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We develop a comprehensive framework to model and optimize the performance of continuous-variable
quantum key distribution (CV-QKD) with a local local oscillator (LLO), when phase reference sharing and QKD
are jointly implemented. We first analyze the limitations of the only existing approach, called LLO-sequential, and
show that it requires high modulation dynamics and can only tolerate small phase noise. Our main contribution is to
introduce two designs to perform LLO CV-QKD, respectively called LLO-delayline and LLO-displacement, and
to study their performance. Both designs rely on a self-coherent approach, in which phase reference information
and quantum information are coherently obtained from a single optical wavefront. We show that these designs
can lift some limitations of the existing LLO-sequential approach. The LLO-delayline design can in particular
tolerate much stronger phase noise and thus appears to be an appealing alternative to LLO-sequential in terms of
network integrability. We also investigate, with the LLO-displacement design, how phase reference information
and quantum information can be multiplexed within a single optical pulse. By studying the trade-off between
phase reference recovery and phase noise induced by displacement, we, however, demonstrate that this design
can only tolerate low phase noise. On the other hand, the LLO-displacement design has the advantage of minimal
hardware requirements and provides a simple approach to multiplex classical and quantum communications,
opening a practical path towards the development of ubiquitous coherent classical-quantum communications
systems compatible with next-generation network requirements.
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I. INTRODUCTION

Quantum key distribution (QKD) [1–3] is a promising
technology that has reached the commercialization step in
the past decade [4,5]. Targeting deployment over large-scale
networks, next-generation QKD should rely on affordable
optical components. It will in particular consist of highly
integrated systems able to operate at high rate and able
to be deployed over modern optical networks. Relying on
standard telecommunication equipment, continuous-variable
(CV) QKD is an attractive approach towards this next step
of QKD development [6,7]. While first results towards CV-
QKD practical photonics chip integration have been pursued
[8,9], the possibility of effectively deploying CV-QKD in
coexistence with intense wavelength-division multiplexing
classical channels has been demonstrated [10]. Furthermore,
high repetition rates (up to the order of hundreds of MHz)
[11,12] in CV-QKD systems have also been demonstrated
recently. Although they are more sensitive to optical losses than
discrete-variable based QKD, long-distance CV-QKD has,
however, been demonstrated by controlling excess noise [13]
and developing high-efficiency error correction codes [14].
These important steps in the recent development of CV-QKD
are, in addition, likely to benefit from the rise of classical
coherent communications [15], with the prospect of conver-
gence of classical and quantum communication techniques
and simplified photonic integration. This positions CV-QKD
and more generally quantum coherent communications as
an appealing technology for the the development of modern
quantum communications.

*adrien.marie@telecom-paristech.fr

A. Sharing a reference frame in CV-QKD

Quantum coherent communication protocols have to ad-
dress one specific challenge, namely phase reference sharing.
As a matter of fact, the receiver must perform a phase-sensitive
detection using an optical beam usually called a “local
oscillator” whose phase drift with respect to the emitter must
be controlled, or estimated, and corrected. The problem of
sharing a reference frame is specific in the sense that reference
frame information constitutes unspeakable information that
can only be shared through physical carriers exchanged
between emitter and receiver [16]. On the other hand, it is
important to emphasize that although quantum mechanics
gives a precise framework to formulate the question of
reference frame sharing, in relation with quantum metrology
[16], this question can be solved classically, using macroscopic
signals to exchange reference frame information. The type
of question related to phase reference sharing is not whether
it is possible but whether it can be achieved given resource
constraints, dictated by the hardware resources and by the
characteristics of the channel, such as losses and noise. In line
with the recent work on LLO CV-QKD [17–19], we will focus
on in this article on the issue of jointly performing, with the
same hardware, phase reference sharing and CV-QKD. We
will, in particular, focus on the Gaussian-modulated coherent
state (GMCS) [20] protocol.

B. The transmitted local oscillator design

In most implementations of CV-QKD performed so far
[12,21–23], the phase reference is directly transmitted from
Alice to Bob through the optical channel as a bright optical
pulse with each quantum signal pulse and is used as the
LO pulse at reception. Such implementation is detailed in
Fig. 1 and is referred to as the transmitted LO (TLO) design.
The main advantage of this scheme is the guarantee, by
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FIG. 1. Transmitted local oscillator (TLO) design. In the TLO
design, the phase reference (green pulse) and the quantum signal (red
pulse) are derived from the same optical pulse and sent from Alice to
Bob using multiplexing and demultiplexing (MD) techniques.

design, of a stable relative phase between quantum signal
and LO at reception by producing both of them from a
single laser LA placed at Alice’s side. Although it is the most
implemented GMCS protocol, limitations of this design have
been pointed out in Refs. [17–19]. Security weaknesses of such
implementations have, however, been demonstrated in practice
by manipulating the LO intensity [24–26] or wavelength [27]
on the quantum channel. Furthermore, such protocols rely on
the use of a bright LO at reception. For long distance or high
speed (where the pulse duration is short), the requirements
in terms of launch power at emission creates practical issues.
This will, in particular, limit the possibility of using the TLO
design on shared optical fibers at long distance and high-rate
operation, i.e., situations where the requirements on LO power
at emission would be extremely large.

C. The local local oscillator method

In order to lift the limitations of CV-QKD implementations
relying on the TLO design, a CV-QKD method relying on
a so-called local local oscillator (LLO) has recently been
independently introduced in Refs. [17–19]. This method,
implementing the Gaussian modulated coherent state protocol,
consists in using a second laser at Bob’s side in order to
produce local LO pulses for coherent detections. One crucial
advantage of implementing CV-QKD in a LLO configuration
is to close, by design, any potential security loophole linked to
the possibility of manipulating the LO as it propagates on the
public optical channel between Alice and Bob. Implementing
LLO CV-QKD allows us, on the other hand, to ensure by
design that the LO is fully trusted, and in particular that the
LO amplitude (that requires careful calibration) cannot be
manipulated. Another important advantage of LLO CV-QKD
stems from the fact that in this configuration, repetition rate
and distance do not affect the LO intensity at detection. A
LO power sufficient to ensure high electronic-to-shot-noise
ratio may thus be obtained, independently of the propagation
distance.

Implementing CV-QKD in the LLO configuration, how-
ever, comes with experimental challenges. The main issue
in LLO-based CV-QKD is to be able to perform CV-QKD
despite the potentially important drift of the relative phase
between Alice’s emitter laser LA and Bob’s local oscillator
laser LB ; see Fig. 2. The relative phase at reception is, in
the case of LLO-based CV-QKD, the relative phase between

FIG. 2. Local local oscillator (LLO) sequential design. In the
LLO-sequential design, Alice sequentially sends weak quantum
signal (red pulse) and bright phase reference (blue pulse) pulses.
At reception, Bob performs consecutive coherent detections of each
pulse received using is own LO pulses (green pulse).

the two free-running lasers LA and LB . As such, Bob’s raw
measurement outcomes are a priori decorrelated from Alice’s
quadratures and a phase correction process has to be performed
in order to allow secret key generation. The goal of the
phase reference sharing in the context of LLO CV-QKD is
then to ensure a phase noise low enough so that the excess
noise is significantly below the threshold imposed by security
proofs [7].

D. The LLO-sequential method

Recent works [17–19] have demonstrated the possibility of
implementing the GMCS protocol using a local local oscillator,
by introducing an experimental design, depicted on Fig. 2, that
we will call LLO-sequential. In the LLO-sequential design,
Alice sequentially sends, at a repetition rate f/2, consecutive
pairs (|αS〉,|αR〉) of coherent states, where |αS〉 is a GMCS
quantum signal pulse and |αR〉 = |ER〉 is a phase reference
pulse with a fixed phase set to 0 and an amplitude ER. Phase
reference pulses are relatively bright pulses compared to the
signal and have a fixed phase in Alice’s phase reference frame,
which is publicly known so that it carries information on
Alice’s reference frame. At reception, Bob performs sequential
coherent detections of quantum signal and phase reference,
using a single detector, operated with a local local oscillator,
placed at Bob. Bob can thus estimate the relative phase using
the phase reference pulse and a phase correction can be
performed on Alice and Bob’s signal data in order to generate
the secret key.

In Ref. [18] a 250-kHz-clocked proof-of-principle experi-
ment of the LLO-sequential designed is performed, however,
with only one single laser playing the role of both emitter and
LO and two consecutive uses of a homodyne detector used
to emulate a heterodyne measurement. In Ref. [17], another
proof-of-principle experiment with two lasers and Alice and
Bob connected by a 25-km optical fiber is performed with a
50-MHz-clocked system. The authors demonstrate that phase
correction can be implemented with a residual excess noise
compatible with CV-QKD security threshold. Joint operation
of CV-QKD (requiring weak quantum signals) together with
the phase correction mechanism (requiring bright phase
reference pulses) was studied through a simulation, which left
aside the question of the hardware requirements for both CV-
QKD and phase reference sharing. Reference [19] provides
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a whole experimental demonstration of an implementation
of LLO-sequential CV-QKD over 25 km, with a 100-MHz-
clocked system, and a 1-GHz-bandwidth shot-noise limited
homodyne detection. We should, however, emphasize that
these strong experimental performances have been obtained
with two external-cavity lasers (ECL), as emitter and LO, and
an amplitude modulator with 60 dB of dynamics. We show in
this work that adopting some alternative experimental schemes
allows us to perform CV-QKD and phase reference sharing
with same hardware and yet lighter requirements, thanks to
better phase noise tolerance.

E. Contributions of this work

We identify and discuss the existing approaches to the phase
reference sharing problem for LLO CV-QKD. Recent works
[17–19] all rely on time-multiplexed quantum signals pulses
with reference pulses in order to jointly perform phase recovery
and quantum communication. In this work, we introduce new
elements in the standard noise model of CV-QKD analysis,
considering practical constraints imposed by the simultaneous
quantum signal and phase reference transmission of LLO-
based CV-QKD. In particular, we show that the amplitude
modulator dynamics is a key parameter in order to compare
performance of realistic implementations of LLO-based CV-
QKD. Based on this comprehensive model, we show that there
exist fundamental and practical limitations in the phase noise
tolerance of the design introduced in Refs. [17–19] that we
designate as LLO-sequential.

In order to go beyond that phase noise limit, we introduce
the idea of self-coherence in phase reference sharing for
CV-QKD implementations based on a local local oscillator.
Self-coherent designs consist in ensuring the phase coher-
ence between pairs of quantum signal and phase reference
pulses by deriving both of them from the same optical
wavefront at emission. This allows us to perform relative
phase recovery schemes with better sensitivity than in the
LLO-sequential design. In particular, we propose a design,
called LLO-delayline, that implements a self-coherent phase
sharing design. It ensures the self-coherence using a balanced
delay-line interferometer split between emitter and receiver
sides. We analyze how self-coherence is obtained and study
the performance reachable with this design, demonstrating that
they exhibit a much stronger resilience to high phase noise
than the LLO-sequential design under realistic experimental
parameters. While previous experimental proposals of LLO
CV-QKD are limited to slowly varying reference frames
regimes (i.e., based on very stable lasers or high repetition
rates), our newly introduced design allows phase reference
sharing resilient to high phase noise regimes, using the idea of
self-coherence.

A second self-coherent design, referred to as LLO-
displacement, relies on an original multiplexing allowing to
transmit both the quantum signal and the reference pulse
within each optical pulse. The simultaneous transmission of
quantum signal and phase reference can be seen as an original
cryptographic primitive, considered in Ref. [28], that can be
used with different modulation schemes. In particular, this
allows us to optimize the resources—in terms of required
hardware and repetition rate—in LLO-based CV-QKD exper-

iments. We also emphasize that an important advantage of
our LLO-displacement design is its experimental simplicity as
we show that the multiplexing can be perform numerically on
Alice’s variables. As such, no specific hardware devices are
required. We study the theoretical performance of such design
and exhibit its limitations.

In Sec. II, we introduce the CV-QKD model. In particular,
the phase reference sharing issue in CV-QKD is formally intro-
duced and discussed and we also introduce our comprehensive
noise model. In Sec. III, we highlight practical limitations of
existing local local oscillator–based CV-QKD and introduce
the idea of self-coherence for reference sharing in CV-QKD. In
Secs. IV and V, we respectively introduce the LLO-delayline
and LLO-displacement designs and study their performance.
Conclusion and perspectives are presented in Sec. VI.

II. CV-QKD: NOISE MODEL

We introduce new elements in the standard noise model
in order to account for the important constraints that drive
the performance of CV-QKD in the regime of a local local
oscillator implemented with shared standard hardware. In
particular, we consider several contributions to the phase noise
as well as practical limitations of the amplitude modulator
dynamics, which have not been studied in CV-QKD regimes
so far. This in particular allows us to discuss the limitations
of LLO-sequential design when implemented with realistic
hardwares.

A. Phase noise

In Ref. [17], the authors consider perfect phase measure-
ment and, in Ref. [18], the performance analysis is performed
in the regime of no relative phase drift. However, in order
to study the overall influence of the phase noise, we need to
jointly consider those contributions. In this work, we analyze
CV-QKD performance considering these two contributions
at the same time. We also consider the optical phase drift
during the propagation of optical pulses on the optical channel,
thus resulting in a comprehensive model for analyzing all
the considered designs. In LLO-based CV-QKD, the main
challenge is to create a reliable phase reference between
emitter and receiver because the relative phase drift between
the two involved lasers may fully decorrelate Alice’s variables
and Bob’s measurements, thus preventing any secret key rate
generation. We define the signal relative phase θS as the phase
difference between the LO pulse |αLO〉 and the signal pulse
|αS〉 at reception:

θS = ϕLO − ϕS, (1)

where ϕS is the signal phase and ϕLO is the phase of the local
oscillator at reception. Using the notations of Eq. (A1) and
in the presence of a relative phase θS, we can write Bob’s
measurement outcomes, when performing a heterodyne, as(

xB

pB

)
=

√
G

2

[(
cos θS sin θS

− sin θS cos θS

)(
xA

pA

)
+

(
x0 + xc

p0 + pc

)]
,

(2)

where xc and pc capture all excess noise sources but the phase
noise. The relative phase θS acts as the selector of the measured
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quadrature. In the TLO design, the relative phase θS is, by
design, always close to 0. However, in the case of two free-
running lasers, θS depends on the relative phase θ between
the two lasers. Assuming that the two lasers LA and LB are
centered around the same optical frequency and have spectral
linewidths �νA and �νB , we can model [29–31] the relative
phase θ = ϕB − ϕA (ϕA and ϕB are respectively the phase of
LA and LB ) as a Gaussian stochastic process {θt }t characterized
by the variance of the drift between two times ti and ti+1:

var(θi+1|θi) = 2π (�νA + �νB)|ti+1 − ti |, (3)

where θi and θi+1 correspond to the relative phase at consecu-
tive times ti and ti+1.

We can see from Eq. (2) that this implies a decorrelation
between Alice’s data and Bob’s measurements, which can be
seen as a contribution, noted ξphase, to the excess noise ξ . The
principle of phase reference sharing schemes considered in
the article consists in using a reference pulse to build an
estimate θ̂S of the actual relative phase θS of the signal (relative
means relative with respect to local oscillator) and to apply a
phase correction −θ̂S on the signal, in order to compensate
for the phase drift. In a reverse reconciliation scheme, this
correction has to be performed on Alice’s data as a rotation of
her data: (

x̃A

p̃A

)
=

(
cos θ̂S sin θ̂S

− sin θ̂S cos θ̂S

)(
xA

pA

)
. (4)

We can show from Eqs. (A2), (2), and (4) that the remaining
excess noise ξphase due to phase noise (after correction) depends
on the modulation format and is, in general, not symmetric
on the two quadratures. However, in the case of the GMCS
protocol (with modulation variance VA) and assuming that the
remaining phase noise θS − θ̂S after correction is Gaussian, the
phase noise ξphase can then be written as

ξphase = 2VA(1 − e−Vest/2), (5)

where we define the variance Vest of the remaining phase
noise (after reference quadrature measurement, relative phase
estimation and correction) as

Vest =̂ var(θS − θ̂S). (6)

Equation (5) (derived in the Appendix) is a generalization of
the phase noise expression given in Refs. [18,28] for the case
of small phase noise.

An important challenge to perform LLO-based CV-QKD is
therefore to calculate a precise estimator θ̂S of the relative
phase θS in order to minimize Vest and thus ξphase. The
general scheme for phase reference sharing design in LLO CV-
QKD can be modeled in the following way: Alice generates
two coherent states, a quantum signal pulse |αS〉 and a
reference pulse |αR〉, and sends them on the optical channel
using some multiplexing scheme. At reception, Bob performs
demultiplexing, and uses the received reference pulse to derive
an estimate θ̂R of the relative phase θR between the reference
pulse and the local oscillator at reception. The phase sharing
designs (cf. Secs. III, IV, and V) give guarantees that the
relative phase of the reference pulse is close to the relative
phase of the quantum signal, i.e., that θR ≈ θR. Therefore, the
estimated value θ̂R can be used to approximate and then correct
the relative phase of the signal θS.

FIG. 3. Schematic representation of a general relative phase
estimation process. The relative phase θS at reception (red), which
is defined with respect to the LO phase [Eq. (1)], is estimated at
reception with the estimator θ̂R inferred from specific reference phase
information evaluation (blue).

A general picture of the phase estimation process, and of
the sources of deviations, is depicted in Fig. 3. We can express
the quantum signal relative phase θS (with respect to local
oscillator) as the sum of the relative phase θA

S at emission and
the phase θS

ch accumulated by the coherent state |αS〉 on the
optical channel:

θS = θA
S + θ ch

S . (7)

Similarly, using the same notations for the reference pulse
|αR〉, we can express the relative phase θR at reception of a
reference pulse |αR〉 as

θR = θA
R + θ ch

R . (8)

At reception, Bob measures both quadratures of |αR〉 using
a heterodyne detection (in the remaining of the paper, we only
consider heterodyne detections at reception with δdet = 2).
The estimator θ̂R of θR can be calculated from the heterodyne
measurement outcomes x

(R)
B and p

(R)
B as

θ̂R = tan−1

(
p

(R)
B

x
(R)
B

)
. (9)

Due to the fundamental shot noise and the experimental
noise on the heterodyne detection, θ̂R differs from θ̂R by an
error θerror characterized by its variance:

Verror =̂ var
(
θ̂R − θR

)
. (10)

We can show that, in the case of a reference pulse of the
form |αR〉 = |ER〉,

Verror = χ + 1

E2
R

, (11)

where ER = |αR| is the amplitude of the reference pulse and
χ is defined in Eq. (A2). Finally, Bob uses the relative phase
estimate θ̂S to apply a phase correction −θ̂R to the quantum
signal. The overall process is schematically represented in
Fig. 3. It results, after phase correction, to a remaining
phase noise Vest = var(θ̂R − θS), which can be expressed using
Eqs. (7) and (8) as

Vest = Verror + Vdrift + Vchannel, (12)

where

Vdrift =̂ var
(
θA

R − θA
S

)
, (13)

Vchannel =̂ var
(
θ ch

R − θ ch
S

)
. (14)
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The term Vdrift corresponds to the variance of the relative
phase drift θdrift = θA

R − θA
S between the two free-running

lasers LA and LB between time tS at which |αS〉 is emitted
and time tR at which |αR〉 is emitted. From Eq. (3), we can
express the phase noise due to laser phase drift between times
tS and tR as

Vdrift = 2π (�νA + �νB)|tR − tS|. (15)

We can observe that the time delay between signal and
phase reference emissions implies a decorrelation between the
corresponding relative phases and, thus, introduce a noise on
the phase estimation process. This leads to the main limitation
of the LLO-sequential approach as explained in next section.

The term Vchannel corresponds to the relative phase drift due
to the difference of the phase accumulated by |αS〉 and |αR〉
during propagation. In practice, we assume that this term is
dominated by the difference between the optical path lengths
of |αS〉 and |αR〉.

In the remaining of this article we will study and discuss
the performance of existing as well as newly introduced
LLO-based CV-QKD designs, relying on different relative
phase sharing designs. For each of these designs, we will
explicitly show the expressions of the different contributions
to the remaining phase noise Vest of Eq. (12).

B. Amplitude modulator finite dynamics

Amplitude modulators’ efficiencies are limited by their
dynamics restricting the range of the achievable transmission
coefficient. Recent works [17–19] have proposed to conjointly
communicate weak quantum signals and relatively bright
reference pulses using a single experimental setup and, in
particular, a single amplitude modulator (AM). This directly
addresses the issue of the AM dynamics at emission, limiting
the maximal amplitude that Alice can output and introducing
a leakage on the modulated amplitude. This limitation has not
been taken into account in LLO CV-QKD analysis so far and
we will show that this is a key parameter in the LLO regime.

The ratio between the maximal and minimal amplitudes
Emax and Emin that Alice can output is characterized by the
dynamics ddB of the AM defined as

ddB = 10 log10

(
E2

max

E2
min

)
. (16)

From this equation, one can model Alice’s modulator imper-
fection as an amplitude leakage on each optical pulse, resulting
in an excess noise, which can be approximated as

ξAM = E2
max10−ddB/10, (17)

where Emax is the maximal amplitude to be modulated. The
finite dynamics of Alice’s AM thus adds a noise proportional
to the amplitude Emax. This imperfection is then a limitation
to the maximal amplitude of the phase reference pulses in
LLO-based CV-QKD designs.

The necessity of exchanging both weak and intense optical
signals in CV-QKD based on a local local oscillator using
only one experimental setup is limited by the finite AM
dynamics. These effects are not considered in standard TLO
designs because only weak quantum signals are modulated
and detected but we will show that they are key parameters

in order to compare realistic implementations of LLO-based
CV-QKD in terms of secret key rate. To our knowledge, the
amplitude modulator issue has not been taken into account so
far in CV-QKD analysis. Based on this refined model, we first
analyze practical limitations of the LLO-sequential design and,
then, we compare the LLO-sequential implementations with
our newly proposed designs.

III. TOWARDS IMPROVED PHASE REFERENCE
SHARING DESIGNS

In this section, we highlight limitations of the LLO-
sequential design in terms of tolerable phase noise due to the
underlying phase reference sharing scheme. We then propose
the idea of self-coherence to go beyond that phase noise limit.

A. Limitations of the LLO-sequential design

Since signal and reference pulses follow the same optical
path, the estimation process in the LLO-sequential design can
be schematically shown using Fig. 3 where θ ch

S = θ ch
R . Thus,

we have Vchannel ≈ 0 and the phase noise stems from two
contributions: Vest = Vdrift + Verror.

One important motivation of the present work is related to
the fact that there exists a minimal amount of phase noise Vest

[Eq. (12)] that can be reached with the LLO-sequential design.
The main limitation is due to the fact that signal and reference
pulses are emitted with a time delay 1/f , leading to a phase
noise that cannot be compensated, of variance

Vdrift = 2π
�νA + �νB

f
. (18)

The phase variance associated to reference pulse phase
estimation error, Verror, can be minimized by choosing the
amplitude ER as large as possible. However, the value ER that
can be chosen in practice is limited by the finite dynamics of
her amplitude modulator, and the existence of an associated
optical leakage, whose excess noise ξAM is proportional to the
amplitude ER, as discussed in Eq. (17). This in practice leads to
a compromise regarding the value of ER, in order to minimize
the total excess noise.

The excess noise due to imperfect phase reference sharing
reads as [Eq. (5)]

ξphase = 2VA(1 − e−Vest/2). (19)

In the regimes of low Vest, it simplifies to ξphase = VAVest. In
order to ensure a tolerable value ξphase � 0.1 (typical value of
the null key threshold according to security proofs [21,32]),
this imposes that Vdrift � 0.1/VA.

We can finally express a lower bound on the total excess
noise, sum of the excess noise ξphase, and the excess noise ξAM

in the LLO-sequential design as

ξphase + ξAM � VA

(
Vdrift + χ + 1

E2
R

)
+ E2

R × 10−ddB/10.

(20)

We can quantitatively understand from Eq. (20) that
increasing the amplitude ER can reduce the ξphase contribution
at the cost of increasing the ξAM contribution. The LLO-
sequential design is then restricted to the experimental regimes
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FIG. 4. Secret key rates of the LLO-sequential design for two different values of Vdrift in the presence of AM finite dynamics ddB. Simulations
are performed in the individual attacks and pessimistic (Eve can control Bob’s detection) model [18]. The values of VA and ER are chosen to
optimize the secret key rate with β = 0.95, η = 0.7, velec = 0.01, and ξtech = 0.01.

where Vdrift � 1 and where the amplitude modulator dynamics
is large. In other words, the LLO-sequential has to be
implemented with performance hardware. Current bandwidth
limitation of shot-noise limited coherent detectors typically
leads researchers to choose f below 100 MHz. This imposes
in return requirements on the spectral linewidth of the lasers
that can be used in order to perform LLO-sequential CV-QKD:
The linewidth of the lasers must be at most of 200 kHz to ensure
an excess noise ξphase lower than 0.1. As a consequence, only
low-phase-noise lasers, such as external-cavity lasers (ECL),
whose typical spectral linewidth is of a few kHz, are suitable
to implement the LLO-sequential design. This is actually
illustrated in Ref. [18], where the performance analysis is
made in the low-phase-noise regime where f � �νA + �νB

(i.e., in a regime where Vdrift ≈ 0) and in Ref. [19] with
the experimental choice of ultra-low-noise of ECL lasers of
1.9 kHz linewidth.

Another issue is actually that finite modulation dynamics
has not been taken into account in Ref. [18], allowing the
authors to choose arbitrary large amplitudes ER. For instance,
they show that, by choosing E2

R = 500 VA, a distance of 40 km
is achievable while a more realistic value E2

R = 20VA (ξAM ≈
10−2 for ddB = 40 dB) restricts the protocol to less than 10 km.
This indicates that AM dynamics is an important parameter for
analyzing CV-QKD within the LLO framework and that the
LLO-sequential performances are moreover affected by finite
AM dynamics. This hinders its practical use over coherent

communication links already equipped with standard telecom
AM.

In Fig. 4, we plot the secret key rates of the LLO-sequential
design with finite AM dynamics. We can see that the AM
dynamics is an important parameter as it allows us to recover
the relative phase with good efficiency while ensuring a low
excess noise ξAM. Below an AM dynamics of 30 dB, no secret
key rate can be produced beyond a distance of around 20
km, even for a moderate relative phase drift Vdrift = 10−3. On
the other hand, because of the fundamental limit Vdrift, the
LLO-sequential design has to be run at a minimal repetition
rate to produce secret key, even in large AM dynamics regimes.

In Table I, we summarize the main characteristics of
the two existing implementations of the GMCS protocol
proposed so far. Although strong security loopholes have
been demonstrated on the TLO implementation, the GMCS
protocol has mainly been implemented by directly sending
the LO from Alice to Bob. Recent works have however
introduced the idea of LLO-based CV-QKD by proposing
the experimental LLO-sequential design, hence fixing security
weaknesses by generating the LO pulses at Bob side. We have,
however, shown that the LLO-sequential design has strong
limitations in terms of implementation in realistic regimes.
In the next sections, we investigate how these limitations
in term of hardware requirements can be lifted by propos-
ing the idea of self-coherence for phase reference sharing
designs.

TABLE I. Summary of the advantages and drawbacks of all the different CV-QKD designs considered in this work.

Design Trusted LO Tolerable phase noise Hardware requirements

Transmitted LO (Fig. 1) No �ν/f ∼ 10 Stable interferometric setup
[12,21–23]
LLO-sequential (Fig. 2) Yes Vdrift ∼ 10−1 (60 dB AM) High AM dynamics
[17–19] Vdrift ∼ 10−3 (30 dB AM)
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B. Self-coherent phase reference sharing schemes

Performing CV-QKD protocols in the LLO regime can
be seen as the issue of conjointly—in the sense of using
the same hardware—sharing a phase reference between two
remote lasers and performing CV-QKD between the two
parties Alice and Bob holding lasers LA and LB . A first
method to perform such task is the LLO-sequential design
[17–19]. Indeed, the specific modulation of the sequential
optical pulses allows one to perform CV-QKD on signal pulses
while sharing the phase reference on specific pulses. We have,
however, shown in Sec. III A a fundamental limitation in
terms of tolerable relative phase drift in the LLO-sequential
design. As an unspeakable information, the phase reference
has to be encoded over physical carriers, photons in this case.
However, by design, the time delay between the emission of
quantum signal photons and phase reference photons introduce
a decoherence between signal and reference which can prevent
any secret key generation in high-phase-noise regimes.

We now introduce the idea of self-coherence for quantum
coherent communication protocols. In order to prevent the
phase decorrelation between signal and reference due to
sequential emissions, we propose to derive both the signal
and reference from the same optical wavefront at emission,
thus ensuring the physical coherence between signal and phase
reference pulses and ensuring that the relative phase drift from
Eq. (12) is Vdrift = 0. We call such a design self-coherent. The
relative phase between signal and phase reference is then not
affected by the relative phase drift of the lasers and a stable
relation between the quantum signal and the LO phases at
reception can be provided. As the relative phase estimation
no longer depends on the relative phase drift, self-coherent
designs allow Alice and Bob to perform more efficient phase
reference sharings. This method, however, comes with the
challenge of coherently sending—i.e., by conserving the stable
phase relation—the quantum signal and the phase reference
from Alice to Bob. This challenge can be seen as a multiplexing
issue. In the remaining of this work, we propose two designs to
realize GMCS CV-QKD, relying on such self-coherent phase
reference sharing designs.

Our first proposal to implement self-coherent CV-QKD
is to split a single optical pulse into two pulses used to
respectively carry signal and reference information. As output
of the same optical pulse, the relative phase between the two
pulses at reception only depends on the phases accumulated
on their optical paths between emission and reception. This
phase reference sharing design relies on the balancing of
remote delay line interferometers and we refer to it as the
LLO-delayline design. We describe and study its performance
in Sec. IV.

A second idea, that we introduced in Ref. [33], to directly
ensure self-coherence between signal and phase reference is
to encode both of them within the same optical pulse at
emission while recovering both information at reception. In
Sec. V, we propose such a design, the LLO-displacement,
in which the phase reference information is encoded over a
displacement of the quantum signal modulation. Although we
show that LLO-displacement is restricted to low phase noise,
an advantage of this design is that the experimental setup is
drastically simplified compare to LLO-delayline, which is a

major advantage in the optics of the integration of LLO-based
CV-QKD.

IV. SELF-COHERENT DESIGN BASED ON DELAY-LINE
INTERFEROMETER

The idea of the LLO-delayline design is to derive consec-
utive pulse pairs with fixed relative phase, using a balanced
delay line interferometer, hence ensuring a self-coherence
property. This design does not suffer from the drift limitation
of LLO-sequential and can allow Bob to recover the relative
phase with better precision.

1. The protocol

The protocol can be decomposed in successive cycles
at the repetition rate f/2. We note 2τ = 2/f is the time
interval between two consecutive cycles. Each cycle consists
in producing and measuring a self-coherent pair of pulses: one
quantum signal pulse and one phase reference pulse. We here
describe the protocol for one cycle while Fig. 5 details the
overall design.

At the beginning of a cycle, Alice produces a coherent state
|αsource〉, which has an optical phase ϕA

source. From that single
optical pulse, she derives two coherent optical pulses in the
following way: She splits the state |αsource〉 into two optical
pulses, using an unbalanced delayline interferometer:

(1) The weak pulse |αS〉 is modulated as the GMCS
quantum signal and propagates through an optical path of
length lA.

(2) The strong pulse |αR〉 is delayed by a time τ = 1/f

on a optical path of length lA + δlA and is referred to as the
reference pulse.

Alice then recombines the two pulses |αS〉 and |αR〉
resulting in consecutive optical pulses. A major point is that the
relative phase between phase reference and quantum signal no
longer depends on the phase drift between Alice’s and Bob’s
lasers. An other advantage of this scheme is that the amplitude
modulator only modulates the quantum signal, which removes
the constraints on the AM dynamics. The two optical pulses
are then successively sent to Bob through the optical channel,
resulting in a repetition rate f .

At reception, Bob produces coherent LO pulse pairs using
a similar delay line technique used at Alice side. He produces
an optical pulse |βsource〉 with phase ϕB

source and derives two
pulses on a 50:50 beamsplitter:

(1) The pulse |βS〉 that goes through an optical path of
length lB .

(2) The pulse |βR〉 that is delayed and follows an optical
path of length lB + δlB .

Bob uses the |βS〉 and |βR〉 pulses as LO pulses to
successively measure the received |αS〉 and |αR〉 pulses. This
experimental setup can thus be seen as a remote delay-line
interferometer split between Alice and Bob sides.

The reference pulse measurement outcomes allows Bob to
calculate an estimation θ̂R of the relative phase θR at reference
measurement and, thus, infer an estimation of the relative phase
θS at signal measurement. Alice can then correct her data to
decrease the induced excess noise according to Eq. (4).
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FIG. 5. Full experimental scheme of the LLO-delayline design. Alice sends consecutive phase-coherent signal/reference pulses pairs to
Bob based on a balanced delay line interferometer. On his side, Bob uses his own laser as the LO for coherent detections using the same
delay line technique to produce phase-coherent LO pulses. Phase estimation and phase correction are digitally performed after measurement
acquisition.

2. Excess noise evaluation

In order to study the performance of the LLO-delayline
design and calculate the achievable secret key rate, one can
note that Alice modulates the quantum signal according to the
standard GMCS modulation. Thus, the usual secret key rates
formulas of Ref. [34] can be used. We then have to express
the excess noise of the propagating channel in this design, in
particular the amplitude modulator noise and the remaining
relative phase noise Vest.

In the LLO-delayline design, the finite dynamics of Alice’s
amplitude modulator only induces a small contribution to
the excess noise ξ in standard hardware regimes. As it only
modulates the quantum signal, the maximal amplitude Emax

of Eq. (17) does not depend on the reference pulse amplitude.
The excess noise ξAM is then independent of the reference
amplitude ER and the intensity E2

max of Eq. (17) only has to
be a few times larger than VA [34], resulting in a moderate
contribution of ξAM to the excess noise ξ (ξAM ∼ 10−2 for
VA = 4, E2

max = 10 VA, and ddB = 30).
We now quantify the excess noise ξphase by expressing the

remaining phase noise Vest on Bob’s estimation of the relative
phase. By design, the simultaneous emission on the source
pulse of |αS〉 and |αR〉, i.e., tS = tR, implies θdrift = 0 and, thus,
Vdrift = 0, which corresponds to the self-coherence property.
The variance Vest can then be written as the sum of the phase
estimation efficiency Verror [given in Eq. (11)] and the variance
Vchannel [Eq. (14)] of the difference between the accumulated
phases on the channel:

Vest = Verror + Vchannel. (21)

In this design, signal and phase reference pulses propagate
through different optical paths. Then, the former term depends
on the stability of the delayline interferometer. As introduced

in Sec. II, this corresponds to the variance:

Vchannel = var
(
θ ch

R − θ ch
S

)
, (22)

where θ ch
S and θ ch

R respectively correspond to the phases accu-
mulated by |αS〉 and |αR〉 through their propagation. Therefore,
one wants to express the quantity θchannel = θ ch

R − θ ch
S . Using

the definition of the relative phase of Eq. (1), we can first
write the relative phase as the difference between the phases
respectively accumulated by the two interfering LO and signal
pulses:

θ ch
S = ϕacc

β,S − ϕacc
α,S,

(23)
θ ch

R = ϕacc
β,R − ϕacc

α,R,

where, for instance, ϕacc
β,S stands for the phase accumulated

by the LO pulse |βS〉 during its propagation. We model the
accumulated phase as a linear function ϕacc(l) of the optical
path length l, and then we can derive the following expressions:

ϕacc
α,S = ϕacc(lA),

ϕacc
α,R = ϕacc(lA) + ϕacc(δlA),

ϕacc
β,S = ϕacc(lB),

ϕacc
β,R = ϕacc(lB) + ϕacc(δlB). (24)

Using the previous equations, we can finally express
θchannel = θ ch

R − θ ch
S as

θchannel = ϕacc(δlB) − ϕacc(δlA). (25)

As we can see, the relative phase drift θchannel only depends
on the difference of the accumulated phases between the
delayline optical paths δlA and δlB . Due to experimental
imperfections as thermal fluctuations, we model δlA and δlB as
a stochastic processes over time around the same mean value
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FIG. 6. Secret key rate comparison between the LLO-sequential and the LLO-delayline designs for different AM dynamics and relative
phase drift Vdrift.

〈δlA〉 = 〈δlB〉 = cτ (c being the speed of the light). The phase
θchannel then only depends on the fluctuations of the processes
δlA and δlB corresponding to the interferometer balancing
efficiency. An important point is that previous experimental
demonstrations of CV-QKD [21–23] with transmitted LO,
that rely on such delay line interferometers, have proven
that phase fluctuations (with frequency typically of order
of Hz) associated to interferometer path length fluctuations
can be kept low in frequency and amplitude when sampled
at CV-QKD repetition rate and do not prevent performing
CV-QKD with repetition rates in the MHz (or above) and we
consider that Vchannel = var(θchannel) ≈ 0. We can then consider
that the variance Vest from Eq. (21) is dominated by the phase
measurement efficiency:

Vest = Verror. (26)

The LLO-delayline design ensures self-coherence at inter-
ference using delayline interferometers and the dependence
on the relative phase drift of the lasers is removed. Bob gets
self-coherent outcome measurements and is able to estimate
the phase drift in the same way as in the LLO-sequential design
but with higher efficiency. Finally, this results in the following
excess noise:

ξphase = 2VA(1 − e−Verror/2). (27)

3. Performance analysis

Based on the previous excess noise analysis, we can now
study the performance of the LLO-delayline design in terms
of secret key rate and compare its performance with the LLO-
sequential design. As the quantum signal modulation is the
same as in the LLO-sequential, we can equivalently compare
the achievable secret key rate or the excess noise contributions.

The LLO-delayline design allows us to remove the relative
phase drift Vdrift from the excess noise expression. However,
the relative phase drift between the two lasers should be stable
within the duration of a single optical pulse and imposes
that Vdrift � 10. The remaining phase noise is only limited
by the efficiency Verror of the phase reference estimation. In
particular, the LLO-delayline allows us to perform a stronger
CV-QKD phase noise regime than the LLO-sequential design.
Furthermore, as the amplitude modulator excess noise ξAM

does not depend on the phase reference amplitude, the AM
dynamics do no longer restrict the relative phase measurement
efficiency Verror. The reference amplitude ER can then be
chosen as large as possible in the limit of the saturation limit
of Bob’s detector and of the launched power limit without
increasing the excess noise ξAM. In practice, these limits allow
an very efficient phase measurement.

In Fig. 6, we plot the expected key rates for both the LLO-
sequential and LLO-delayline designs for different relative
phase drift and AM dynamics. We can see that the LLO-
delayline design is more resilient to both a decrease of the
AM dynamics and an increase of the relative phase drift. The
self-coherence between quantum signal and phase reference
allows us to reach stronger phase noise regime than LLO-
sequential with similar optical hardware. We can see on the
left panel of Fig. 6 that with a 50-dB AM, the LLO-delayline
design allows secret key generation at 50 km with Vdrift = 0.1
when LLO-sequential can only reach 30 km. Furthermore,
in the LLO-delayline design, the amplitude of the reference
pulses can be much larger than in the LLO-sequential design
because it does not increase the excess noise ξAM. Thus, the
relative phase is estimated with better precision, reducing the
induced excess noise. For instance, the LLO-delayline allows
us to perform CV-QKD at a distance of 50 km with standard
30-dB amplitude modulators even in the regime of standard
DFB lasers (linewidths of order of MHz), which is not possible
with the LLO-sequential design. We have thus shown that the
LLO-delayline allows us to perform LLO-based CV-QKD in
the regime of standard optical hardware regimes, which is
an improvement on LLO-based CV-QKD based on standard
optical equipments. This work has recently been presented in
Ref. [35].

V. SELF-COHERENT DESIGNS BASED ON A
MODULATION DISPLACEMENT

In this section, we propose a second design (proposed
in Ref. [33]), the LLO-displacement design, implementing
CV-QKD with a self-coherent phase reference sharing. This
design is based on a method for jointly encoding both quantum
signal and phase reference information over each optical pulse
produced by Alice’s laser LA at emission.
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A. The protocol

The main idea is to displace, in the phase space, the modu-
lation sent by Alice with a fixed displacement of amplitude �

and phase φ�. Given her standard GMCS variables (xA,pA),
Alice produces and sends to Bob the displaced coherent state:

|α〉−→
�

= |xA + � cos φ�,pA + � sin φ�〉. (28)

The amplitude � and the phase φ� of the displacement
are publicly known so that it carries information on Alice’s
phase reference. At reception, Bob measures both x̂ and p̂

quadratures of each received optical pulse using a heterodyne
detection and gets measurement outcomes (xB,pB):

xB =
√

G

2
[(xA + � cos θ�) cos θ

+ (pA + � sin θ�) sin θ + x0 + xc],

pB =
√

G

2
[−(xA + � cos θ�) sin θ

+ (pA + � sin θ�) cos θ + p0 + pc]. (29)

Using the displacement of Alice’s modulation, Bob is able
to measure an estimator θ̂S of the relative phase θS by using
his measurement outcomes (xB,pB). Furthermore, using the
i indexes for successive pulses, Bob can calculate a more
precise estimator θ̂

(i)
filter by averaging each estimator θ̂

(i)
S with

the previous filtered estimator θ̂
(i−1)
filter using optimized weighted

coefficients. Finally, the estimator θ̂
(i)
filter allows Alice and Bob

to correct their data using Eq. (4).

B. Security of the protocol

In order to study the security of the design LLO-
displacement and calculate the secret key rate, one can observe
that security proofs for the GMCS protocols [36,37] do not
rely on the mean value of Alice’s quadrature because it is fully
described using the covariance matrices formalism. However,
as we will show, the excess noise induced by the phase noise
on a displaced modulation is asymmetric. The secret key rates
then has to be calculated using a specific method which is
detailed in the Appendix.

We now quantify the remaining phase noise Vest of Eq. (12).
As both quantum signal and phase reference are encoded and
transmitted within the same optical pulse, we can directly write
Vdrift = 0 and Vchannel = 0. Finally, the only term contributing
to the remaining phase noise Vest is the variance Verror. Due to
the the particular modulation scheme, however, the variance
of the estimates θ̂

(i)
S is not expressed as Eq. (14). In this

case, Alice’s modulation can be seen as a noise in the phase
estimation process, resulting in

Verror = VA + χ + 1

�2
. (30)

Furthermore, the filtering technique—hence based on all pre-
vious relative phase estimates—allows us to use correlations
of the phase drift over time to recover the relative phase with
better precision than Verror. In the asymptotic regime (when i

is large), we can show that the successive variances V
(i)

filter tend

to an asymptotic limit and, finally, one can write

Vest =
√

Verror

√
Vdrift, (31)

where Vdrift is the relative phase drift between lasers LA and
LB between two consecutive pulses; i.e., it is expressed as
Eq. (18).

We can now express the excess noise ξphase due to phase
noise in the LLO-displacement regime (using the appendix).
It can be simplified when Vest � 1 and reads as

ξ
(x)
phase = (VA + �2 sin2 φ�)Vest,

(32)
ξ

(p)
phase = (VA + �2 cos2 φ�)Vest,

where the expression of Vest is defined using Eq. (31). A
crucial point in the noise analysis of the LLO-displacement
design is that the displacement of Alice’s modulation creates
an asymmetry on the excess noise on each quadrature.
For instance, if φ� = 0 (displacement according to the x̂

quadrature), the displacement induces an increasing of the
excess noise on the p̂ quadrature.

Furthermore, in this design, the maximal amplitude Emax

of the AM excess noise [Eq. (17)] can be approximate as√
VA + �2, resulting in

ξAM = (VA + �2)10−ddB . (33)

However, one can note that the excess noise ξphase is a more
restricting limitation to the displacement amplitude than the
excess noise ξAM for realistic parameters and, in practice, the
AM dynamics do not restrict the amplitude displacement.

C. Performance analysis

In Ref. [33], we only considered the ξ
(x)
phase contribution in

the case of φ� = 0, resulting in a too optimistic key rate.
Although the displacement decreases the variance Verror and,
thus, the remaining phase noise Vest, it also increases its impact
on the excess noise according to Eq. (32). Unfortunately, this
result is a strong limitation to the achievable � and, thus, to
the tolerable phase noise in the LLO-displacement design.

We here consider the case where φ� = 0 (other cases can
be treated in a similar way by observing that the sum ξ

(x)
phase +

ξ
(p)
phase does not depend on φ�). From Eq. (32), one can note

that the phase excess noise induced on the p̂ quadrature is
proportional to the displacement mean photon number �2.
This sets a strong constraints on the achievable value of � and,
thereby, on the achievable value of Verror. There is a trade-off in
terms of the � value between the remaining phase noise Vest—
the displacement � decreases Verror—and the excess noise
ξ

(p)
phase. An optimal value for the displacement can be found and

is calculated in our simulations. However, the optimal value of
the � only allows secret key generation for low values of Vdrift.
This means that, solely based on the single estimates θ̂S, the
LLO-displacement design does not allow a low enough excess
noise ξphase and, as such, requires strong correlations, i.e., low
values of Vdrift, between consecutive relative phases to recover
phase information based on filtering techniques.

In Fig. 7, we plot the expected key rates for both the
LLO-sequential and the LLO-displacement designs. The
displacement value is optimized to maximize the overall
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FIG. 7. Secret key rate comparison between the LLO-sequential and the LLO-displacement designs for two relative phase drift Vdrift and
for different AM dynamics.

secret key rate. In low-phase-noise regimes, we can see that
the LLO-displacement is better in terms of secret key rate
generation. This is due to the fact that the LLO-displacement
relies on the whole repetition rate to generate secret key and
the filtering technique combined to the displacement allows a
more efficient relative phase recovery. For higher phase noise
regimes, however, the displacement value required to estimate
the relative phase is limited by the excess noise ξ

(p)
phase and,

finally, the relative phase estimation cannot be performed with
a good efficiency.

We have shown that the coherence coming from the
simultaneous encoding of both the quantum signal and phase
reference in this design comes with new challenges. In
particular, the displacement of the modulation increases the
excess noise induced by the relative phase noise and creates
an asymmetry on the excess noise on each quadratures. An
interesting issue is then to optimize the LLO-displacement
design in order to increase its performance, especially in terms
of phase noise resilience. This study is, however, kept for
future works. We emphasize that LLO-displacement design
relies on an extremely convenient experimental scheme as the
phase reference encoding is performed simultaneously with
the quantum signal modulation. The simultaneous quantum
signal and phase reference transmission introduced in the
LLO-displacement design can be applied to different signal
modulations as BPSK or higher order modulations. Since
both quantum signal and phase reference information are sent
over the same optical pulse, the key rate obtained with the
LLO-displacement design is moreover not lowered by time

multiplexing, as it is the case with LLO-sequential. Thereby,
unlike all other proposals for locally generated local oscillator
based CV-QKD designs, it allows us to use the whole repetition
rate for secret key generation.

VI. CONCLUSION AND PERSPECTIVES

In order to lift security loophole issues, the local oscillator
should not be directly sent through the optical channel in
CV-QKD experiments and LLO-based CV-QKD protocols
have been introduced. The main challenge of LLO CV-QKD
is that the phase drift between emitter laser and local ocillator
laser, placed at reception, induces a phase noise on the
quantum communication that has to be efficiently corrected.
In Table II, we summarize the performance and requirements
of existing and proposed designs for CV-QKD. The approach
considered so far, i.e., the LLO-sequential design [17–19],
is intrinsically limited to low-phase-noise regimes. This puts
important constraints on the type of lasers that can be used both
as emitter and LO. Another limitation of the LLO-sequential is
the efficiency of the relative phase estimation process, which is
limited in practice by Alice’s amplitude modulator dynamics.
This can be seen as a limitation of the integrability of such
design.

Our results imply that next-generation CV-QKD, imple-
mented with a local LO, is possible even with low-cost DFB
lasers and standard amplitude modulators. Such features are
made possible by the newly introduced self-coherent phase
reference sharing design, the LLO-delayline design, and are

TABLE II. Summary of all the CV-QKD designs discussed in this work. We compare them in terms of tolerable phase noise and on their
experimental limitations.

Design Trusted LO Tolerable phase noise Hardware requirements

Transmitted LO
[12,21–23] No �ν/f ∼ 10 Stable interferometric setup
LLO-sequential
[17–19] Yes Vdrift ∼ 10−2 High AM dynamics
LLO-delayline
(Sec. IV) Yes Vdrift ∼ 10 Stable interferometric setup
LLO-displacement
(Sec. V) Yes Vdrift ∼ 10−4
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essential to progress towards photonic integration and wide
deployment of CV-QKD. The LLO-delayline design relies
on the self-coherence between the quantum signal and phase
reference and on the interferometric stability of two delay lines
at a short time scale. The finite dynamics of the amplitude
modulator no longer restricts the reference pulse amplitude
and, by consequence, the relative phase estimation process.
These characteristics allow the LLO-delayline design to be
more resilient to phase noise than the previously proposed
LLO-sequential design. In Fig. 6, we can see that the LLO-
delayline design is able to reach a distance of 50 km in a
regime of high phase noise, Vdrift = 0.1, while the reachable
distance with the LLO-sequential design is below 25 km even
with large AM dynamics. Furthermore, we emphasize that
remote delay-line interferometric stability has already been
demonstrated in practice on several CV-QKD implementations
[21,22], paving the way to the demonstration of LLO CV-QKD
with cheap hardware, using the LLO-delayline design.

As another contribution, we have investigated a scheme,
LLO-displacement, allowing us to simultaneously transmit the
quantum signal and the phase reference information on the
same optical pulse. We have, however, observed that the im-
plementation of the LLO-displacement design with Gaussian
modulated coherente states (GMCS CV-QKD protocol) leads
to an overall excess noise that increases with displacement,
which restricts its use to low-phase-noise regimes. Simultane-
ous transmission of quantum and phase reference information
had, however, not been studied so far and our results can be of
interest in view of performing a joint optimization of classical
and quantum coherent communication systems, operating with
the same hardware. The optimization of such protocols is then
an interesting open question and is kept for future works.
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APPENDIX

1. The GMCS protocol

In the Gaussian-modulated coherent states protocol, Alice
encodes classical Gaussian variables (xA,pA) on the mean
values of the two conjugate quadratures of coherent states
|α〉 = |xA,pA〉. Coherent states are then sent to Bob through an
insecure channel controlled by an eavesdropper Eve. At recep-
tion, Bob performs a coherent detection of either one quadra-
ture (homodyne detection) or both quadratures (heterodyne de-
tection) of the received pulse and calculates estimators (xB,pB)
of Alice’s variables. As Eve’s optimal attacks are Gaussian
[36,37], we can model the logical channels between Alice and
Bob’s data as additive white Gaussian noise channels [34]:

xB =
√

G

δdet
(xA + x0 + xc),

(A1)

pB =
√

G

δdet
(pA + p0 + pc),

where (xc,pc) is the total noise of the channel and we note
(χx,χp) its variance. In Eq. (A1), G is the total intensity
transmission of the channel, δdet stands for the detection used at
reception (δdet = 1 for a homodyne detection and δdet = 2 for
a heterodyne detection), and x0 and p0 are Gaussian variables
of variance N0 modeling the shot noise quadratures. In general
[36], it is assumed that the channel noise is symmetric and
χ = χx = χp, where the variance χ is referred to Alice’s input.
The variance χ of the total noise can be expressed as [34,37]

χ = δdet − G

G
+ ξ, (A2)

where the first term is the loss-induced vacuum noise and ξ

is the overall excess noise variance of the channel referred
to Alice’s input. Thereby, using Eqs. (A1) and (A2), we can
see that the Gaussian channel between Alice and Bob is fully
characterized by the two parameters G and ξ . In a real-world
experiment, Alice and Bob can estimate G and ξ from the
correlations between their respective variables by revealing
a fraction of their data and are then able to characterize the
propagation channel and generate secret key. We discuss
and model the different contributions to the excess noise
ξ in practical CV-QKD in the next paragraph. Finally, the
secret key rate available to Alice and Bob in the reverse
reconciliation scheme can be expressed as [34,37]

k = βIAB − QBE, (A3)

where 0 � β � 1 is the reconciliation efficiency, IAB is
the mutual information between Alice and Bob’s classical
variables, and QBE stands for Eve’s maximal accessible
information on Bob’s measurements, capturing assumptions
on Eve’s behavior [37]. In this work, we restrict the security
analysis to individual attacks [34,37] and QBE is then the
classical information IBE between Bob’s measurements and
Eve’s data. In Refs. [17,22], it is assumed that Eve does not
have access to Bob’s electronics. In this work, however, we
use the stronger security model of Ref. [18], assuming that
Eve is able to control the noise of Bob’s detector.

2. Excess noise due to phase noise

Alice sends the coherent state |α〉 = |xA + x0,pA + p0〉,
where, in the general case, we suppose that xA ∼ N (0,Vx)
and pA ∼ N (0,Vp), while Bob uses a heterodyne detection at
reception. In order to estimate the phase-noise-induced excess
noise, we consider in this analysis that the relative phase
noise is the only noise source. Bob then gets the following
measurement outcomes (xm,pm):

(
xm

pm

)
=

√
G

2

[(
cos θ sin θ

− sin θ cos θ

)(
xA + x0

pA + p0

)]
. (A4)

We suppose that Bob gets an estimator θ̂ ∼ N (θ,Vϕ). He
sends his estimator to Alice, which corrects her data and, in
the reverse reconciliation scheme, Alice then estimates Bob’s
measurements as(

x̃A

p̃A

)
=

√
G

2

(
cos θ̂ sin θ̂

− sin θ̂ cos θ̂

)(
xA + x0

pA + p0

)
. (A5)
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We can then express the excess noise on each quadrature as

ξx = var(xm − x̃A),

ξp = var(pm − p̃A). (A6)

These two quantities depends on the remaining relative
phase ϕ = θ − θ̂ . Assuming that the variable ϕ is a Gaussian
variable such that ϕ ∼ N (0,Vϕ), the above expressions can be
calculated from the characteristic function of the Gaussian
function and, after calculations, we obtain the following
expressions:

ξ
(x)
phase = Vx(1 + e−Vϕ − 2e−Vϕ/2) + (

Vx + x2
0

)
× (

1
2 + 1

2e−2Vϕ − e−Vϕ
) + (

Vp + p2
0

)(
1
2 − 1

2e−2Vϕ
)
,

ξ
(p)
phase = Vp(1 + e−Vϕ − 2e−Vϕ/2) + (

Vp + p2
0

)
× (

1
2 + 1

2e−2Vϕ − e−Vϕ
) + (

Vx + x2
0

)(
1
2 − 1

2e−2Vϕ
)
.

(A7)

3. Imperfections of the detector

a. Electronic noise

Electronic noise of Bob’s detector induces a noise of
variance velec on Bob’s quadrature raw measurements. In
general, the electronic noise variance velec depends on the
detection circuit as well as on the repetition rate of the
experiment. As the shot noise value scales with the LO
intensity while velec is constant with the LO intensity, it is,
however, possible to reduce the effective electronic to shot
noise ratio ξelec by increasing the LO intensity. In this work,
we consider that ξelec referred to Alice in SNU is modeled as

ξelec = δdet

G

E2
LO,calvelec

E2
LO

, (A8)

where E2
LO,cal is the photon number in the LO at which

ξelec = (δdet/G)velec and E2
LO is the actual photon number per

LO pulse at reception. The variable δdet stands for the detection
method as δdet = 1 for a homodyne receiver and δdet = 2 for a
heterodyne receiver. In general, the variance velec increases
with the repetition rate, for a given detection circuit. For
instance, in Ref. [21], the same detector has an electronic to
shot noise ratio of −6 dB at 50 MHz, −4 dB at 200 MHz, and
−1 dB at 1 GHz. In the following, we consider an electronic to
shot noise ratio, which is independent of the repetition rate. We
have consider the typical values velec = 0.01 for E2

LO,cal = 108.

b. Linearity range of the detector

We consider that Bob relies on a single coherent detector,
which addresses the issue of the linearity range of the detector
when considering both quantum signal and phase reference
transmission. A typical homodyne detector is presented in
Fig. 8. The response of the integrator circuit is proportional to
the incoming number of electrons over a finite range. Beyond
a certain threshold, the response of the integrator circuit is
no longer linear and the security can be broken by specific
attacks [32]. We define this threshold as the maximal number
of electrons Nsat per electrical pulses that can be detected in
a linear regime. The number of electrons in each electrical

integrator
circuitPD

2
PD

1

LO

signal

BS

measurement
outcome

electrical pulses

Homodyne detector

ELO
2  photons

ES
2  photons

Ne=EsELO electrons

optical pulses

FIG. 8. Scheme of a typical homodyne detector. Signal and
local oscillator pulses interfere on a 50:50 beamsplitter (BS). Both
resulting fields are detected on two photodiodes (PD1 and PD2),
which convert photons into electrons. The electrical pulses (purple
pulses) produced by the photodiodes are then substracted (−) and
the resulting quadrature electrical pulse intensity is measured using a
integrator circuit. The outcome of the integrator circuit is proportional
to Ne = ESELO up to an intensity threshold Nsat.

pulse is Ne = 0.5GESELO (see Fig. 8), where ES and ELO are
the amplitudes of the signal and the LO so that the saturation
hypothesis imposes:

G

2
ESELO � Nsat. (A9)

A example of saturation threshold Nsat = 106 has been
experimentally evaluated in Ref. [32]. For quantum signal
of intensity of order of the shot noise, this threshold is not
important and has not been considered so far in CV-QKD
analysis. In LLO-based CV-QKD, however, the relatively large
amplitude of phase reference pulses imposes to consider the
saturation threshold as a limit on the reference pulse amplitude.

Equation (A9) implies a trade-off, in the LLO-sequential
design, between the signal amplitude—in particular the refer-
ence amplitude ER—and the local oscillator amplitude—used
to decrease the electronic to shot noise ratio. If we want to
maximize these two quantities, one has to saturate Eq. (A9) by
choosing

ELO = 2

G

Nsat

ER
, (A10)

The effective electronic to shot noise ratio ξelec defined in
Eq. (A8) can then be expressed in the case of a heterodyne
detection (δdet = 2) as

ξelec = G106

2

E2
R

N2
sat

(A11)

where velec = 0.01 and E2
LO,cal = 108. In Fig. 9, we plot the

expected key rate of the LLO-sequential design for different
values of the threshold Nsat. As we can see, only low values
of Nsat (two order of magnitude lower than the experimental
value of Ref. [32]) are limitations to this design. As a typical
value of Nsat = 106 photons is sufficiently large to allow a
precise relative phase sharing, the saturation threshold will not
be a limitation to the reference amplitude.

4. Secret key rate formulas for CV-QKD

In this work, we focus on the Gaussian-modulated coherent
state (GMCS) protocol. In this protocol, Alice encodes zero-
mean Gaussian classical variables xA and pA on both the
x̂ and p̂ quadratures of coherent states [6] before sending
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FIG. 9. Expected secret key rates for the LLO-sequential design
for different value of linearity threshold Nsat.

them to Bob through an insecure optical channel controlled
by an eavesdropper Eve. In the Gaussian model, the channel
between Alice and Bob is fully characterized by the intensity
transmission G and the excess noise ξx and ξp (a priori
different on each quadratures. We also assume that Bob uses
a heterodyne detection at reception.

a. Symmetric channel

We first detail the secret key rate formulas used for
symmetric excess noise ξ = ξx = ξp. This formulas are used
for the LLO-sequential and the LLO-delayline designs. We
consider that Eve controls the whole excess noise and we also
consider individual attacks. The secret key rates is written

as [34]

k = βIAB − IBE, (A12)

where

IAB = 1

2
log2

(
V + χ

1 + χ

)
, (A13)

IBE = 1

2
log2

(
G(V + χ )(V + χE)

(χE + 1)(V + 1)

)
, (A14)

with

V = VA + 1, (A15)

χ = 2 − G

G
+ ξ, (A16)

χE = G(2 − ξ )2

(
√

2 − 2G + Gξ + √
ξ )2

+ 1. (A17)

b. Asymmetric channel

We have shown in Sec. V that the excess noise induced
by the phase noise in the case of the displaced modulation is
asymmetric in the two quadratures. We then need to derive
specific secret key rate expressions. From Refs. [34,37], we
can write

k = kx + kp, (A18)

where kx and kp represent the respective key rates on the logical
channel corresponding to each quadrature. Each of these two
key rates can then be obtained using the secret key formulas
from Eq. (A12), using the corresponding expression ξx and ξp

from Eq. (32).
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