎟⎟⎟⎠. (5)

Then we measure Z2Z4Z5Z7 and Z3Z5Z6Z8,

α

⎛
⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9
X X X X X X

+ Z

(−1)M
2457
Z Z Z Z Z

(−1)M
3568
Z Z Z Z Z

⎞
⎟⎟⎟⎟⎠

+ β

⎛
⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9
X X X X X X

− Z

(−1)M
2457
Z Z Z Z Z

(−1)M
3568
Z Z Z Z Z

⎞
⎟⎟⎟⎟⎠

. (6)
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If the −1 eigenvalue is measured, apply either X1X2X3 or X7X8X9 to give the desired state. The two defects exist at X1X2X3X5

and X5X7X8X9, a minimal logical qubit of distance 1,

α

⎛
⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9
X X X X X X

+ Z

Z Z Z Z

Z Z Z Z

⎞
⎟⎟⎟⎠ + β

⎛
⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9
X X X X X X

− Z

Z Z Z Z

Z Z Z Z

⎞
⎟⎟⎟⎠. (7)

So far we have the logical qubit of the two-defect surface code. Next, we start to convert this logical qubit to the deformation-
based surface code.

For pedagogical clarity, we omit writing the stabilizers that do not change over the course of this operation, depicted in white
in the figures, and we write Z2Z4Z5Z7 ⊗ Z3Z5Z6Z8 = Z2Z3Z4Z6Z7Z8, which is a product of two stabilizers and which can be
measured as a stabilizer without breaking the logical state. We again measure qubit 5 in the X basis, merging the two minimal
defects into one superstabilizer,

α

⎛
⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9
X X X X X X

(−1)M
5
X X

+ Z Z Z

+ Z Z Z

Z Z Z Z Z Z

⎞
⎟⎟⎟⎟⎟⎠

+ β

⎛
⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9
X X X X X X

(−1)M
5
X X

− Z Z Z

− Z Z Z

Z Z Z Z Z Z

⎞
⎟⎟⎟⎟⎟⎠

. (8)

If the −1 eigenvalue is obtained, apply either Z2Z4Z5Z7 or Z3Z5Z6Z8 to preserve the parity of the logical X operator such as
X1X2X3X5 into X1X2X3, giving

α

⎛
⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9
X X X X X X

X

+ Z Z Z

+ Z Z Z

Z Z Z Z Z Z

⎞
⎟⎟⎟⎟⎟⎠

+ β

⎛
⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9
X X X X X X

X

− Z Z Z

− Z Z Z

Z Z Z Z Z Z

⎞
⎟⎟⎟⎟⎟⎠

. (9)

Now Z2Z4Z7 and Z3Z6Z8 share the desired state. We can
now begin measuring Z2Z3Z4Z6Z7Z8 as our superstabilizer.
As is common with state injections, because the process begins
with a raw qubit, state distillation on the logical qubit is
required after this process.

V. CNOT GATE

A CNOT gate can be performed utilizing lattice surgery [16].
The basic concept of the CNOT gate by lattice surgery is as
follows:

(1) Prepare a control (C) qubit in α|0C〉 + β|1C〉 and a target
(T) qubit in α′|0T 〉 + β ′|1T 〉.

(2) Prepare an intermediate (INT) qubit in |+I 〉. The initial
state is

|ψ init〉 = (α|0C〉 + β|1C〉) ⊗ |+I 〉 ⊗ (α′|0T 〉 + β ′|1T 〉). (10)

(3) Measure ZCZI , and get

|ψ ′〉 = (α|0C0I 〉 + β|1C1I 〉) ⊗ (α′|0T 〉 + β ′|1T 〉) (11)

by applying XI if the −1 eigenvalue is observed.
(4) Measure XIXT , and get

|ψ ′′〉 = α|0C〉(α′|0I 0T 〉 + β ′|0I 1T 〉 + β ′|1I 0T 〉 + α′|1I 1T 〉)
+β|1C〉(β ′|0I 0T 〉 + α′|0I 1T 〉
+α′|1I 0T 〉 + β ′|1I 1T 〉) (12)

TargetIntermediate

Control

1

2 3

4

5 6

7

S

a

b c

e f

g

d

i ii

8

9

10

FIG. 5. Three deformation-based qubits to demonstrate the CNOT

gate between the control qubit and the target qubit by lattice-surgery-
like operations in Sec. V. The intermediate qubit is initialized in |+〉.
The code distance for those logical qubits is still 3 during lattice
surgery.
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if the +1 eigenvalue is observed and get

|ψ ′′′〉 = α|0C〉(α′|0I 0T 〉 + β ′|0I 1T 〉 − β ′|1I 0T 〉 − α′|1I 1T 〉)
+β|1C〉(−β ′|0I 0T 〉 − α′|0I 1T 〉
+α′|1I 0T 〉 + β ′|1I 1T 〉) (13)

if the −1 eigenvalue is observed. Apply ZCZI and get Eq. (12)
when −1 is observed. Next, as we merge the I and T qubits
using lattice surgery, the resulting qubit is the exclusive OR
(XOR) of the two Z operators, and finally, we get

|ψfinal〉 = α|0C〉(α′|0m〉 + β ′|1m〉)
+β|1C〉(β ′|0m〉 + α′|1m〉), (14)

where m stands for merged, indicating the merged qubit of I

and T .

Figure 5 depicts the logical CNOT gate of the deformation-
based qubit by lattice surgery.
To measure ZCZI , we measure Z5Z6ZiZii . This is achieved
by swapping qubit 7 with a neighboring ancilla qubit and
using the fault-tolerant stabilizer measurement described in
Sec. VI. This measurement is repeated d times for majority
voting to correct errors, where d is the code distance. If the
−1 eigenvalue is observed from the ZCZI measurement, XI is
applied. During the measurement of ZCZI , we cannot measure
the Z superstabilizers of the intermediate qubit and the control
qubit; meanwhile, normal Z stabilizers can be measured.
Hence, error chains connecting the two Z superstabilizers,
such as X7 and X6X9Xii , may be caused. (Fig. 5 shows
distance 3 code; therefore we should not allow an error chain
of length less than 3 to go undetected.) However, those error
chains do not matter since they are stabilizers for Z5Z6ZiZii .

Next, we measure XIXT and merge the intermediate qubit
and the target qubit. Here we describe the merge operation of
deformation-based qubits. The original state is

(α|0C0I 〉 + β|1C1I 〉) ⊗ (α′|0T 〉 + β ′|1T 〉) = αα′|0C0I 0T 〉 + αβ ′|0C0I 1T 〉 + βα′|1C1I 0T 〉 + ββ ′|1C1I 1T 〉. (15)

The first term of Eq. (15) is

αα′|0C〉

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9 S a b c d e f g

Z Z Z Z Z Z

X X X X X X

Z Z Z Z Z Z

X X X X X X

Z Z Z Z

Z Z Z Z

+ Z Z Z

+ Z Z Z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

where the logical state of two qubits exists in Z1Z2Z3 and ZaZbZc. The two bottom lines are the logical operator states. Measure
qubit S in the Z basis, giving

αα′|0C〉

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9 S a b c d e f g

Z Z Z Z Z Z

X X X X X X X X X X

Z Z Z Z Z Z

(−1)M
S
Z Z Z Z

(−1)M
S
Z Z Z Z

(−1)M
S
Z Z

+ Z Z Z

+ Z Z Z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

If the −1 eigenvalue is obtained, apply either X2X3X4X5X6XS or XbXcXdXeXf XS , and get

αα′|0C〉

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9 S a b c d e f g

Z Z Z Z Z Z

X X X X X X X X X X

Z Z Z Z Z Z

Z Z Z

Z Z Z

Z

+ Z Z Z

+ Z Z Z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

Next, we measure X3XbX6Xe for the third step of lattice surgery.
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We can measure X3, Xb, X6, and Xe both to execute our merge and to measure X3XbX6Xe. Measure qubit 3 in the X basis.
If −1 is obtained, apply either Z3Z8Zb or Z1Z2Z3Z5Z6Z7.

αα′|0C〉

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9 S a b c d e f g

Z Z Z Z Z Z Z

X X X X X X X X X

Z Z Z Z Z Z

Z Z Z

+ Z Z Z

+ Z Z Z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

Measure qubit b in the X basis. If the −1 is obtained, apply either Z1Z2Z5Z6Z7Z8Zb or ZaZbZcZeZf Zg .

αα′|0C〉

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9 S a b c d e f g

Z Z Z Z Z Z Z Z Z Z Z

X X X X X X X X

Z Z Z

+ Z Z Z

+ Z Z Z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

Measure qubit 6 in the X basis, and apply Z1Z2Z5Z6Z7Z8ZaZcZeZf Zg if the −1 eigenvalue is observed.

αα′|0C〉

⎛
⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9 S a b c d e f g

Z Z Z Z Z Z Z Z Z Z

X X X X X X X

+ Z Z Z Z

+ Z Z Z

⎞
⎟⎟⎟⎟⎟⎠

. (21)

Measure qubit e in the X basis and apply both Z5Z7Z9 as ZI and ZiZ7Zii as ZC if the −1 eigenvalue is obtained.
Alternately, we can measure X3, Xb, X6, and Xe in parallel. After the parallel measurements, if an even number of −1

eigenvalues is observed, as in normal error correction, a physical Z operator chain connecting the remaining X stabilizers with
−1 eigenvalues is executed. If an odd number of −1 eigenvalues is observed, we execute the physical Z operator chain, and there
still remains an X stabilizer with a −1 eigenvalue. The X superstabilizer of the merged qubit actually has the −1 eigenvalue in
this case; hence we connect the remaining X stabilizer and the intermediate qubit side of the X superstabilizer. This operation
keeps the eigenvalues of the lattice +1 and works as ZI , like Z5Z7Z9 was used in the sequential form above. We execute ZiZ7Zii

as ZC when an odd number of −1 eigenvalues is observed.
Those measurements work for connecting the superstabilizers. Therefore those measurements are allowed to be non-fault-

tolerant since the remaining stabilizers confirm the correctness of the measurements; when qubit e is measured in the X basis,
regardless of whether a measurement error occurs, if the remaining stabilizer X9XgX10 outputs −1 repeatedly, we can conclude
the correct measurement of qubit e is −1.

Now we have code space for only one qubit, and the two qubits are merged into a qubit whose logical operator state is the
product of the first two, shown in the bottom line,

αα′|0C〉

⎛
⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9 S a b c d e f g

Z Z Z Z Z Z Z Z Z Z

X X X X X X

+ Z Z Z Z Z

⎞
⎟⎟⎟⎠. (22)

By similar operations, Eq. (15) is rewritten as

αα′|0C〉

⎛
⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9 S a b c d e f g

Z Z Z Z Z Z Z Z Z Z

X X X X X X

+ Z Z Z Z Z

⎞
⎟⎟⎟⎠

+αβ ′|0C〉

⎛
⎜⎜⎝

1 2 3 4 5 6 7 8 9 S a b c d e f g

Z Z Z Z Z Z Z Z Z Z

X X X X X X

− Z Z Z Z Z

⎞
⎟⎟⎠
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+βα′|1C〉

⎛
⎜⎝

1 2 3 4 5 6 7 8 9 S a b c d e f g

Z Z Z Z Z Z Z Z Z Z

X X X X X X

− Z Z Z Z Z

⎞
⎟⎠

+ββ ′|1C〉

⎛
⎜⎝

1 2 3 4 5 6 7 8 9 S a b c d e f g

Z Z Z Z Z Z Z Z Z Z

X X X X X X

+ Z Z Z Z Z

⎞
⎟⎠. (23)

Using a new definition, we now have

|0m〉 = Z5Z7Z9Zf Zg, (24)

|1m〉 = −Z5Z7Z9Zf Zg, (25)

where m stands for merged. Equation (23) can be written as

α|0〉(α′|0m〉 + β ′|1m〉) + β|1〉(β ′|0m〉 + α′|1m〉); (26)

therefore now we have a complete CNOT gate. From this point
in the operation, we start to measure the new superstabilizers.

VI. ARBITRARY-SIZE STABILIZER MEASUREMENT

We suggest using a cat state of an arbitrary length to measure
superstabilizers. In this section, we first discuss fault-tolerant
preparation and then generic use of cat states for constant-time
stabilizer measurement, before addressing superstabilizers in
our system. Finally, we return to the issue of errors.

A. Arbitrary-length cat-state preparation

The non-fault-tolerant circuit to prepare an arbitrary-length
cat state in constant time is depicted in Fig. 6. In the circuit,
many qubits in |+〉 are created and entangled by measuring
ZZ of every pair of neighboring qubits. Here, we prepare two
qubits in |+0+2〉 and a third qubit in |01〉,

|ψ012〉 = |+001+2〉, (27)

FIG. 6. Non-fault-tolerant circuit to make an n-size cat state in
five steps.

with this order corresponding to the physical placement.
Dispensing with normalization, as every term has the same
amplitude, apply CNOT for Z0Z2 measurement:

|ψ ′
012〉 = CNOT[2,1]CNOT[0,1]| +0 01+2〉

= |000102〉 + |001112〉 + |101102〉 + |100112〉, (28)

where CNOT[a,b] denotes that qubit a is the control qubit and
b is the target. Measure ancilla qubit 1 in the Z basis, and if
the −1 eigenvalue is obtained, apply X1 to get

|ψ ′′
02〉 = |0002〉 + |1012〉. (29)

We can entangle another qubit in |+〉 to this state in the same
way, and we can make a cat state of arbitrary length. However,
this procedure is not fault tolerant, and there is a chance of
getting a problematic state such as |00001111〉 + |11110000〉.
Using this state for a stabilizer measurement may produce a
logical error because the logical operator of the deformation-
based qubit is half of a superstabilizer. Therefore we need to
confirm that we have a proper cat state. It is well known that
measuring ZZ of every pair of qubits comprising the cat state
is good enough for this proof [6]. Since measuring the ZZ

stabilizer of every pair of qubits requires many SWAP gates and
a lot of steps, we suggest repeating the ZZ measurement of
every pair of neighboring qubits d times, where d is the code
distance. This procedure guarantees that the probability of the
state being in a problematic state is O(p�d/2�), where p is the
physical error rate, giving the same error rate as that achieved
by fault-tolerant quantum computation. (The state could still
be an imperfect cat state such as |00100000〉 + |11011111〉
due to individual physical errors, which is tolerable.)

B. Stabilizer measurement in constant time using a cat state

A three-qubit cat state can be rewritten as

|ψcat〉 = |000〉 + |111〉
= (|+〉 + |−〉)(|+〉 + |−〉)(|+〉 + |−〉)

+ (|+〉 − |−〉)(|+〉 − |−〉)(|+〉 − |−〉) (30)

= |+++〉 + |+−−〉 + |−+−〉 + |−−+〉. (31)

The |000〉 and |111〉 terms are rewritten in symmetric fashion
except that the signs of factors involving an odd number of |−〉
differ, as shown in Eq. (30). From this fact and the binomial
expansion, a cat state of any length involves an even number
of |−〉. Applying a Z to any qubit in the cat state, the state in
Eq. (31) is changed to

|ψ ′
cat〉 = |−++〉 + |−−−〉 + |++−〉 + |+−+〉. (32)
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Applying a Z to any qubit again, this state returns to the state
in Eq. (31). To observe whether we have the “even” cat state
or the “odd” cat state, we need to measure all ancilla qubits in
the X basis and calculate the product of the measured values.

Let us assume that we have as many ancillae for the cat
state as we have data qubits to stabilize, and we can assign a
qubit in the cat state to each data qubit, then apply a CNOT from
each cat-state qubit to the corresponding data qubit. This set
of CNOT gates is equivalent to the syndrome propagation for
the X1X2 · · · Xn stabilizer. The cat state starts from the “even”
state, and if an odd number of flips is performed, the cat state
results in the “odd” state. The CNOT gates can be applied
simultaneously, and the measurement can be performed
simultaneously; therefore this procedure requires three steps
(CNOT gates, Hadamard, and measurement in the Z basis).

C. Superstabilizer implementation

To suppress the probability of having an improper cat
state to O(p� d

2 �), a linear placement requires d cycles of ZZ

stabilizers, but a circular placement requires only � d
2 � cycles.

Let us assume that an example of the problematic states,
|0001020314151617〉 + |1011121304050607〉, has developed. In
a linear arrangement, we have ZZ stabilizers only between
neighboring qubits. After d cycles of ZZ stabilizers, the prob-
lematic state generation is caused by p� d

2 � errors at the Z3Z4

stabilizer. In a circular arrangement, we have another Z7Z0

stabilizer. Hence, after d cycles of ZZ stabilizers, even though
we have p� d

2 � errors at the Z3Z4 stabilizer, d cycles of the Z7Z0

stabilizer tell us that we have an improper cat state. Therefore,
for instance, p� d

2 � errors at the Z3Z4 stabilizer and p� d
2 � errors

at the Z7Z0 stabilizer are required to generate a problematic
cat state after d cycles of ZZ stabilizers, suppressing the
improper cat-state generation probability to O(pd ). Hence,
to suppress the error probability to O(p� d

2 �), circular-fashion
cat-state generation requires only � d

2 � cycles of ZZ stabilizers.
Figure 7 depicts the placement of two sets of ancilla qubits,

each of which is prepared in a cat state for the X superstabilizer
and for the Z superstabilizer. The dashed lines describe the
cat-state qubits; red (blue) dots are qubits composing the cat
state for the Z (X) superstabilizer, and gray dots are ancilla
qubits to create and confirm the cat state (the ancilla’s ancilla).
The qubits under both dashed lines are used for the Z and X

ancilla qubits alternately. Therefore we need d
2 × 2 = d cycles

to measure both the Z superstabilizer and the X superstabilizer.
The “thickness” of the deformation-based qubit in Fig. 7 is 2 to
allow us to have the loop cat state. Greater thickness requires
fewer cycles of the repeating ZZ stabilizer to confirm the cat
state. We assume that the thickness is 2 throughout the rest of
this paper to show the basic idea of our architecture.

The depth of the circuit to initialize a cat state is 5. A
cycle of the following ZZ measurements for the proof requires
four steps. The maximum number of CNOT gates to propagate
error syndromes from data qubits to an ancilla qubit is 2, as
shown in Fig. 7, at the corners of the superstabilizers. The
total number of steps to measure a superstabilizer is the sum
of 5 + 4(d − 1) = 4d + 1 steps for cat-state creation and the
proof, one step for a Hadamard gate for Z superstabilizer,
two steps for syndrome propagation, one step for a Hadamard

thickness

FIG. 7. Implementation of two cat states for a superstabilizer.
The red dots are ancilla qubits prepared in a cat state for the Z

superstabilizer. The red dashed loop describes the pairs for ZZ

stabilizers to create and confirm the cat state. The ZZ stabilizer on
each pair of neighboring red dots in this red dashed loop is executed.
The gray qubits under the red dashed circle are qubits with odd
indices in Fig. 6, used to measure ZZ stabilizers. The blue dots and
the blue dashed circle are the same but for the X superstabilizer.
The qubits (dots) where the dashed loops intersect are used for
during the creation of both cat states in alternating fashion. The
“thickness” of this deformation-based qubit is 2. The CNOT gates of
the Z superstabilizer are shown. Each ancilla qubit on the corner of
the loop handles two data qubits, and those along the sides handle
one.

gate for the X superstabilizer, and one step for measurements,
where d is the code distance. Therefore the number of steps to
measure a superstabilizer is 4d + 5.

However, in Fig. 7, two data qubits neighboring a corner
of a loop cat state execute CNOT gates with the corner qubit
so that an error on the corner qubit may propagate to the two
data qubits, which may reduce the error suppression ability
of the code. By judicious use of the unused qubits, we can
recover the code distance lost, as shown in Fig. 8. In Fig. 7,
for simplicity we show thickness t = 2 employing a cat state
forming a complete loop, in which each corner cat-state qubit
stabilizes two data qubits, resulting in reducing the effective
code distance by 2. Figure 8 shows that, by utilizing unused
physical qubits inside a superstabilizer, we can add more qubits
to the cat state and can allow every cat state qubit to stabilize
a data qubit. This improvement can be applied with code
distance 8 or higher. This process is the same as the previous
one, except that only one step is required for propagation. The
first SWAP gates overlap with the measurements; then we add
one step for the second SWAP gates, one step for syndrome
propagation of ranged pairs, one step for a Hadamard gate
for the X superstabilizer, and one step for measurements to
replace a corner cat-state qubit with one made inside the
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thickness

FIG. 8. Z superstabilizer in which a cat-state qubit stabilizes a
data qubit. Qubits on the thick dashed lines are newly added to the
cat-state qubits. It does not matter that the cat-state qubit on the cross
of a thick dashed line and a thin dashed line is stabilized by three
stabilizers to prove the correctness of the cat state since one cycle of
stabilization for the proof takes four steps. Non-neighbor CNOT gates
are executed after SWAP gates to neighbor the control and the target
qubits.

superstabilizer, followed by error syndrome propagation and
measurement. In total, 4d + 9 steps are required.

VII. ERRORS

Although it might be thought that the deep circuit of
the superstabilizer measurement results in a higher logical
error rate than another surface code in which any stabilizer
requires eight steps, we argue that the deformation-based
surface code will exhibit a similar logical error rate with
the conventional surface code. Figure 9 shows an example of
two deformation-based qubits. Obviously, any single logical
operator is protected by code distance 5, as shown in Fig. 2.
Any single operator is protected by normal stabilizers every
eight physical steps. Therefore conventional error analysis for
surface code can be applied.

The pair of blue lines in Fig. 9 indicates the product of the
two logical qubits’ logical X operators. In order for a logical
error to arise undetected, both error chains must occur. The
short fragment of the operator product between (b) and (c)
may occur easily and will be detected only by superstabilizer
measurements, which are completed at every 4d + 5 physical
steps. The long fragment of the operator product between (a)
and (d) should occur only rarely because the long fragment
is protected by normal stabilizers and has a longer length
than the code distance. Therefore the probability that this
product operator happens to be executed by errors is strongly
suppressed, although (b) and (c) are close and 4d + 5 physical
steps are required to measure superstabilizers.

(a)

(b)
(c)

(d)

FIG. 9. Errors on deformation-based qubits due to the long
execution time to measure superstabilizers. Both (a) and (b) are one
half of a Z superstabilizer. A physical X error chain connecting those
halves results in a logical X error for this deformation-based qubit.
The same is true for (c) and (d). The set of blue lines describes the
product of logical X operators of the two deformation-based qubits.

Figure 10 shows a problematic placement of deformation-
based qubits. The code distance of each deformation-based
qubit is 10. However, the product of the four logical X

operators of those deformation-based qubits results in the
combination of the four blue lines, each of which exists
between two neighboring Z superstabilizers, consisting of
only four physical qubits, reducing our minimum error chain
to 4. Deformation-based qubits must be placed so that their
superstabilizers do not form a loop.

In the next section, we present our scheme for dense packing
that meets these constraints, then continue the discussion of
errors.

VIII. DENSE PLACEMENT

Because of the restrictions described in Sec. VII, we locally
set four deformation-based qubits as a box, as shown in Fig. 11,
and globally place the boxes apart to maintain fault tolerance
and to have free space available for routing intermediate
qubits, as shown in Fig. 12. This local placement actually
achieves dense packing; however, placing the logical qubits
close together in this fashion results in error paths that shorten
the effective distance.
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FIG. 10. Problematic placement of deformation-based qubits.
Each deformation-based qubit has code distance 10. The shortest
combined logical X operator for those four logical qubits is only 4,
the combination of the blue lines.

To qualitatively analyze this effect, we define a hierarchy
of distances: First, do is the original code distance of a single
logical qubit, corresponding to the length around one of the
arms, as in Fig. 1. Next, ds is the shortened code distance,
where the presence of neighboring superstabilizers may result
in an error path of fewer hops. Finally, de is the effective
code distance: the superstabilizers’ longer cycle time results
in higher vulnerability to errors, so we downgrade their ability
to protect our data in this analysis by creating this artificially
shortened distance. We want this final de to give us protection
equivalent to or better than the protection of a planar code
qubit of distance d, leading to the relation

do � ds � de � d. (33)

In the rest of this section, we explore this relationship in detail
by comparing the number of error paths of the minimum length
in several scenarios.

In Fig. 11, the path labeled ds crosses two superstabilizers,
one laterally and the other longitudinally. An error chain can
cross a superstabilizer in a single hop. Thus, although the
path ds covers more ground than do, the number of errors in
an undetected error chain is ds = do − t + 1, where t is the
thickness of the superstabilizer crossed laterally.

Worse, the deeper circuit of the superstabilizer increases
the likelihood of error, so we choose to treat the supersta-
bilizers as having no positive effect on error suppression.
Removing them, our effective distance is de = ds − 2 =
do − t − 1.

ds

do

FIG. 11. Local placement of the deformation-based surface code.
There are four logical qubits of distance 10 (do); however, since
the thickness of superstabilizers shortens others’ code distance by
1, the shortened code distance ds is 9. This placement enables
the four logical qubits to have lattice-surgery-like CNOT with other
logical qubits. For thickness t = 2, each row and column has 3ds + 8
physical qubits, and (3ds + 8)2 = 9d2

s + 48ds + 64 physical qubits
are required for four logical qubits. The dashed box corresponds
to the dashed box in Fig. 12. The blue lines describe minimal X

error chains from the point of view of do and ds , respectively, for
the top right logical qubit. To downgrade the error tolerance in this
analysis because of the two superstabilizers which have longer cycle
time, we introduce the effective code distance de, where de = ds − 2
and (3ds + 8)2 = (3de + 14)2 = 9d2

e + 84de + 196 physical qubits
are required for four logical qubits.

Finally, setting t = 2, this leads us to the following
relationship for the dense packing of Fig. 11:

de = d, (34)

ds = de + 2, (35)

do = ds + 1 = de + 3 = d + 3. (36)

With this layout, our four-fin logical qubits begin with a dis-
tance 3 longer than the defect-based qubits to achieve compa-

rable logical error rates. As a result, (5de+17)2

4 = 25d2
e +170de+289

4
physical qubits are required for a logical qubit.

The global placement is shown in Fig. 12. The transformed
qubit indicated by (A) is being routed. (A) is transformed
during moving from one crossroads to another.

Since the surface code places data qubits and ancilla qubits
alternately, 2d columns and rows are required to have code
distance d. To avoid the situation shown in Fig. 10, (I) +
(II) + (III) � 2d must be satisfied to guarantee code distance
d of (B) and (C). Since (III) is d, (I) + (II) needs to be d or
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3(do+t)-1

2do-1

(5do+3t-4)n+2do-1
3(do+t)-1

3(do+t)-1

3(do+t)-1

2do-1

2do-1

2do-1

2do-12do-1

(5do+3t-4)n+2do-1

3(do+t)-1
2do-1

2do-1

3(do+t)-1

(A) (I) (II)

(B)
(C)

(III)

FIG. 12. Global placement of the deformation-based surface code. Each dashed box is the dashed box shown in Fig. 11. The spaces between
the boxes are paths to move logical qubits and intermediate qubits. The deformation-based qubits outside of the dashed boxes are examples of
intermediate qubits. There are n × n sets of the local placement. The lengths include both data qubits and ancilla qubits; hence 2d corresponds
here to the code distance d . The stretched qubit indicated by (A) is being routed from location to location. To retain the fault tolerance of (B)
and of (C), (I) + (II) needs to be d

2 or more; therefore (A) is transformed. The qubits on the boundary between a local placement set and a path
are included in both 3(do + t) − 1 and 2do − 1; hence there are (5do + 3t − 4)n + 2do − 1 rows and (5do + 3t − 4)n + 2do − 1 columns. The
total number of physical qubits is [(5do + 3t − 4)n + 2do − 1]2 for 4n2 logical qubits, excluding intermediate qubits. This placement requires

( 5do+3t−4
2 )2 = 25d2

o +30dot+9t2−40do−24t+16
4 physical qubits per logical qubit for large enough n. This corresponds to ( 5de+17

2 )2 = 25d2
e +170de+289

4
physical qubits being required for a logical qubit for t = 2.

more; hence (I) and (II) each must be d
2 or greater. Therefore

(A) is transformed.
This placement design requires ( 5do+3t−4

2 )2 =
25d2

o +30dot+9t2−40do−24t+16
4 physical qubits per logical qubit

for large enough n. Choosing t = 2, ( 5ds+7
2 )2 = ( 5de+17

2 )2 =
25d2

e +170de+289
4 physical qubits are required for a logical qubit,

including ancilla qubits.
In contrast, the planar code’s placement for lattice-surgery-

based operation, shown in Fig. 13, requires (4d − 2)2 =
16d2 − 16d + 4 physical qubits per logical qubit.

As a result, the deformation-based surface code requires
50% fewer physical qubits than the planar code. Horsman et al.
showed that the number of required qubits for the defect-based
surface code is similar to that of the planar code in large-scale
quantum computation, so deformation-based surface code also
requires fewer physical qubits than the defect-based surface
code [16].

The complex interactions during syndrome extraction and
the difficulties of the error-matching processing make direct
calculation of residual logical error rates infeasible, but we
can make a qualitative comparison by examining the number

FIG. 13. Planar code placement for comparison, after Fig. 12 in
[16]. Each shaded area holds a logical data qubit, and blank areas
are available for intermediate qubits for CNOT gate by lattice surgery.
Each area has 2d − 1 by 2d − 1 physical qubits, including ancillae.
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of redundant logical operators, each of which may potentially
be a logical error. For a code of distance d, logical operators
of length d dominate. A planar code qubit has d redundant
logical operators of length d for each type of logical operator.
A defect-based code qubit has d

4 redundant logical operators
of length d between the two defects.

In contrast, a deformation-based qubit which is distant from
the lattice boundary and distant from other logical qubits has
exactly two redundant logical operators of length do for each
type.

Hence the isolated deformation-based code has fewer
potential error operators. With the placement shown in Fig. 11,
because of the presence of a superstabilizer of a neighboring
logical qubit, the number of potential logical error operators

increases to d3
e −11d2

e +35de−25
8 redundant logical operators of

length de.
This is because, for example, a horizontal error chain at the

top left of the lattice and a horizontal error chain at the bottom
right do not result in a logical error since they would be distant
if the surface consisted only of normal stabilizers. However,
if there is a vertical long superstabilizer in the middle of the
lattice which makes the error chains close, those two error
chains may cause a logical error.

For distances 9, 19, and 29, the deformation-based code
may have 2, 23, and 70 times as many potential logical
error operators of length de as the planar code. (Obviously, a
deformation-based code of effective code distance de does not
have error operators of geometric length de since the shortened
code distance ds is the geometric distance and de = ds − 2;
hence we counted error operators by the shortened code
distance corresponding to the effective code distance we want.)
The effective code distance de is defined stringently; therefore
we may not need to be concerned about this overhead to
compare the deformation-based qubit and other surface-code
qubits. Otherwise, this overhead can be tolerated by employing
one greater code distance.

A surface-code qubit utilizing the rotated lattice requires
only 2d2 − 1 physical qubits to encode a logical qubit [16].
However, since the rotated planar code does not directly sup-
port lattice surgery because of its irregular boundaries, either a
transversal CNOT gate or conversion to a standard planar code
is required to achieve practical quantum computation. Imple-
menting a transversal CNOT gate may kill the surface code’s
advantage on feasibility. Conversion to the standard planar
code requires a memory area large enough for the standard
planar code and requires the paths for logical qubit transfer
wide enough to transfer standard planar code qubits, eventually
killing the rotated lattice qubit’s advantage on the resource
requirement. Therefore we focus on the standard planar code
for comparison rather than the rotated-lattice planar code.

We employed the thickness t = 2 in this example for
simplicity. Using thickness t = 3 instead will shorten the
columns and the rows of a deformation-based qubit. Because

an even code distance has the same error suppression capability
as the odd distance just below it, a t = 2 logical qubit and a
t = 3 logical qubit should have 2d + 1 and 2d − 1 columns
and rows, respectively. This allows us to slightly narrow the
interblock channels in Fig. 12.

As in the defect-based code, the Hadamard gate is executed
by isolating the logical qubit from the rest of the surface,
exchanging X and Z stabilizers, then reconnecting it to the
surface. With the dense packing, there is no room around
the qubit to disconnect it from the surface, so the qubit first
should be moved out into the channel before performing the
Hadamard.

IX. DISCUSSION

We have shown the acceptability of close placement of the
deformation-based surface code by measuring superstabilizers
which produce deformation-based qubits; direct conversion
from the defect-based surface code to the deformation-based
surface code, which can be used as state injection for the
deformation-based surface code; and a lattice-surgery-like
CNOT gate for the deformation-based qubits which requires
fewer physical qubits than the braiding CNOT gate. The
acceptability of close placement and the space-saving CNOT

gate allow deformation-based qubits to be packed more tightly
than planar code qubits and defect-based qubits.

We have shown theoretical basic concepts but have not
calculated the error suppression ability since that of the
surface code has been investigated well. The superstabilizers
which compose deformation-based qubits require 4de + 9
steps for stabilizer measurements where de is the effective code
distance. Our placement design preserves logical qubits as any
logical operator passes through a chain of normal stabilizers
that compose the effective code distance de. Hence, by adding
3 to the original code distance, the long stabilizer measure-
ment does not degrade the error suppression efficiency. The
deformation-based surface code should have a residual error
rate similar to the conventional surface code of code distance
3 shorter, and hence conventional error analysis for the surface
code can be applied to the deformation-based surface code.

Our design requires 25d2
e +170de+289

4 physical qubits for a
logical qubit, compared to the 16d2 − 16d + 4 physical qubits
required in the conventional design. Our design would halve
the resources required to build a large-scale quantum computer.

Note added. Recently, a preprint appeared with a similar
goal of reducing the resource consumption of the surface code
but using very different methods [21].
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