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The need for secrecy and security is essential in communication. Secret sharing is a conventional protocol
to distribute a secret message to a group of parties, who cannot access it individually but need to cooperate
in order to decode it. While several variants of this protocol have been investigated, including realizations
using quantum systems, the security of quantum secret sharing schemes still remains unproven almost two
decades after their original conception. Here we establish an unconditional security proof for entanglement-
based continuous-variable quantum secret sharing schemes, in the limit of asymptotic keys and for an arbitrary
number of players. We tackle the problem by resorting to the recently developed one-sided device-independent
approach to quantum key distribution. We demonstrate theoretically the feasibility of our scheme, which can be
implemented by Gaussian states and homodyne measurements, with no need for ideal single-photon sources or
quantum memories. Our results contribute to validating quantum secret sharing as a viable primitive for quantum

technologies.
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I. INTRODUCTION

Secret sharing [1,2] is a task where a dealer sends a secret S
to n (possibly, dishonest) players so that the cooperation of a
minimum of k < n players is required to decode the secret.
Protocols that accomplish this are called (k,n)-threshold
schemes. The need for such a task appears naturally in many
situations, from children’s games and online chats, to banking,
industry, and military security: the secret message cannot be
entrusted to any individual, but coordinated action is required
to decrypt it in order to prevent wrongdoings.

For the classical implementation of the simplest (2,2)-
threshold scheme, Alice, the dealer, encodes her secret into
a binary string S and adds to it a random string R of
the same length, resulting in the coded cypher C = S @ R,
where “@®” denotes addition modulo 2. She then sends R and
C, respectively, to the players Bob and Charlie. While the
individual parts R and C carry no information about the secret,
only by collaboration the players can recover S adding their
strings together: R @ C = S. General (k,n)-threshold classical
schemes are a bit more involved. Such protocols, however,
face the same problem as any other classical key distribution
protocol: eavesdropping. An eavesdropper, Eve, or even a
dishonest player, can intercept the transmission and copy the
parts sent from the dealer to the players, thus accessing the
secret.

An obvious way to proceed would be for Alice to first
employ standard two-party quantum key distribution (QKD)
protocols [3], to establish separate secure secret keys with
Bob and Charlie, then implement the classical procedure to
split the secret S into parts R and C, and use the obtained
secret keys to securely transmit these parts to each player.
The advantage of this protocol, which we call parallel QKD
(pQKD), is that it exploits unconditional security offered by

*john_k_423 @yahoo.gr
tgerardo.adesso@nottingham.ac.uk

2469-9926/2017/95(1)/012315(6)

012315-1

the well-studied two-party QKD against eavesdropping and,
very importantly, that it can be unconditionally secure against
any possible dishonest actions of the players. However, pQKD
can be demanding in terms of resources, as for a general (k,n)
scenario it requires the implementation of n distinct QKD
protocols plus the classical procedure to split the secret [1],
thus becoming less efficient with increasing n.

An alternative proposal to cope with these difficulties lies
in so-called quantum secret sharing [4] (QSS)—alias quantum
sharing of a classical secret, distinct from quantum state
sharing [5,6], in which the secret is a quantum state rather
than a classical message—which allows for implementing
a (k,n)-threshold scheme supported by a single classical
post-processing, regardless of the number of players n.
Unfortunately, as we shall see below, there exists no provably
secure QSS scheme at the moment that enjoys the uncon-
ditional security of pQKD against both eavesdropping and
dishonesty.

Hillery, BuZek, and Berthiaume [4] (HBB, for short)
proposed the first (2,2)- and (3,3)-threshold QSS schemes that
use multipartite entanglement to split the classical secret, and
protect it from eavesdropping and dishonest players in a single
go. Various other entanglement-based (HBB-type) schemes
have been proposed [7-14], some being more economic in
the required multipartite entanglement [15,16], while others
allowing for more general (k,n)-threshold schemes [17-21].
A different entanglement-based QSS scheme has also been
proposed, where entangled states are directly used as secure
carriers and splitters of information [22]. A few experimental
demonstrations have been reported as well [6,16,23-25]. The
security of all current schemes, however, is limited to either
plain external eavesdropping unrealistically assuming honest
players, or limited types of attacks by eavesdroppers and
dishonest participants, yet sharing ideally pure maximally
entangled states. Furthermore, all such schemes are vulnerable
to participant attack and cheating [7,26,27], and no method is
currently known to deal with such conspiracies in general, not
even in the ideal case of pure shared states.
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Zhang, Li, and Man [28] proposed the first (n,n)-threshold
scheme that required no entanglement and was claimed
to be unconditionally secure. Although it required perfect
single-photon sources and quantum memories (rendering it
impractical for current technology), it was later shown to
be vulnerable to various participant attacks [29,30]. In the
same category of entanglement-free QSS schemes, Schmid
et al. proposed a protocol based on a single photon [31];
although originally claimed to be unconditionally secure, it
was also shown to be vulnerable to participant attacks [32-35].
Alternative schemes can be devised to deal with particular
attacks [29,30,32,33]; however, there currently exists no
rigorous method against arbitrary participant attacks.

To sum up, almost two decades after the conception of QSS,
no existing scheme (with or without entanglement) has been
proven unconditionally secure against cheating of dishonest
players. Hence any practical implementation of secure secret
sharing needs to resort to conventional pQKD, while QSS
schemes only served so far as a theoretical curiosity.

In this paper, we consider a continuous-variable version
of an HBB-type scheme. We determine conditions on the
extracted key rate for the secret to be unconditionally secure
against both external eavesdropping and arbitrary cheating
strategies of dishonest participants, in the limit of asymptotic
keys, independently of the shared state, and for arbitrary
(k,n)-threshold schemes. The central idea in our approach,
to rigorously deal with arbitrary cheating strategies, is to treat
the measurements announced by the players as an input or
output of an uncharacterized measuring device (black box),
analogously to how (possibly, hacked) measuring devices
are treated in device-independent QKD [36]. In practice,
this translates into making no assumption about the origin
of the players’ (possibly, faked) announced measurements,
in contrast to previous QSS approaches that considered the
players’ actions as trusted, thus suffering from cheating
strategies. The dealer, on the other hand, is regarded as a trusted
party with trusted devices, which is a natural assumption
for this task. At variance with device-independent QKD,
where the devices are untrusted, for the QSS task we treat
the players themselves as untrusted, independently of their
devices. Therefore the framework established in this paper,
which makes no assumptions about the players’ measure-
ments, allows us to prove security against general attacks of
eavesdroppers and/or of dishonest players. This is achieved
by making a sharp connection with, and extending all the
tools of, the recently developed one-sided device-independent
QKD (1sDI-QKD) [37], in particular for continuous-variable
systems [38], which has been proven unconditionally secure in
the limit of asymptotic keys. However, the approach introduced
here is general and can be adapted to derive security proofs
for discrete-variable QSS schemes as well as in the regime of
finite keys [39].

The paper is organized as follows. In Sec. II we present
our continuous-variable QSS protocol, focusing on the (2,2)-
threshold case. In Sec. III we provide a proof of its uncon-
ditional security, adopting techniques from the 1sDI-QKD
paradigm. In Sec. IV we present extensions to (k,7)-threshold
schemes and analyze the experimental feasibility of our
protocol. In Sec. V we summarize our work and discuss some
future perspectives.
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II. THE PROTOCOL

For illustration, we first focus on the (2,2)-threshold
scheme. The trusted dealer Alice prepares a three-mode
continuous-variable entangled state, keeps one mode, and
sends the other modes to the untrusted players, Bob and
Charlie, through individual unknown quantum channels. Alice
is assumed to perform homodyne measurements of two canon-
ically conjugate quadratures, £4 = (a 4+ a')/+/2 and p, =
(a — &T)/i ﬁ on her mode, with corresponding outcomes
X 4, Py, satisfying [£4,Ppa] = i (in natural units with A = 1).
Bob and Charlie, considered with uncharacterized devices,
are entitled to two unspecified measurements each, labeled
by xp(c),PB(c), With corresponding outcomes X p(c), Pp(c).
Nothing is assumed about the origin of these measurements.

In our protocol, Alice’s goal is to establish a unique secret
key, not with Bob’s or Charlie’s individual measurements (as
in standard two-party QKD), but with a collective (nonlocal)
degree of freedom for Bob and Charlie, say X, that strongly
correlates with one of Alice’s quadratures, say X 4. The unique
secret key can be accessed only when the players communicate
their local measurements, i.e., collaborate. For example, if
the three parties shared a maximally entangled state and their
outcomes were perfectly correlated as X4 ~ —Xp + X¢, one
would choose X = —X3 + X¢ as such collective degree of
freedom.

Alice sends additional copies to Bob and Charlie, and
each time all parties randomly choose and measure their
parts, getting outcomes X;, P;, respectively, withi = A,B,C,
until they have a sufficiently long list of correlated data.
Afterwards, all parties announce their measurement choice for
each copy and keep only the data originating from correlated
measurements (depending on the shared state). A random
subset of this data, chosen by the dealer, is then publicly
revealed and used to estimate the size of the secret key
(parameter estimation step [40]) that will provide secure QSS
(see below). Finally, if the estimated key is nonzero, Alice
proceeds to the conventional classical post-processing steps of
direct reconciliation and privacy amplification [40] to create
her final secret key, and sends the encrypted secret to Bob
and Charlie. However, only when, and if, Bob and Charlie
collaborate to form the joint variable X, can they apply the
post-processing instructions on X to acquire Alice’s secret
key. In what follows we will derive conditions on the key
rate to generate secret bits, from the correlations of X4 and
X, that are unconditionally secure against eavesdropping and
dishonest participants.

III. SECURITY PROOF

A. Security against eavesdropping

Let us first study security against eavesdropping, following
the QKD work of Walk er al. [38]. Neglecting detector and
reconciliation efficiencies, the direct reconciliation asymptotic
secret key rate is known to be lower bounded by the Devetak-
Winter formula [41],

K>1(Xa:X)—x(Xa: E), (D
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which finds many uses in quantum information and commu-
nication [36,38,40,42-50]. Here

I(Xa:X)=H(Xa)— HX4lX) 2

is the classical mutual information between Alice’s
variable X, and the joint variable X, with H(X) =
— [dXp(X)log p(X) being the Shannon entropy for a vari-

able X with probability distribution p(X), and

XX 1 E) = S(E) - / dXap(X0)S(pp') B
being the Holevo bound [51], which represents the maximum
possible knowledge an eavesdropper can get on the key. The
term S(E) = —Tr(pglog pg) is the von Neumann entropy
of Eve’s reduced state pg, whereas pg" denotes Eve’s state
conditioned on Alice’s measurement of X4 with outcome X 4.
All logarithms in this paper are taken in base 2. A positive
value of the right-hand side of (1) implies security of the key
against collective attacks of the eavesdropper, and by virtue of
Ref. [47] also against general coherent attacks.
Defining the conditional von Neumann entropy

S(X4|E) = H(XA)+/dXAP(XA)S(p§A) —S(E), 4)

and the conditional Shannon entropy
HOGIXD) = [ dXapXwHKabrn = Xn). (5)

with H(Xalxg = Xp) = — [dXap(XalXp)log p(XalXp),
one can recast the key rate (1) as a balance of conditional
entropies,

K > S(XAlE) — H(Xa|X). (6)

We can now use fundamental entropic uncertainty relations
that provide a lower bound to Eve’s uncertainty [45,52-56],

)

for the derivation of which Alice’s canonical commutation
relations have been assumed, while Eve is assumed to purify
the state shared by Alice, Bob, and Charlie, i.e., papc =
Tre(|Wapce){(Wapce|). Substituting the uncertainty relation
(7) back into (6) and recalling that S(P,|BC) < S(P4|P) =
H(P,4|P) (since measurements cannot decrease the entropy),
where P is a joint variable for Bob and Charlie optimally
correlated with Alice’s momentum P4, we get

S(X4lE) + S(P4|BC) > log 2,

K > log2m — H(X4|X) — H(P4|P), ()

i.e., a bound on the key rate (hence, on Eve’s maximal
knowledge on the key X 4) only involving conditional Shannon
entropies, that can be estimated using the announced measure-
ment outcomes during the parameter estimation stage.

To make the bound even more accessible, we proceed to
express it only in terms of second moments, instead of dealing
with conditional probability distributions. For this aim, we
recall that the Shannon entropy of an arbitrary probability
distribution is maximized by a Gaussian distribution of the
same variance. In other words, H(X4|X) < Hg(X4|X) =
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log ,/2mweVy, x, where

Vg = / dXpX)((X3)g — (XA)3) O

is the minimum inference variance of Alice’s position outcome

when the joint outcome X is known; and similarly for
H(P4|P). The final key rate is then bounded as follows:

K > —log (61/ VXA|)?VPA\13)'

We see that a nonzero key rate (secure against eavesdropping)
can be achieved when Ejpc = Vy, 3 Vp, 5 < €2

(10)

B. Security against dishonesty

We derived conditions such that Alice’s key is secure
from eavesdropping and the players can safely obtain the key
whenever they decide to collaborate. However, one needs to
consider also the potential cheating strategies of the players
themselves.

Suppose now that Bob is a dishonest player. His goal would
be to guess Alice’s key (hence, access the secret) using solely
his own local measurements xg,pg, entirely bypassing the
required collaboration with Charlie. A most general cheating
strategy for Bob would be: first, to secretly intercept Charlie’s
mode during its transmission using general coherent attacks
to increase his knowledge on Alice’s key; and second, to lie
about his measurements. A positive key rate in (10) does not
guarantee security against such general participant attacks and
cheating.

Here we derive additional conditions on the key rate so that
Bob cannot cheat or access the secret by himself. Our central
observation is to reconsider the Devetak-Winter formula (1)
and now treat Bob as an eavesdropper, together with Eve. This
means that in the Holevo bound x (X4 : E) defined in (3), that
expresses the knowledge of party E on the key X4, we will
include Bob himself. This leads to a modified Devetak-Winter
formula,

K>IXs:X)—x(Xa:EB), (11)

where E B refers now to the unknown joint quantum state of
Eve and Bob. A positive key rate in (11) would imply security
of Alice’s key against joint general attacks by Bob and Eve on
Charlie’s system. Also, Bob and Eve’s maximum knowledge
of the key, x(X4 : EB), can be upper-bounded as seen below
using Alice and Charlie’s measurements, independently of
Bob’s (possibly, faked) announced measurements, therefore
providing security against Bob’s cheating. The uncertainty
relation that we will use to bound Bob and Eve’s knowledge
will be a slightly modified version of (7),

S(XA|EB) 4+ S(P4|C) = log2m. (12)

Following similar steps as previously described, we thus end
up with the following bound on the key rate:

K 2 —IOg (e,/VXA‘)‘(VP“pC).

Notice that the key rate bound in (13) is smaller than the
one in (10) that did not take dishonesty into account, due to
Vp,p < Vp, p., Which is expected since the eavesdroppers’

13)
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knowledge on the key is increased by including Bob together
with Eve.

To intuitively understand why this condition prohibits
any cheating from Bob, we recall first that the key is
generated solely by the X4,X outcomes. By examination
of the uncertainty relation (12), taking into account that
log \/2meVp, p. = S(P4|C), we see that the better Charlie
can estimate Alice’s momentum [i.e., the smaller S(P4|C)]
the larger Bob and Eve’s ignorance should be on the key
elements X 4. The previous condition (10), not accounting for
participant dishonesty, only demanded that S(P4|BC) is small
enough, which can be true even if S(P,4|C) is arbitrarily large,
thus allowing Bob to reach good knowledge of the key [i.e.,
small S(X 4| E B)], through (12).

We can also account for Charlie’s dishonesty in an exactly
analogous manner (just replace B <> C above), leading us to

K 2 —IOg (EW/VXAU_(VPMPB)' (14)

Putting everything together, the final bound on the asymp-
totic key rate to provide unconditional security against general
attacks of an eavesdropper, and against arbitrary (individual)
cheating methods of both Bob and Charlie, which include the
announcement of faked measurements and general attacks of
Bob on Charlie’s system and of Charlie on Bob’s system, is

K>1(X4:X)—max{x(X4:EB),x(X4: EC)}

2_10g(e\/VXAl)_(maX{VPAlpc’VPA|PB})’ (15)

which is the minimum of the bounds (13) and (14). A positive
key rate (15) remarkably provides security against all kinds of
attacks that existing QSS protocols suffered from (e.g., fake
announced measurements [7], Trojan horse attacks [29], etc.),
for the sole reason that the players Bob and Charlie are not
assumed to be performing trusted quantum operations but are
treated as black boxes, in contrast to all previous schemes.

IV. DISCUSSION AND EXTENSIONS

In Fig. 1 we demonstrate the feasibility of the protocol
in a concrete realization, where the key rate (15) is plotted
against the squeezing degree of a noisy tripartite entangled
Gaussian cluster state. Notice that the same key rate can also
be achieved by an equivalent protocol that solely requires
bipartite entanglement (that would represent the so-called
prepare-and-measure counterpart to the presented protocol,
borrowing a QKD terminology), thus further reducing the
technological requirements for the state preparation. More
generally, given the recent progress in the generation of large-
scale continuous-variable entangled states [59-65], we expect
our secure protocol to be recognized as a competitive candidate
for practical QSS, as an alternative to conventional pQKD.

Finally, we show how to generalize the secret key rate bound
(15) to any (k,n)-threshold QSS scheme. To start with, let
us denote the n players as B,B;, ...,B,. A (k,n)-threshold
scheme has two requirements: first, no collaboration of any k —
1 players should be able to access the secret. We incorporate
this requirement into Eq. (15) by considering all possible
combinations of k — 1 out of n players, the total number of
which equals the binomial coefficient ("), as potential col-
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FIG. 1. The QSS secure key rate K, Eq. (15), is plotted against
the squeezing r of a three-mode noisy Gaussian cluster state,
obtained from a pure state [20] 0ABUBC|r)A|r)B|r)C, with Uij =
exp(£2;;%;%;), after Bob and Charlie’s modes undergo individual
pure-loss channels (i.e., quantum-limited attenuating channels), each
modeled by a beam splitter with transmissivity 7" and zero excess
noise (see inset). From top to bottom, the curves correspond to
T =1,0.95,0.9,0.85. All parties are assumed to be performing
homodyne measurements of X;,p;, with i = A,B,C. The current
experimentally accessible squeezing is limited to » < 1.15 (10 dB),
oro 2 0.32[57,58], in which regime a nonzero K is still guaranteed
for sufficiently large 7', demonstrating the feasibility of our scheme.

laborative eavesdroppers, and choosing the maximum Holevo
information over all collaborations to attain the maximum
possible knowledge on the key by any of these groups. Second,
any collaboration of k players, known as the access structure,
should be able to decode the message. Let us attribute a joint
variable X; to each k-player collaboration correlated to Alice’s
X4, with i =1, ... ,(Z) This amounts to Alice sending as
much error-correction information as needed, such that even
the k-player collaboration least correlated to Alice, i.e., with
the smallest 7(X 4 : X;), can access her key. Taking the above
into account, the key rate of the protocol will be,

K > min {I(Xs: X0, 1 (Xa: X))
— max {x(Xs : ESD,....x(Xa: ES.2)}, (16)

where §; denotes a particular sequence of k — 1 players, e.g.,
S1 = By --- Br—1. A positive value of the right-hand side of
Eq. (16) guarantees unconditional security of our QSS protocol
against eavesdropping and arbitrary collaborative cheating
strategies of any group of k — 1 potentially dishonest players.
This analysis readily extends to arbitrary access structures,
where a subset of privileged players can access the key.

V. CONCLUSIONS

We presented a feasible entanglement-based continuous-
variable QSS scheme, and derived sufficient conditions for the
protocol’s secret key rate to provide unconditional security
of the dealer’s classical secret against general attacks of an
eavesdropper and arbitrary cheating strategies, conspiracies,
and attacks of the (possibly, dishonest) players, for all (k,n)-
threshold schemes, and in the limit of asymptotic keys.
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In our approach, we crucially identified the most physically
relevant framework for QSS to be the 1sDI setting, treating
the dealer as a trusted party with characterized devices and
the players’ devices as black boxes. The natural separation of
roles between dealer and players renders QSS a well-suited
task for the 1sDI setting, even more than two-party QKD itself
[66]. At the same time, this observation enables us to adopt
and generalize conventional 1sDI-QKD techniques to establish
security of entanglement-based QSS, as demonstrated in this
paper. Incidentally, while the resource behind 1sDI-QKD is
known to be (bipartite) steering [67], a quantum correlation
stronger than plain entanglement [68] and weaker than Bell
nonlocality [69], one could suspect a similar connection in
the present multiuser scenario. In a companion paper [70], we
show in fact that multipartite steering [60,71] empowers secure
QSS, providing an operational interpretation for a genuine
multipartite continuous-variable steering measure.

Our work opens many avenues for further exploration. The
presented security proof rests on general principles and can
be extended from asymptotic to finite keys [39], suitable for
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concrete applications, and also to discrete-variable systems,
used in the original QSS definition [4]; this will be the subject
of future work. Moreover, although we provided sufficient
security conditions for all (k,n)-threshold schemes, the identi-
fication of optimal families of states maximizing the key rate
for each scheme was left open and will be addressed elsewhere.
Finally, our results pave the way for an unconditionally
secure experimental demonstration of QSS, enabling its use in
next-generation quantum communication networks.
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