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The primary goal in the study of entanglement as a resource theory is to find conditions that determine when
one quantum state can or cannot be transformed into another via local operations and classical communication
operations. This is typically done through entanglement monotones or conversion witnesses. Such quantities
cannot be computed for arbitrary quantum states in general, but it is useful to consider classes of symmetric
states for which closed-form expressions can be found. In this paper, we show how to compute the convex roof
of any entanglement monotone for all Werner states. The convex roofs of the well-known Vidal monotones are
computed for all isotropic states, and we show how this method can generalize to other entanglement measures
and other types of symmetries as well. We also present necessary and sufficient conditions that determine when
a pure bipartite state can be deterministically converted into a Werner state or an isotropic state.
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I. INTRODUCTION

One of the main goals in quantum information theory has
been to develop the theory of entanglement as a resource [1–5].
The resource theory of entanglement arises naturally from the
“distant labs” setting [6], in which the class of operations that
can be performed is known as LOCC (local operations and
classical communication). This is the class of local operations
that can be implemented by separated parties acting locally
upon their particles in a quantum manner, while coordinating
their actions with the use of classical communication.

The resourcefulness of entanglement is well known, and
many famous quantum information processing tasks explicitly
require the consumption of entanglement. It is therefore
important to quantify the amount of entanglement in a state
and to understand the structure of the states that is imposed by
the restriction to LOCC. While the structure of entanglement
in bipartite pure states has been completely characterized [7], a
complete understanding of entanglement in arbitrary bipartite
mixed states remains elusive.

Entanglement is typically quantified via entanglement
monotones—quantities that do not increase on average under
local measurements and classical communication [8]. En-
tanglement monotones on pure states can be obtained from
functions of the vectors of Schmidt coefficients. Without
loss of generality, we may write all bipartite pure states in
Schmidt form as |ψ〉 =∑i

√
λi |ii〉 for some Schmidt vector

λ. Every entanglement monotone corresponds to a function f

from the simplex of probability vectors to the real numbers,
where f is both symmetric and concave [8]. Each such
function defines an entanglement monotone on pure states
|ψ〉, Ef (ψ) = f (λ), by evaluating f on the vector of Schmidt
coefficients λ of |ψ〉, and every entanglement monotone can be
obtained this way. Some well-known entanglement monotones
include the entropy of entanglement E(ψ) = H (λ) (where
H (λ) = −∑i λi log2 λi is the Shannon entropy) and the Renyi
α entropies of entanglement Eα(ψ) = Hα(λ) (where Hα(λ) =
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1
1−α

log2(
∑

i λ
α
i ) is the Renyi α entropy of a probability

distribution for α > 0 and α �= 1). Another class of important
monotones for bipartite pure states was introduced by Vidal [9]
and is defined as follows. Assuming |ψ〉 ∈ Cd ⊗ Cd with d �
2, for each k ∈ {1, . . . ,d − 1} we can define the monotones as

Ek(ψ) = 1 −
k∑

i=1

λi =
d∑

i=k+1

λi, (1)

where the Schmidt coefficients of |ψ〉 are in decreasing order
λ1 � · · · � λd . For each k,Ek(ψ) is the sum of the d − k

smallest Schmidt coefficients of |ψ〉.
Entanglement monotones on pure states can be extended to

arbitrary mixed states by a convex roof construction [8,10,11].
Given an entanglement monotone E on pure states, its convex
roof on mixed states is defined as

Ê(ρ) = inf
{pi ,|ψi 〉}

∑
i

piE(ψi),

where the infimum is taken over all pure state decomposi-
tions of ρ =∑i pi |ψi〉〈ψi |. While there are many known
entanglement monotones for bipartite pure states, evaluating
the entanglement of arbitrary mixed states is in general not
possible. In this paper, we show how to compute convex
roof entanglement monotones on certain symmetric classes
of entangled states. In particular, we compute the convex roofs
of the Renyi entropies and the Vidal monotones on Werner and
isotropic states [12,13].

Symmetry plays a very important role in many quan-
tum information tasks. Restricting our attention to highly
symmetric states not only simplifies many computations but
yields valuable information about the structure of bipartite
entanglement. There is strong evidence that certain symmetric
states may provide an example of bound entangled states
that have negative partial transposes [14]. We can restrict our
attention only to states that are symmetric in some manner,
for example the well-known Werner and isotropic states, and
exploit that symmetry to compute the convex roof of certain
entanglement monotones on those families of states. For
example, the entanglement of formation has been computed
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for Werner states [12] and isotropic states [13]. Convex roofs
of some generalizations of the concurrence [15] have been
computed for isotropic states as well [16,17].

In this work, we expand on existing methods [12,13]
to compute the convex roofs of many more entanglement
monotones for these classes of symmetric states and more.
In particular, we show that our method can be used to compute
the convex roof on Werner states for all possible entanglement
monotones on pure states. We also compute the convex roof of
the Vidal monotones in Eq. (1) and certain other entanglement
monotones for isotropic states. We also extend these methods
to compute the convex roof on larger classes of symmetric
states.

While entanglement monotones are important for quan-
tifying entanglement within states, it is also important to
characterize which transformations between states can be
performed via LOCC deterministically. For bipartite pure
states, this is completely characterized by majorization of
the vectors of Schmidt coefficients [7], or equivalently by the
Vidal monotones [18]. Only a finite number of entanglement
measures are needed to determine convertibility of bipartite
pure states, but an infinite number of entanglement measures
are needed to completely determine the convertibility of
mixed states [19]. To characterize the convertibility of mixed
states, we can instead make use of entanglement conversion
witnesses [20,21]. An entanglement conversion witness is a
function of two bipartite quantum states whose value “detects”
when one state can be converted into another. For example, a
no-go entanglement conversion witness is a function W (ρ,σ )
such that W (ρ,σ ) < 0 implies that ρ cannot be converted
to σ with a deterministic LOCC operation. Similarly, a go
entanglement conversion witness is a function W (ρ,σ ) such
that W (ρ,σ ) � 0 implies the existence of a deterministic
LOCC protocol that converts ρ into σ . A witness is complete
if it is both a go and a no-go witness.

In Ref. [22], it was shown that a bipartite pure state |ψ〉 can
be converted into a bipartite mixed state ρ if and only if

Ek(ψ) �
∑

i

piEk(ϕi)

holds for all k and all decompositions ρ =∑i pi |ϕi〉〈ϕi |. This
necessary and sufficient condition for LOCC transformation
can be encoded into the following complete witness:

W (ψ,ρ) = max
{pi ,ϕi }

min
k

(
Ek(ψ) −

∑
i

piEk(ϕi)

)
.

It holds that W (ψ,ρ) � 0 if and only if |ψ〉 can be converted
into ρ via LOCC. Although this function cannot be computed
for arbitrary mixed states, we can make extensive use of
symmetry to compute it in the case when ρ is highly symmetric
(e.g., Werner or isotropic). In the final section of this paper, we
show how to compute a class of entanglement transformation
witnesses for pure to mixed bipartite state conversion in the
case when the target mixed state is symmetric.

The remainder of this paper is structured as follows. The
necessary background for constructing convex roof functions,
the definition of the Werner and isotropic states, and other
preliminary matter are presented in Sec. II. Convex roofs of
certain entanglement monotones are evaluated on Werner and

isotropic states in Sec. III. An entanglement transformation
witness for pure to mixed state conversion is presented in
Sec. IV, where it is also shown how to evaluate this witness
when the target state is a Werner state or an isotropic state.

II. PRELIMINARIES

In this section, we review the notion of a convex roof
of an arbitrary function. The details from Ref. [12] that are
necessary for computing the convex roofs of functions under
generalized symmetry are summarized. We also review the
types of bipartite symmetries that we will analyze, in particular,
the Werner and isotropic states and generalizations of these
symmetries.

A. Convex roofs and symmetry

In the following, we use the notation R = R ∪ {+∞}. Let
K be a compact set, M ⊂ K , and let f : M → R. The convex
roof of f over K is the function f̂ : K → R defined as

f̂ (x) = inf

{∑
i

pif (yi)

∣∣∣∣∣ yi ∈ M,
∑

i

piyi = x

}
, (2)

for any x ∈ co(M) in the convex hull of M . The infimum in
Eq. (2) is taken over all convex combinations with pi � 0 and∑

i pi = 1. Note that f̂ (x) = ∞ if x /∈ co(M).
Let G be a compact group with a G action g · x on K

that preserves convex combinations (i.e., g · [tx + (1 − t)y] =
tg · x + (1 − t)g · y for any x,y ∈ K and any t ∈ [0,1]). Then
the G-twirling operator TG : K → K is defined as

TG(x) =
∫
G

dgg · x, (3)

for all x ∈ K , where the integral is taken over the Haar measure
of the group. If TG(y) = x then we say that y twirls to x

under G. The G-invariant elements x ∈ K are exactly those
that satisfy TG(x) = x, and the subset of G-invariant elements
of K is denoted as TG(K).

Given any function f : M → R on a subset M ⊂ K , we
define the function fG : TG(K) → R as

fG(x) = inf{f (y) | y ∈ M, TG(y) = x} (4)

for all x ∈ TG(K). As the following theorem shows, this
definition allows us to find a different expression for the
convex roof of a function f : M → R evaluated onG-invariant
elements of K . This is the primary tool that we use to compute
convex roof entanglement monotones on the Werner and
isotropic states.

Theorem 1 (Sec. IV.A in Ref. [12]). Let G be a compact
group and K be a compact convex set with a G action that
preserves convex combinations, and let f : M → R be a
function on a subset M ⊂ K . It holds that

f̂ (x) = f̂G(x) (5)

for all x ∈ TG(K).
To compute the convex roof f̂ of a function f on the G-

invariant elements of K , the result of Theorem 1 implies that
we can simplify the computation by first minimizing f over
all y ∈ M that twirl to x. Computing the convex roof of the
resulting function yields the desired result. This computation
is simplified greatly if fG is already convex as a function of
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G-invariant elements, in which case f̂ (x) reduces to fG(x).
Note that both fG and f̂G are functions on the convex subset
TG(K) ⊂ K of elements that are invariant under the action
of G.

One basic feature of convex roof functions is the existence
of “linear sections” in the roof function whenever the infimum
in Eq. (2) is found at a nontrivial convex combination. The
result of Lemma 1(which is proven in Ref. [12]) allows us to
compute convex roof functions on some elements that are not
necessarily symmetric with respect to the group action.

Lemma 1. Suppose x =∑i pixi ∈ K is a convex combi-
nation of elements xi ∈ M with pi > 0 for each i such that
f̂ (x) =∑i pif (xi) is minimized. Then f̂ is linear on the
convex hull of {xi}. That is, it holds that

f̂

(∑
i

tixi

)
=
∑

i

tif (xi) (6)

for all ti ∈ [0,1] satisfying
∑

i ti = 1.
In our analysis here, we compute the convex roof of

entanglement monotones on pure states for Werner and
isotropic states. The minimizing sets will usually be an entire
orbit of some pure state under the local-unitary group action.
Every pure state in these orbits has the same amount of
entanglement under any entanglement monotone, since they
differ only by a local unitary. Hence the convex roof of any
entanglement monotone will be constant on the convex hull of
these orbits. This gives a fairly large class of nonsymmetric
states for which we can compute the exact value of many
different entanglement monotones.

B. Bipartite entanglement symmetry

In this following section, we recall some well-known
examples of groups that are used in the study of bipartite
quantum entanglement. Let d � 2 be an integer and consider
bipartite states on Cd ⊗ Cd . The convex set of interest here
is the set of normalized density operators D(Cd ⊗ Cd ) =
{ρ | ρ � 0, Tr ρ = 1}. We are interested in computing the
convex roof of entanglement monotones that are defined on
the pure states:

{|ψ〉〈ψ | | |ψ〉 ∈ Cd ⊗ Cd , ‖|ψ〉‖ = 1} ⊂ D(Cd ⊗ Cd ).

It is well known that any entanglement monotone on pure
states must be a symmetric, concave function of the Schmidt
coefficients of the pure states. The primary examples of
symmetric states that we study in this paper are the well-known
Werner states [23] and isotropic states [24].

For the remainder of this paper we assume that d � 2 and
we only consider bipartite states on Cd ⊗ Cd . We consider
classes of states that are symmetric with respect to different
subgroups of the group of local unitaries

LU = {U ⊗ V | U,V ∈ U(d)}.
Given a subgroup G ⊂ LU, determining which states are
invariant under G amounts to computing the commutant of
G,

G ′ = {A ∈ B(Cd ⊗ Cd ) | [A,g] = 0 for all g ∈ G},

where B(Cd ⊗ Cd ) denotes the set of linear operators on the
tensor product space (i.e., the set of d2 × d2 matrices). The
commutant G ′ is the subspace of operators that commute with
every element of G. The twirling operator TG can be viewed as
the projection operator onto the commutant of G. To determine
G ′ ∩ D(Cd ⊗ Cd ), i.e., the family of states that are invariant
under this action, it is useful to find an orthogonal basis of
operators for G ′ and express the states as combinations of
those basis elements. Finally, note that for any G ⊆ LU the
twirling operation TG is an LOCC operation, since it consists
of a convex mixture of local unitary channels.

1. Werner states

The d × d Werner states [23] are those that commute with
all unitaries of the form U ⊗ U for some U ∈ U(d). That is,
Werner states are those which are invariant under the subgroup
{U ⊗ U | U ∈ U(d)}. The corresponding twirling operator is

Twer(ρ) =
∫

U(d)
dUU ⊗ Uρ(U ⊗ U )†,

where the integral is taken over the Haar measure of the group
U(d) of d × d unitary matrices. The commutant of this group
is spanned by {1,W }, where 1 is the identity operator and W is
the swap operator defined by W =∑d

i,j=1 |ij 〉〈ji|. The swap
operator is both unitary and Hermitian, having eigenvalues 1
and −1 and satisfying W 2 = 1. Let W+ and W− denote the
projectors onto the subspaces spanned by the positive and
negative eigenvectors of W , respectively, such that W = W+ −
W−. The Werner states can then be parametrized by

ρwer(a) = a
1(
d

2

)W− + (1 − a)
1(

d+1
2

)W+ (7)

for a ∈ [0,1]. These states are entangled for a ∈ [ 1
2 ,1] and sep-

arable otherwise [12,25]. Furthermore, it holds that Twer(σ ) =
ρwer(Tr[σW−]) for all states σ .

2. Isotropic states

The d × d isotropic states [24] are those invariant under
the subgroup {U ⊗ U | U ∈ U(d)}. The corresponding twirling
operator is

Tiso(ρ) =
∫

U(d)
dUU ⊗ Uρ(U ⊗ U )†.

The commutant of this group is spanned by {1,�d}, where
�d = 1

d

∑d
i,j=1 |ii〉〈jj | is the projection operator onto the

maximally entangled pure state 1√
d

∑d
i=1 |ii〉 of two qudits.

This commutant is exactly the partial transpose of the space
from the Werner states [26]. The isotropic states can be
parametrized by

ρiso(b) = b�d + (1 − b)
1 − �d

d2 − 1
(8)

for b ∈ [0,1]. The isotropic states are entangled for b ∈ [ 1
d
,1]

and separable otherwise [12,25]. Furthermore, it holds that
Tiso(σ ) = ρiso(Tr[σ�d ]) for all states σ .
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FIG. 1. Schematic of the OO-invariant states ρO(a,b), as defined
in Eq. (9). The shaded region represents the separable states. The
one-dimensional subfamilies of Werner and isotropic states are also
shown. Convex roof entanglement monotones can be computed for
states in regions A and B, as discussed in Sec. III D. It remains
unknown how to compute convex roofs on states in region C for an
arbitrary entanglement monotone.

3. OO-invariant states

One way to generalize the isotropic and Werner states to
larger classes of symmetric states is to consider the OO-
invariant states [12]. These are the states that are invariant
under {U ⊗ U | U ∈ O(d)}, where O(d) ⊂ U(d) is the group
of orthogonal operators. Since the orthogonal matrices are the
unitaries that satisfy U = U , this group is a subgroup of both
the isotropic group and the Werner group of local unitaries.
The corresponding OO-twirling operator is defined as

TO(ρ) =
∫

O(d)
dUU ⊗ Uρ(U ⊗ U )†.

The commutant of this group is spanned by {1,W,�d} [12,
Sec. II D]. The OO-invariant states can be parametrized as

ρO(a,b) = a
1(
d

2

)W− + b�d

+ (1 − a − b)
1(

d+1
2

)− 1
(1 − �d − W−) (9)

for a,b ∈ [0,1] satisfying a + b � 1. The OO-invariant states
that are separable (and also positive under partial transposi-
tion) [12] are those in the rectangle (a,b) ∈ [0, 1

2 ] × [0, 1
d

]. The
Werner states are OO-invariant states for which b = 2(1−a)

d(d+1)

and the isotropic states are those for which b = 1 − 2(d+1)
d

a.
A schematic of the OO-invariant states is shown in Fig. 1.

The entanglement of formation and the asymptotic relative
entropy of entanglement of OO-invariant states have been
computed [12,26]. In Sec. III, we show how to compute almost
any convex roof monotone on the OO-invariant states.

4. Phase-permutation-invariant states

Other subgroups of U(d) lead to further generalizations
of the Werner and isotropic states. One possible subgroup
that leads to two-parameter families of symmetric states is
the following. Consider the subgroup of “phase-permutation”
unitary matrices defined by

G = {PπU | π ∈ Sd , U ∈ U(d) is diagonal}, (10)

where Sd is the symmetric group and Pπ =∑d
i=1 |π (i)〉〈i| is

the permutation matrix for π ∈ Sd . If we denote the group of
diagonal unitary matrices by N � U(1)×d , we see that N is
a normal subgroup of G. The group G of phase-permutation
unitaries can be viewed as the semidirect product G = N �

Pd , where Pd = {Pπ | π ∈ Sd} denotes the group of d × d

permutation matrices. This is also the subgroup of unitaries
that have exactly one nonzero entry in each row and column.

a. Phase-permutation Werner states. Consider the family
of Werner-type states that are invariant under {U ⊗ U | U ∈
G}, where G is the group of phase-permutation matrices
defined in Eq. (10). Such states will be referred to in this
paper as phase-permutation Werner states. This class of states
was first introduced in Ref. [14] and used in Ref. [20]. The
corresponding twirling operation is

T G
wer(ρ) =

∫
G

dUU ⊗ Uρ(U ⊗ U )†.

The commutant of this group is spanned by {1,W,Q} [14,
Sec. II], where Q is the projection operator

Q =
d∑

i=1

|ii〉〈ii| (11)

that satisfies [Q,W±] = 0, QW− = 0, and QW+ = Q. This
family of states can be parametrized by

ρG
wer(a,b) = a

1(
d

2

)W− + b
1(
d

2

) (W+ − Q) + (1 − a − b)
1

d
Q

(12)

for a,b ∈ [0,1] satisfying a + b � 1. For all states ρ, it
holds that T G

wer(ρ) = ρG
wer(a,b), where a = Tr[ρW−] and b =

Tr[ρ(W+ − Q)]. The Werner states form a subfamily of this
class. A schematic of the phase-permutation Werner states is
depicted in Fig. 2.

b. Phase-permutation isotropic states. Similarly, we can
consider the family of isotropic-type states that are invariant
under {U ⊗ U | U ∈ G}. We refer to these as the phase-
permutation isotropic states. These states have been studied
by others [16,17,27] who have called them the axisymmetric
states. The corresponding twirling operation is

T G
iso(ρ) =

∫
G

dUU ⊗ Uρ(U ⊗ U )†.

The commutant of this group is spanned by {1,�d,Q}.
The elements of this commutant are exactly obtained
from the partial transposes of the elements of the commutant of
the phase-permutation Werner group presented in the previous
paragraph. The family of phase-permutation isotropic states
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FIG. 2. Schematic of the phase-permutation Werner states. The
separable region is shown in gray. The one-dimensional family of
states with b = d−1

d+1 (1 − a) is made up of the well-known Werner
states. As shown in Sec. III D, the convex roof of any entanglement
monotone can be computed for any state in region A. It remains
unknown how to compute convex roofs on states in region B for an
arbitrary entanglement monotone.

can be parametrized as

ρG
iso(a,b) = b�d + a

1

d − 1
(Q − �d )

+ (1 − a − b)
1

d(d − 1)
(1 − Q) (13)

for a,b ∈ [0,1] satisfying a + b � 1. For all states ρ, it
holds that T G

iso(ρ) = ρG
iso(a,b), where b = Tr[ρ�d ] and a =

Tr[ρ(Q − �d )]. The isotropic states form a subfamily of this
class. A schematic of the phase-permutation isotropic states is
depicted in Fig. 3.

III. CONVEX ROOF ENTANGLEMENT MONOTONES
FOR SYMMETRIC STATES

In this section, we compute the convex roofs of entangle-
ment monotones evaluated on Werner and isotropic states.
For Werner states, we compute this for any monotone. For
isotropic states, we compute the convex roofs of the Vidal
monotones and generalize the computation to certain classes
of other monotones.

A. Werner states

In this subsection we present a general method for comput-
ing convex roofs of entanglement monotones evaluated on the
Werner states of a d × d bipartite system. For any a ∈ [0,1],
consider the minimum entanglement of all pure states that twirl
to ρwer(a) under this action as in Eq. (4). Given an arbitrary
entanglement monotone E on pure states, define the function
Ewer : [0,1] → R as

Ewer(a) = min{E(ψ) | 〈ψ |W−|ψ〉 = a}. (14)

0

1

1d−1
d

1
d+1

1
d

1
2

1
2

a

b

Sep

B

A

Isotropic states

FIG. 3. Schematic of the phase-permutation isotropic states. The
separable region is shown in gray. The one-dimensional family of
states with b = 1 − (d + 1)a is made up of the isotropic states. As
shown in Sec. III C, the convex roof of any entanglement monotone
can be computed for any state in region B. It remains unknown
how to compute convex roofs on states in region A for an arbitrary
entanglement monotone.

If we can evaluate Eq. (14) for a given entanglement monotone
E, then we may make use of Theorem 1 to compute the convex
roof of E on Werner states by computing Êwer. This result is
greatly simplified if Ewer is already convex as a function of a.

Theorem 2. Let E be an entanglement monotone on pure
states. For all a ∈ [0,1], it holds that

Ewer(a) = E(ψa), (15)

where Ewer is the function as defined in Eq. (14), and |ψa〉 are
the pure states defined by

|ψa〉 = (
√

1 − 2a |1〉 +
√

2a |2〉) ⊗ |2〉 (16)

whenever a ∈ [0, 1
2 ] and

|ψa〉 =
√

1
2 +

√
a(1 − a) |12〉 −

√
1
2 −

√
a(1 − a) |21〉 (17)

whenever a ∈ [ 1
2 ,1].

Note that the pure states |ψa〉 twirl to the Werner state
ρwer(a). Indeed, a straightforward calculation shows that
〈ψa|W−|ψa〉 = a for all a. In particular, Theorem 2 states that
the pure states |ψa〉 are in fact optimal in the computation
in Eq. (14) for every possible entanglement monotone. This
is a generalization of the statement in Ref. [12, Sec. IV.C],
where the convex roof of the entanglement of formation was
computed for Werner states. The proof of Theorem 2, which
can be found in Appendix A, is quite technical and follows the
method used in Ref. [12].

From Theorems 1 and 2, it follows that Ê[ρwer(a)] =
Êwer(a). The family of Werner states is convex and

tρwer(a1) + (1 − t)ρwer(a2) = ρwer[ta1 + (1 − t)a2].
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Hence the computation of Êwer(a) is greatly simplified if Ewer

is already convex as a function of a (as it is for the entanglement
of formation). Otherwise there are simple procedures for
computing the convex roof of a function of a single variable.
Even if the convex roof of Ewer as a function of a cannot
be computed for a particular entanglement monotone E, the
formula in Eq. (15) still gives an upper bound for Ê on Werner
states since Ê[ρwer(a)] = Êwer(a) � Ewer(a) always holds.

1. Entanglement of formation

The entanglement of formation [28] is one well-known
convex roof entanglement monotone. This is defined as
EF (ρ) = Ê(ρ) for mixed states ρ, where E is the entropy of
entanglement on pure states E(ψ) = H (λ),H is the Shannon
entropy, and λ is the vector of Schmidt coefficients of |ψ〉.
When a ∈ [ 1

2 ,1], the entropy of entanglement of |ψa〉 is given
by

E(ψa) = h
(

1
2 −

√
a(1 − a)

)
, (18)

where h(t) = −t log2 t − (1 − t) log2(1 − t) is the binary en-
tropy function. Note that the function in Eq. (18) is convex as
a function of a, so it follows that

EF [ρwer(a)] =
{

0, a ∈ [0, 1
2

]
,

h
(

1
2 − √

a(1 − a)
)
, a ∈ [ 1

2 ,1
]
.

(19)

This matches the result found in Ref. [12].

2. Vidal monotones

Consider now the Vidal monotones Ek on pure states.
Evaluating the convex roof of these monotones on the Werner
states can be done easily, because Ek, wer(a) is already convex
as a function of a.

Theorem 3. Consider the convex roof of the Vidal mono-
tones Ek on Werner states. The first Vidal monotone reduces
to

Ê1[ρwer(a)] =
{

0, a ∈ [0, 1
2

]
,

1
2 − √

a(1 − a), a ∈ [ 1
2 ,1
]
.

(20)

For k > 1, Êk[ρwer(a)] = 0 for all a.
In particular, the convex roof of the kth Vidal monotone

vanishes for all Werner states when k �= 1. Indeed, it holds
that Ek(ψa) = 0 for all a if k > 1, since the Schmidt vector
of |ψa〉 has at most two nonzero components. For a ∈ [ 1

2 ,1],
note that

E1(ψa) = 1
2 −

√
a(1 − a),

which is already convex as a function of a.

3. Renyi entropies

The result of Theorem 2 can also be used to compute
the convex roofs of Renyi entropies [29] of entanglement
evaluated on Werner states. For α > 0 with α �= 1, the
Renyi α entropy of entanglement is defined as Eα(λ) =

1
1−α

log2(
∑

i λ
α
i ) for pure states with Schmidt vector λ. These

are in fact valid entanglement monotones on pure states when
α ∈ [0,1] [8]. The form of Eq. (14) for these monotones

reduces to Eα, wer(a) = 0 when a ∈ [0, 1
2 ] and

Eα, wer(a) = 1

1 − α
log2

[(
1

2
+
√

a(1 − a)

)α

+
(

1

2
−
√

a(1 − a)

)α]
(21)

when a ∈ [ 1
2 ,1]. Numerical evidence suggests that Eq. (21)

is strictly convex whenever α > 1 and that Eq. (21) is
strictly concave on the interval a ∈ [ 1

2 ,1] whenever α < 1
2 .

Thus Êα[ρwer(a)] = Eα, wer(a) for α > 1 and Êα[ρwer(a)] =
max{0,(2a − 1) log2 2} for α < 1

2 .

B. Isotropic states

In this section we present a general method for computing
convex roofs of entanglement monotones evaluated on the
isotropic states of a d × d bipartite system. In particular,
we show explicit formulas for the convex roofs of the Vidal
monotones, as we did for the Werner states in the previous
section. Using majorization, the result for the Vidal monotones
is used to find a simple lower bound for any entanglement
monotone on isotropic states. An outline for computing the
convex roof of the Renyi entropies on isotropic states is also
presented. Detailed proofs can be found in Appendix B.

The isotropic states ρiso(b) defined in Eq. (8) are the states
invariant under the action U · ρ = U ⊗ Uρ(U ⊗ U )† from the
d-dimensional unitary matrices U . Similar to our analysis of
Werner states, for any b ∈ [0,1] we consider the minimum
entanglement of all pure states that twirl to ρiso(b) under this
action as follows. Given an arbitrary entanglement monotone
E on pure states, define the function Eiso : [0,1] → R by

Eiso(b) = min{E(ψ) | 〈ψ |�d |ψ〉 = b}. (22)

If we can determine a closed-form expression of Eq. (22)
for a given entanglement monotone E, we can make use of
Theorem 1 to compute the convex roof of E on isotropic states
by computing Êiso. This result is greatly simplified if Eiso is
already convex as a function of b. We use the result of the
following lemma to simplify computations.

Lemma 2. Let E be an entanglement monotone on pure
states. For all b ∈ [ 1

d
,1], it holds that

Eiso(b) = min

{
E(λ)

∣∣∣∣∣
d∑

i=1

√
λi =

√
db

}
, (23)

where the infimum is taken over all Schmidt vectors satisfying
the condition. Furthermore, Eiso(b) = 0 whenever b ∈ [0, 1

d
].

A closed-form expression for Eiso in the right-hand side of
Eq. (23) can actually be computed for specific monotones E,
which we show in the remainder of this section. In particular,
we compute Eiso in the cases when E is a Vidal monotone or
an entropy-type monotone. The proof of Lemma 2, which is a
generalization of the result in Ref. [13], is quite technical and
can be found in Appendix B.

1. Vidal monotones

Here we present the results for evaluating the convex roofs
of the Vidal monotones (1) on isotropic states. The Schmidt

012308-6



ENTANGLEMENT MONOTONES AND TRANSFORMATIONS OF . . . PHYSICAL REVIEW A 95, 012308 (2017)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

FIG. 4. The convex roof of the Vidal monotones E1, E2, E3, and
E4 evaluated on isotropic states with dimension d = 5.

vector that minimizes Ek, iso in Eq. (23) will be of the form

λ =

⎛⎜⎜⎝t, . . . ,t︸ ︷︷ ︸
k

,
1 − kt

d − k
, . . . ,

1 − kt

d − k︸ ︷︷ ︸
d−k

⎞⎟⎟⎠, (24)

with t � 1−kt
d−k

. This allows us to compute the convex roofs of
the Vidal monotones on isotropic states.

Theorem 4. Consider the convex roof of the Vidal mono-
tones Ek on the isotropic states of Cd ⊗ Cd . For k ∈
{1, . . . ,d − 1} and b ∈ [0,1], it holds that

Êk[ρiso(b)]

=
{

0, b ∈ [0, k
d

]
,

1
d

(
√

(1 − b)k − √
b(d − k))2, b ∈ [ k

d
,1
]
.

(25)

Proof. Note that Êk[ρiso(b)] = Êk,iso(b) by Theorem 1,
where Ek, iso is the function as defined in Eq. (22) and the
entanglement monotone used is E = Ek . An explicit form of
Eq. (22) for the Vidal monotones is computed in Eq. (B3) of
Theorem 10 in Appendix B. It is clear that Ek, iso(b) in Eq. (B3)
is convex as a function of b (which may be confirmed by
examining its second derivative). Thus Ek, iso = Êk, iso, which
concludes the proof. �

The convex roofs of the Vidal monotones can be trivially
computed for k � d, in which case Ek, iso(b) = 0 for all k � d

and any b. A plot of the Vidal monotones (25) evaluated on
isotropic states ρiso(b) with d = 5 is shown in Fig. 4.

It is perhaps interesting to note that the equation

y =
(√

(1 − x)
k

d
−
√(

1 − k

d

)
x

)2

is part of the unique ellipse that is tangent to the x axis at the
point (k/d,0), tangent to the y axis at the point (0,k/d), and
goes through the point (1,1 − k/d).

The resulting computations of computing the Vidal mono-
tones on isotropic states can also be used to construct a lower
bound for any arbitrary entanglement monotone evaluated on
isotropic states. For any d � 2 and any b ∈ [0,1], define the

following Schmidt vector:

λb =

⎛⎜⎜⎜⎜⎜⎝
1 − E1, iso(b)

E1, iso(b) − E2, iso(b)
...

Ed−2, iso(b) − Ed−1, iso(b)

Ed−1, iso(b)

⎞⎟⎟⎟⎟⎟⎠. (26)

For each k it holds that Ek(λb) = Ek, iso(b). By construction,
it holds that Ek(ψ) � Ek(λb) for any pure state |ψ〉 that twirls
to ρiso(b) (i.e., satisfying 〈ψ |�d |ψ〉 = b). Thus λ ≺ λb, where
λ is a Schmidt vector of any pure state that twirls to ρiso(b).
This implies that we can use λb to construct a lower bound for
any entanglement monotone E evaluated on isotropic states.
In particular, it holds that

Ê[ρiso(b)] � E(λb) (27)

for the convex roof of any possible entanglement monotone E

evaluated on isotropic states.

2. Generalized entropy measures

It is also possible to study the convex roof of generalized
measures of entropy, as studied in Ref. [30], rather than
entanglement measures. Generalized entropy measures are
functions of the form Hf (λ) =∑i f (λi) for functions f that
satisfy the following conditions:

(i) f (0) = 0,
(ii) f is either strictly concave or strictly convex on the

interval [0,1], and
(iii) the first derivative f ′ exists and is continuous on the

interval (0,1).
This includes the entropy of entanglement when f (x) =

−x log2 x, as well as quantities that are related to the Renyi
entropies when f (x) = xα . In Ref. [30] it was shown how
to compute the minimum and maximum values of one
generalized entropy Hf (λ) for all Schmidt vectors λ with
some other generalized entropy Hg(λ) = c held constant. It
turns out that the Schmidt vectors minimizing or maximizing
these quantities will either be of the form

λ =
(

t,
1 − t

d − 1
, . . . ,

1 − t

d − 1

)
, (28)

where t � 1−t
d−1 , or

λ = (t, . . . ,t,1 − kt,0, . . . ,0
)
, (29)

where t � 1 − kt , and there are k = � 1
t
� probabilities equal to

t . We can then make use of the following theorem.
Theorem 5 (Theorem 1 in Ref. [30]). Let f : [0,1] → R

and g : [0,1] → R both satisfy conditions (i)–(iii) above.
(1) If f ′ ◦ (g′)−1 is strictly convex (concave), then the

maximum (minimum) Hf that can be achieved for fixed Hg is
obtained by a probability distribution of the form in Eq. (28).

(2) If f ′ ◦ (g′)−1 is strictly convex (concave), then the
minimum (maximum) Hf that can be achieved for fixed Hg is
obtained by a probability distribution of the form in Eq. (29).

Note that g in Theorem 5 is either strictly concave or
convex, so it must hold that g′ is in fact invertible on the
interval (0,1).

012308-7



MARK W. GIRARD AND GILAD GOUR PHYSICAL REVIEW A 95, 012308 (2017)

Given a function f that satisfies the conditions above, we
can define an entropy measure on pure states by Sf (ψ) =
Hf (λ), where λ here is the vector of Schmidt coefficients of
|ψ〉. This can be extended to mixed states via the convex roof
construction. Evaluating the convex roof of such an entropy
measure on isotropic states ρiso(b) amounts to minimizing
Hf (λ) subject to the constraint

∑
i

√
λi = √

db. In particular
we can evaluate functions of the form

Hf, iso(b) = inf

{
Hf (λ)

∣∣∣∣∣
d∑

i=1

√
λi =

√
db

}
(30)

for b ∈ [ 1
d
,1]. The constraint in Eq. (30) can be rewritten as√

db = Hg(λ), where we choose g(x) = √
x. If f satisfies

the conditions in Theorem 5, then we may use Theorem 5 to
compute the value in Eq. (30). Note that (g′)−1(x) = 1

4x2 , so it
suffices to check if f ′( 1

4x2 ) is either strictly concave or convex
as a function of x.

Using λ of the form in Eq. (28), solving for t with respect to
the constraint

∑d
i=1

√
λi = √

db such that Hf (λ) is minimized
yields

t = 1 − 1

d
(
√

1 − b −
√

b(d − 1))2. (31)

Therefore, if f ′( 1
4x2 ) is strictly concave, it follows that

Hf, iso(b) = f (t) + (d − 1)f ( 1−t
d−1 ), where the value of t is

taken from Eq. (31).
Using λ of the form in Eq. (29), solving for t with respect to

the constraint
∑d

i=1

√
λi = √

db such that Hf (λ) is minimized
yields

t = (
√

dbk + √
k + 1 − db)2

k(k + 1)2
, (32)

where k = �db�. It follows that, if f ′( 1
4x2 ) is strictly convex

then Hf, iso(b) = �db�f (t) + f (1 − �db�t), where the value
of t is taken from Eq. (32). Example values of t in Eqs. (31)
and (32) as functions of b for d = 5 are plotted in Fig. 5.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 5. Example values of t from Eq. (31) (solid line) and Eq. (32)
(dashed line) as functions of b for d = 5.

3. Generalized concurrences

Using the methods above, it is also possible to compute
convex roofs of some of the generalized concurrence mono-
tones [15]. These are defined as follows. For k = 1,2, . . . ,d, let
Sk be the kth elementary symmetric polynomial of d variables.
That is,

S1(λ) =
d∑

i=1

λi, S2(λ) =
∑
i<j

λiλj , . . . ,Sd (λ) =
d∏

i=1

λi.

Note that Sk( 1
d
, . . . , 1

d
) = 1

dk

(
d

k

)
. The generalized concurrence

monotones are defined by

Ck(λ) = d(
d

k

)1/k
Sk(λ)1/k.

These symmetric functions are also concave [15] and thus
are valid entanglement monotones on pure states. Each Ck

achieves a maximum value of 1 on the maximally entangled
pure state of two qudits. Note that Cd is sometimes called the
G-concurrence [15].

Here, we compute the convex roofs of C2 and Cd on
isotropic states. For b ∈ [ 1

d
,1], we minimize C2 and Cd over

all Schmidt vectors that satisfy
∑d

i=1 λi = 1 and
∑d

i=1

√
λi =√

db.
We first compute Ĉ2 for isotropic states. Note that

S2(λ) = 1

2

(
1 −

d∑
i=1

λ2
i

)
.

Hence, minimizing S2(λ) is equivalent to maximizing
∑d

i=1 λ2
i .

By Theorem 5, the optimal value of this will be achieved by
the Schmidt vector of the form in Eq. (28) with the value t

from Eq. (31). Thus

C2, iso(b) =
√

d

d − 1

√
(1 − t)[d(1 + t) − 2], (33)

with t from Eq. (31) and b ∈ [ 1
d
,1]. The function in Eq. (33) is

strictly concave as a function of b; thus its convex roof is the
linear function

Ĉ2, iso(b) =
{

0, 0 � b � 1
d
,

db−1
d−1 , 1

d
� b � 1.

(34)

Hence, the convex roof of the 2-concurrence on isotropic states
reduces to Ĉ2[ρiso(b)] = Ĉ2, iso(b). This agrees with the result
from Ref. [16].

To compute the convex hull of the G-concurrence Ĉd for
isotropic states, note that

log2 Sd (λ) =
d∑

i=1

log2 λi.

Thus minimizing Sd (λ) is equivalent to maximizing∑d
i=1 log2 λi . By Theorem 5, the optimal value will be

achieved by the Schmidt vector of the form in Eq. (29) with
the value t from Eq. (32). Thus Cd, iso(b) = 0 for b � 1 − 1

d
,

and

Cd, iso(b) = d(td−1 − (d − 1)td )1/d (35)
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for b > 1 − 1
d

, where

t = 1

d(d − 1)
(
√

(d − 1)b + √
1 − b)2.

The expression in Eq. (35) is strictly concave as a function of
b; thus its convex roof is just the linear function

Ĉd, iso(b) =
{

0, 0 � b � 1 − d
d
,

db − d + 1, 1 − 1
d

� b � 1.
(36)

Hence, the convex roof of the G-concurrence on isotropic
states reduces to Ĉd [ρiso(b)] = Ĉd, iso(b). This agrees with the
result from Ref. [17].

C. Extension to some nonsymmetric states

Here we show how to use the results from the previous
sections to compute convex roof entanglement monotones for
some states that are not necessarily symmetric.

For a subgroup G ⊂ LU of local unitaries and an entangle-
ment monotone E on pure states, recall that we can define the
function

EG(ρ) := min{E(ψ) | TG(|ψ〉〈ψ |) = ρ}
on G-invariant states ρ, where the minimization is taken over
all pure states that twirl to ρ. A pure state |ψ〉 is said to
minimize the entanglement of ρ (with respect to G and E)
if TG(|ψ〉〈ψ |) = ρ and E(ψ) = EG(ρ). We also consider the
orbit of |ψ〉 under the group G, which we denote as

orbG(ψ) = {g|ψ〉〈ψ |g† | g ∈ G}.
Theorem 6. Let G ⊂ LU be a subgroup of local unitaries,

let ρ be a G-invariant state, and let |ψ〉 be a pure state that
minimizes the entanglement of ρ with respect to E as defined
in the preceding paragraph. If ÊG(ρ) = EG(ρ), then

Ê(σ ) = E(ψ) for all σ ∈ co[orbG(ψ)], (37)

where co denotes the convex hull.
Proof. Suppose the conditions of the theorem are satisfied

and let σ ∈ co [orbG(ψ)]. Since G is a subgroup of local
unitaries, it holds that E(g|ψ〉) = E(ψ) for all g ∈ G. It
follows that Ê(σ ) � E(ψ) from the definition of the convex
roof. Furthermore, since TG is an LOCC channel, it holds that
Ê[TG(σ )] � Ê(σ ). Note that ρ = TG(σ ) and Ê(ρ) = ÊG(ρ).
The result follows. �

Theorem 6 allows us to compute the convex hull on
a larger class of nonsymmetric states if we can find G-
invariant states such that ÊG(ρ) = EG(ρ). On the other hand,
if ÊG(ρ) < EG(ρ), we can still compute Ê on a larger class of
nonsymmetric states under certain conditions. See Appendix C
for details.

D. Convex roofs on other symmetries

In Ref. [12], it was shown how to extend the convex
roof formula for the entanglement of formation EF from the
Werner and isotropic states to a larger family of OO-invariant
states. Here, we show that this can in fact be done for any
entanglement monotone. Furthermore, we extend the convex
roof formulas to the phase-permutation invariant states as well.

Let G and H be subgroups of the local unitaries and H ⊂ G.
The commutants of G and H satisfy G ′ ⊂ H′, so the family of
G-invariant states forms a subset of the H-invariant states. If
it is known how to compute the convex roofs of entanglement
monotones on G-invariant states, then we can apply the result
of Theorem 6 to compute convex roofs on some H-invariant
states that are also in the convex hull of the orbit of some
minimizing pure state. That is, we can evaluate the convex
roofs of entanglement monotones on states that are in the
intersection

TH(D) ∩ co[orbG(ψ)]

if |ψ〉 is a minimizing pure state for a G-invariant state, where
orbG(ψ) is the orbit of |ψ〉 is denoted by

orbG(ψ) = {g|ψ〉〈ψ |g−1 | g ∈ G}.
The minimizing pure states for Werner states are always the

states |ψa〉 as defined in Eq. (17). We first show which of the
phase-permutation Werner states ρG

wer(a,b) and OO-invariant
states ρO(a,b) are in the orbits of these minimizing pure states.
These are exactly the states depicted in regions A of Figs. 1
and 2. This allows us to extend the formulas for convex roof
entanglement monotones from the Werner states to this larger
family of states. The proof of the following lemma can be
found in Appendix C.

Lemma 3. Let a ∈ [ 1
2 ,1]. Then

(1) ρwer(a,b) ∈ co[orbwer(ψa)] for all b ∈ [0,1 − a], and
(2) ρO(a,b) ∈ co[orbwer(ψa)] for all b ∈ [0, 2

d
(1 − a)].

That is, all states in region A of Fig. 1 and region A of
Fig. 2 are in the convex hulls of the orbits of the corresponding
minimizing pure states for ρwer(a).

A similar statement can be made for isotropic states.
Here, however, the form of the Schmidt coefficients of the
minimizing pure state |φb〉 =∑d

i=1

√
λi |ii〉 for the isotropic

state ρiso(b) will depend on which entanglement monotone E

is being considered. As above, the convex roof of E can be
evaluated on any state in the convex hull of the orbit of |φb〉.
In the following lemma, we show which phase-permutation
isotropic states and which OO-invariant states are in the
convex hulls of these orbits. For any E, all phase-permutation
isotropic states ρiso(a,b) in region B of Fig. 3 are in the convex
hull of the orbit of the minimizing pure state |φb〉. In most
cases, all OO-invariant states ρO(a,b) in region B of Fig. 1
are also in the convex hull of the orbit of |φb〉. The proof of
the following lemma can be found in Appendix C.

Lemma 4. Let E be an entanglement monotone on pure
states and let b ∈ [ 1

d
,1]. Let |φb〉 =∑d

i=1

√
λi |ii〉 be the pure

state that minimizes E for ρiso(b). Then
(1) ρiso(a,b) ∈ co[orbiso(φb)] for all a ∈ [0,1 − b], and
(2) if λ is of the form in either Eq. (24) or Eq. (29), then

ρO(a,b) ∈ co[orbiso(φb)] for all a ∈ [0, d(1−b)
2(d−1) ].

That is, all states in region B of Fig. 1 and region B of
Fig. 3 are in the convex hulls of the orbits of the corresponding
minimizing pure states for ρiso(b).

For every entanglement monotone considered in this work,
the Schmidt coefficients of the minimizing pure states have
this desired form. This allows us to extend the convex roofs
of these entanglement monotones from the isotropic states to
this larger family of states.
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FIG. 6. Convex roofs of the Vidal monotones Ek (for d = 5 and
k = 1,2,3,4) evaluated on regions A and B of the OO-invariant states.
For the surfaces on the left-hand side, k varies from 1 to 4 from the
upper to the lower level. Only E1 is nonvanishing on the right-hand
side.

If Ewer(a) and Eiso(b) are already convex as functions of
a and b, then Lemmas 3 and 4, together with Theorem 6,
allow us to extend these convex roof formulas to any state in
regions A of Figs. 1 and 2 and regions B of Figs. 1 and 3.
It is noteworthy that the value of the convex roof for any
entanglement monotone for these states depends only on one
of the expectations Tr[ρW−] or Tr[ρ�d ]. As an example, the
convex roofs of the Vidal monotones on the OO-invariant
states with dimension d = 5 are shown in Fig. 6.

If Ewer(a) and Eiso(b) are not convex, e.g., if there is some
value b so that Êiso(b) < Eiso(b), then we may still extend the
formula to all of these states as long as E is continuous.

IV. CONVERSION WITNESSES

It was shown in Ref. [22] that a pure state |ψ〉 ∈ Cd ⊗ Cd

can be converted into an arbitrary mixed state ρ ∈ D(Cd ⊗ Cd )
if and only if there exists a pure state decomposition {pi,|ϕi〉}
of ρ that satisfies

Ek(ψ) �
∑

i

piEk(ϕi)

for all positive integers k, where ρ =∑i pi |ϕi〉〈ϕi |. This
necessary and sufficient condition for LOCC transformation
can be encoded into the following complete witness:

W (ψ,ρ) = max
{pi ,|ϕi 〉}

min
k

(
Ek(ψ) −

∑
i

piEk(ϕi)

)
, (38)

where the maximum is taken over all pure state decompositions
ρ =∑i pi |ϕi〉〈ϕi |. The function W is a complete witness in the
sense that W (ψ,ρ) � 0 if and only if |ψ〉 can be converted into
ρ via LOCC. Although this function cannot be computed for
arbitrary mixed states, it can be simplified for certain classes
of mixed states ρ. In particular, we compute W (ψ,ρ) explicitly
in the case when ρ is a state on C2 ⊗ Cd for any d (i.e., in
the case when at least one subsystem is a qubit). We can also
make extensive use of symmetry to compute W (ψ,ρ) in the
case when ρ is highly symmetric (i.e., Werner or isotropic
states).

The witness in Eq. (38) simplifies to a known necessary
and sufficient condition for converting a pure state |ψ〉 to
a mixed state ρ in the case when ρ is a state of a system

in which one subsystem is a qubit [18]. Indeed, for pure
states |ϕ〉 ∈ C2 ⊗ Cd with any d � 2, it holds that Ek(ϕ) = 0
whenever k � 2 since |ϕ〉 can have at most two nonzero
Schmidt coefficients. If ρ is any mixed state on C2 ⊗ Cd ,
then the minimization over k in Eq. (38) can be eliminated,
since only E1 can be nonzero. In this case, the conversion
witness in Eq. (38) simplifies to W (ψ,ρ) = E1(ψ) − Ê1(ρ).
This implies the following theorem.

Theorem 7. For any bipartite mixed state ρ on C2 ⊗ Cd

and for any bipartite pure state |ψ〉 of systems of any size, it

holds that |ψ〉 LOCC−−−→ ρ if and only if E1(ψ) � Ê1(ρ).
Furthermore, it was shown in Ref. [18] that Ê1 for an

arbitrary mixed state of two qubits simplifies to

Ê1(ρ) = 1 −
√

1 − C(ρ)2

2
,

where C(ρ) is the concurrence [2] of ρ. Hence, a pure state
|ψ〉 can be converted into a mixed state ρ on C2 ⊗ C2 if and
only if C(ψ) � C(ρ).

As the following theorem shows, the value of Ê1 gives
a necessary and sufficient condition for converting any pure
states into Werner states of arbitrary dimension as well.

Theorem 8. For any bipartite pure state |ψ〉 and any a ∈
[ 1

2 ,1], it holds that |ψ〉 LOCC−−−→ ρwer(a) if and only if λ1 � 1
2 +√

a(1 − a), where λ1 is the largest Schmidt coefficient of |ψ〉.
Note that if a ∈ [0, 1

2 ] then ρwer(a) is separable and thus

|ψ〉 LOCC−−−→ ρwer(a) holds trivially. The theorem states the
conditions for conversion in the case when ρwer(a) is entangled.

Proof. Let a ∈ [ 1
2 ,1] and suppose that |ψ〉 LOCC−−−→ ρwer(a).

Then it must be the case that E1(ψ) � Ê1[ρwer(a)] since E1 is
an entanglement monotone. The result follows, since E1(ψ) =
1 − λ1 and Ê1[ρwer(a)] = 1

2 − √
a(1 − a). On the other hand,

if λ1 � 1
2 + √

a(1 − a) then λ ≺ λa , where λ is the vector of
Schmidt coefficients of |ψ〉 and λa is the vector of Schmidt
coefficients of |ψa〉 given in Eq. (17). It follows that |ψ〉 can
be converted into |ψa〉 by LOCC, but |ψa〉 can be converted
into ρwer(a) via LOCC, since Twer(|ψa〉〈ψa|) = ρwer(a) and the
twirling operation Twer is LOCC. This concludes the proof. �

We have shown that the conversion witness in Eq. (38) can
be computed explicitly in the cases when ρ is a Werner state
or any state on a C2 ⊗ Cd system, but it remains unknown if
it can be computed explicitly for any other classes of states.
However, it may still be useful to consider upper and lower
bounds of this quantity, since these would give either necessary
or sufficient conditions for LOCC conversion from |ψ〉 into
ρ. In particular, in the case when ρ = ρiso(b) is an isotropic
state, a lower bound for Eq. (38) can be found. The following
theorem gives a no-go conversion witness for detecting when
pure states cannot be converted into isotropic states.

Theorem 9. Let |ψ〉 be a pure state and b ∈ [ 1
d
,1]. If

|ψ〉 LOCC−−−→ ρiso(b) then Wiso(λ,b) � 0, where

Wiso(λ,b) = max
μ

min
k

(Ek(λ) − Ek(μ)) (39)

and the the maximum is taken over all Schmidt vectors μ that
satisfy

∑
i

√
μi = √

db.
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FIG. 7. An example of the witness in Eq. (39) computed for d = 3
and λ = ( 6

10 , 3
10 , 1

10 ). It appears that W (λ,b) < 0 whenever b > 0.895.

Proof. In the case when ρ = ρiso(b), it is clear that a lower
bound for the witness W in Eq. (38) can be given by

W [ψ,ρiso(b)] � max
|ϕ〉

min
k

(Ek(ψ) − Ek(ϕ)), (40)

where the maximum is taken over all |ϕ〉 ∈ Cd ⊗ Cd such
that 〈ϕ|�d |ϕ〉 = b. The left-hand side of the inequality in
Eq. (40) can be further simplified to the desired expression
in Eq. (39). �

In particular, if Wiso(ψ,b) < 0 then |ψ〉 LOCC−−−→/ ρiso(b).
Although the formula for this witness is now much simpler
than the general one in Eq. (38), it still cannot be computed ana-
lytically for arbitrary Schmidt vectors λ. However, we present
a way to numerically compute these witnesses efficiently in
Appendix D. An example of the witness in Eq. (39) with d = 3
and λ = ( 6

10 , 3
10 , 1

10 ) is shown in Fig. 7. In this case, it appears
that W (λ,b) < 0 whenever b > 0.895. Hence the conversion

|ψ〉 LOCC−−−→ ρiso(b) is not possible when b > 0.895, where |ψ〉
is the pure state with Schmidt coefficients λ.

V. CONCLUSION

We computed the convex roof of entanglement monotones
on certain classes of symmetric states. This generalized the
work of Refs. [12] and [13], where the entanglement of
formation was computed for Werner and isotropic states. In
particular, we computed the convex roof for any entanglement
monotone on Werner states. The convex roof of certain types
of monotones was also computed on isotropic states. We
were able to extend these formulas for the convex roofs to
many nonsymmetric states as well. In particular, for many
states with other types of symmetries (i.e., for OO-invariant
states as well as phase-permutation Werner and isotropic
type states), we were also able to compute the convex roofs of
these monotones.

We also constructed a necessary and sufficient condition
in the form of a conversion witness that determines when
a bipartite pure state can be converted to any Werner state
by LOCC. A similar conversion witness was constructed
for detecting when a pure state can be converted into an
isotropic state, but the condition was only necessary and not
sufficient.

This work sheds light on the structure of bipartite entan-
glement of symmetric states, an area of research that is still
quite active. Recently, work has been done on computing
convex roofs of certain entanglement monotones on larger
classes of symmetric states [31]. Investigations into further
types of symmetries and other entanglement monotones will
prove fruitful in the complete characterization of the LOCC
convertibility of bipartite quantum entanglement.
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APPENDIX A: CONVEX ROOF OF ENTANGLEMENT
MONOTONES FOR WERNER STATES

In this section, we present the proof of Theorem 2, which
follows the ideas for computing the entanglement of formation
for Werner states as presented in Ref. [12].

Proof of Theorem 2. If a ∈ [0, 1
2 ] then E(ψa) = 0 since

|ψa〉 is separable, so the conclusion is trivially true. Suppose
that a ∈ [ 1

2 ,1] and let |ψ〉 be another pure state satisfying
〈ψ |W−|ψ〉 = a. Let λ,λa ∈ Rd denote the Schmidt vectors of
|ψ〉 and |ψa〉, respectively. We show that λ ≺ λa . Since

λa =
(

1

2
+
√

a(1 − a),
1

2
−
√

a(1 − a),0, . . . ,0

)
has only two nonzero elements, it suffices to show that
max(λ) � 1

2 + √
a(1 − a).

Without loss of generality we may suppose that |ψ〉 is of
the form

|ψ〉 = U ⊗ I

d∑
i=1

√
λi |ii〉 (A1)

for some unitary operator U . Then

a = 〈ψ |W−|ψ〉 = 1

2

⎛⎝1 −
d∑

i,j=1

√
λiλj 〈i|U |j 〉〈i|U †|j 〉

⎞⎠
= 1

2

⎛⎝1 −
d∑

i,j=1

√
λiλjUijUji

⎞⎠
= 1

4

d∑
i,j=1

|
√

λiUij −√λjUji |2,

where Uij = 〈i|U |j 〉 are the matrix elements of U . Since
U is unitary, it holds that

∑
j |Uij |2 = 1 for each i and

thus
∑

i,j λi |Uij |2 = 1. For each i,j ∈ {1, . . . ,d}, define the
probabilities

pij = λi |Uij |2 + λj |Uji |2
2
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such that pij � 0 and
∑

i,j pij = 1. Note that pij = pji . For
all i and j such that pij �= 0, define the quantities

zij =
√

λiUij√
λi |Uij |2 + λj |Uji |2

and aij = |zij − zji |2
2

such that |zij |2 + |zji |2 = 1 and aij ∈ [0,1]. Define the
Schmidt vectors

μ(ij ) = |zij |2ei + |zji |2ej ,

where {e1, . . . ,ed} are the standard basis vectors of Rd . It
follows that

d∑
i,j=1

pijaij = a and
d∑

i,j=1

pijμ
(ij ) = λ.

That is, the quantity a and the Schmidt vector λ can be written
as convex combinations of quantities aij ∈ [0,1] and Schmidt
vectors μ(ij ) using the same weights pij . Since |zij |2 + |zji |2 =
1 and ||zij |2 − |zji |2| � |zij

2 − zji
2|, we see that

2 max(μ(ij )) = 2 max{|zij |2,|zji |2}
= |zij |2 + |zji |2 + ||zij |2 − |zji |2|
� 1 + |zij

2 − zji
2|

= 1 + |zij − zji ||zij + zji |. (A2)

Furthermore note that 1 − aij = 1
2 |zij + zji |2, and thus

|zij − zji ||zij + zji | = 2
√

aij (1 − aij ).

From Eq. (A2) it follows that max(μ(ij )) � 1
2 +√aij (1 − aij ).

Since max is a convex function on Rd , it follows that

max(λ) = max

( d∑
i,j=1

pijμ
(ij )

)

�
d∑

i,j=1

pij max(μ(ij ))

�
d∑

i,j=1

pij

(
1

2
+√aij (1 − aij )

)

� 1

2
+
√

a(1 − a), (A3)

where the final inequality in Eq. (A3) follows from the
concavity of the function f (t) = √

t(1 − t). This yields the
desired result that λ ≺ λa .

By Nielsen’s majorization theorem [7], it follows that
E(ψ) � E(ψa). �

APPENDIX B: CONVEX ROOF OF VIDAL MONOTONES
FOR ISOTROPIC STATES

In this section, we present the proof of Lemma 2 and supply
the details for the proof of Theorem 4. The proof of Lemma 2
follows directly from the following lemma.

Lemma 5. Let b ∈ [ 1
d
,1] and let |ψ〉 be a pure state with

Schmidt vector λ satisfying 〈ψ |�d |ψ〉 = b. There exists a

pure state |ψ ′〉 =∑i

√
λ′

i |ii〉 such that

〈ψ ′|�d |ψ ′〉 = 1

d

(
d∑

i=1

√
λ′

i

)2

= b = 〈ψ |�d |ψ〉

and λ′ � λ, where λ′ is the Schmidt vector for |ψ ′〉.
Proof. We may suppose without loss of generality that |ψ〉

is of the same form as Eq. (A1). Thus

b = 〈ψ |�d |ψ〉 = 1

d

∣∣∣∣∣
d∑

i=1

√
λiUii

∣∣∣∣∣
2

� 1

d

(
d∑

i=1

√
λi

)2

, (B1)

where we note that |Uii | � 1 for all i since U is unitary. If∑
i

√
λi = √

db then we may set λ′ = λ and we are done.
Suppose instead that the inequality in Eq. (B1) is strict. Define
a continuous function s : Rd → R,

s(λ) = 1

d

(
d∑

i=1

√
λi

)2

. (B2)

We may suppose that the entries of λ are decreasing. For all
p ∈ [0,1] define the Schmidt vectors

λ′(p) = (1 − p)λ + p(1,0, . . . ,0).

Note that s[λ′(p)] is continuous and strictly decreasing as a
function of p and that

1

d
= s[λ′(1)] < b < s[λ′(0)] = s(λ).

By continuity of s, there exists a p ∈ (0,1) such that s[λ′(p)] =
b. Finally we note that λ′(p) � λ for all p, which concludes
the proof. �

We now supply the proof of Lemma 2. For an entanglement
monotone E, recall that Eiso is defined as

Eiso(b) = min{E(ψ) | 〈ψ |�d |ψ〉 = b}.
Proof of Lemma 2. First consider the case b ∈ [ 1

d
,1]. For

all pure states |ψ〉 satisfying 〈ψ |�d |ψ〉 = b, from Lemma 5 we
can find a pure state |ψ ′〉 with Schmidt coefficients λ′ satisfying
〈ψ ′|�d |ψ ′〉 = s(λ′) = b with λ ≺ λ′. It follows that E(λ′) =
E(ψ ′) � E(ψ). Hence we may restrict the minimization in
Eq. (22) to states of the form |ψ〉 =∑i

√
λi |ii〉. This implies

that the computation of Eiso(b) may be simplified to

Eiso(b) = min

{
E(ψ)

∣∣∣∣∣ |ψ〉 =
d∑

i=1

√
λi |ii〉 and s(λ) = a

}

= min

{
E(λ)

∣∣∣∣∣
d∑

i=1

√
λi =

√
db

}
as desired.

Last we consider the case when b ∈ [0, 1
d

]. Consider the
pure state

|ψ〉 =
√

db |11〉 + √
1 − db |12〉.
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Then 〈ψ |�d |ψ〉 = b, but E(ψ) = 0 since |ψ〉 is separable. It
follows that Eiso(b) = 0. This concludes the proof. �

We now proceed to compute the convex roof of the Vidal
monotones for isotropic states. The following lemma shows
that Ek vanishes on the isotropic states with b ∈ [0, k

d
].

Lemma 6. For any integer 1 � k � d, it holds that
Ek, iso(b) = 0 for all b ∈ [0, k

d
].

Proof. Since Ek is an entanglement monotone on pure
states, the result of Lemma 2 shows that Ek, iso(b) = 0 when-
ever b ∈ [0, 1

d
]. So we may suppose that k � 2 and b ∈ [ 1

d
, k
d

].
Consider the function s defined in Eq. (B2) restricted to the
subset of Schmidt vectors λ that have at most k nonzero entries.
The function s achieves the values 1

d
and k

d
on this restriction,

since

s[(1,0, . . . ,0)] = 1

d
and s

[(
1

k
, . . . ,

1

k
,0, . . . ,0

)]
= k

d
.

The subset of Schmidt vectors in Rd containing at most k

nonzero elements is also connected. By continuity of s, for
any intermediate value b ∈ [ 1

d
, k
d

) there exists a Schmidt vector
λ with at most k nonzero entries satisfying s(λ) = b. Since
Ek(λ) = 0 for all such λ, it follows that Ek, iso(b) = 0 whenever
1
d

� b � k
d

. �
Theorem 10. Let k � 1 be an integer. It holds that

Ek, iso(b)

=
{

0, b ∈ [0, k
d

]
,

1
d

(
√

(1 − b)k − √
b(d − k))2, b ∈ [ k

d
,1
]
.

(B3)

Proof. It was shown in Lemma 6 that Ek, iso(b) = 0 when-
ever b ∈ [0, k

d
], so it remains to compute Ek, iso(b) when b ∈

[ k
d
,1]. Computing Ek, iso(b) may be restated as the following

optimization problem:

maximize: λ1 + · · · + λk,

subject to:
d∑

i=1

λi = 1 and
d∑

i=1

√
λi =

√
db.

It is not difficult to see (by using Lagrange multipliers) that
the optimal λ must be of the form

λ =

⎛⎜⎜⎝t, . . . ,t︸ ︷︷ ︸
k

,
1 − kt

d − k
, . . . ,

1 − kt

d − k︸ ︷︷ ︸
d−k

⎞⎟⎟⎠ (B4)

for some t ∈ [ 1
d
, 1
k
]. For λ of this form, we see that

d∑
i=1

√
λi = k

√
t + (d − k)

√
1 − kt

d − k

= k
√

(1 − t) +
√

(d − k)(1 − kt).

For b ∈ [ k
d
,1], the largest positive value of t that satisfies

k
√

(1 − t) + √
(d − k)(1 − kt) = √

db is given by

t = 1

k
− 1

kd
(
√

(1 − b)k −
√

b(d − k))2. (B5)

For λ as given in Eq. (B4) with t as in Eq. (B5), it follows that

Ek, iso(λ) = 1 − (λ1 + · · · + λk)

= 1 − kt

= 1

d
(
√

(1 − b)k −
√

b(d − k))2,

as desired. �

APPENDIX C: CONVEX ROOFS ON FURTHER
SYMMETRIC STATES

1. Proof of Lemma 3

Proof of Lemma 3, Part (1). By convexity, it suffices to
check only the states on the boundary. That is, we check
ρG

wer(a,b) with b = 0 and b = 1 − a. In both cases, we find
a pure state |ψ〉 ∈ orbwer(ψa) such that T G

wer(ψ) = ρG
wer(a,b).

Note that 〈ψa|Q|ψa〉 = 0. Thus T G
wer(ψa) = ρG

wer(a,0) and
thus ρG

wer(a,0) ∈ co[orbwer(ψa)]. For ρG
wer(a,1 − a), consider

the unitary block matrix

U =

⎛⎜⎜⎝
1√
2

1√
2

i√
2

−i√
2

1

⎞⎟⎟⎠ (C1)

that acts nontrivially only on the span of {|1〉,|2〉}. Then

U ⊗ U |ψa〉 =
√

1 − a

2
(|11〉 + |22〉) − i

√
a

2
(|12〉 − |21〉).

It holds that 〈ψa|U † ⊗ U †QU ⊗ U |ψa〉 = 1 − a and
thus T G

wer(U ⊗ Uψa) = ρG
wer(a,1 − a), which completes the

proof. �
Proof of Lemma 3, Part (2). By convexity, it suffices to

check only the states on the boundary, i.e., ρG
wer(a,b) with

b = 0 and b = 2(1−a)
d

. In both cases, we find a pure state
|ψ〉 ∈ orbwer(ψa) such that TO(ψ) = ρG

O (a,b). Note that
〈ψa|�d |ψa〉 = 0. Thus T G

O (ψa) = ρO(a,0). With the same U

as in Eq. (C1), it holds that 〈ψa|U † ⊗ U †�dU ⊗ U |ψa〉 =
2(1−a)

d
. This implies that TO(U ⊗ Uψa) = ρG

wer(a, 2(1−a)
d

)
which completes the proof. �

2. Proof of Lemma 4

Recall that, for any entanglement monotone E and any
b ∈ [ 1

d
,1], the pure state that minimizes Eq. (23) will be of the

form

|φb〉 =
d∑

i=1

√
λi |ii〉, (C2)

where the Schmidt coefficients satisfy
∑d

i=1

√
λ = √

db.
Proof of Lemma 4, Part (1). As above, it suffices to check

only the states on the boundary. That is, we check ρG
iso(a,b)

with a = 0 and a = 1 − b. In both cases, we find a pure
state |ψ〉 ∈ orbiso(φb) such that T G

iso(ψ) = ρG
iso(a,b). Note that

〈φb|Q|φb〉 = 1 and thus

〈φb|(Q − �d )|φb〉 = 1 − b.
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Hence T G
iso(φ) = ρG

iso(1 − b,b) and thus ρG
iso(1 − b,b) ∈

co[orbiso(φb)]. For ρG
iso(0,b), we use the discrete Fourier

transform unitary matrix

U = 1√
d

d∑
j,k=1

ωjk|j 〉〈k|,

where ω = e
2iπ
d is the dth root of unity. It holds that

〈φb|U ⊗ UQU † ⊗ U †|φb〉

= 1

d2

d∑
k=1

⎛⎝ d∑
j=1

√
λj |ωjk|2

⎞⎠2

= 1

d

⎛⎝ d∑
j=1

√
λj

⎞⎠2

= b.

Thus 〈φb|U ⊗ U (Q − �d )U † ⊗ U †|φb〉 = 0. This implies
that T G

iso(U ⊗ U |φb〉) = ρG
iso(0,b), which completes the

proof. �
Proof of Lemma 4, Part (2). It suffices to check only the

states on the boundary. That is, we check ρG
O (a,b) with a = 0

and a = d(1−b)
2(d−1) . Note that 〈φb|W−|φb〉 = 0 and thus TO(φb) =

ρO(0,b). Hence ρO(0,b) ∈ co[orbiso(φb)]. For ρO( d(1−b)
2(d−1) ,b), it

suffices to find a unitary U such that

〈φb|(U ⊗ U )†W−(U ⊗ U )|φb〉 � d(1 − b)

2(d − 1)
.

We split the proof into two parts. First suppose that λ is of the
form

λ =
(

t, . . . ,t,
1 − kt

d − k
, . . . ,

1 − kt

d − k

)
with |φb〉 =∑d

i=1

√
λi |ii〉 and(

d∑
i=1

√
λi

)2

= (k
√

t +
√

(d − k)(1 − kt))2 = db.

For distinct indices j,k ∈ {1,2, . . . ,d} with j < k, define the
unitary matrices

Uj,k =
∑
l �=j,k

|l〉〈l| + 1√
2

(|j 〉〈j | + |j 〉〈k| + i|k〉〈j | − i|k〉〈k|)

that act nontrivially only on the subspace spanned by {|j 〉,|k〉}
and trivially elsewhere. Note that U in Eq. (C1) is U1,2 in this
notation. Furthermore note that

〈φb|(Uj,k ⊗ Uj,k)†W−(Uj,k ⊗ Uj,k)|φb〉 = (
√

λj − √
λk)2

2
.

Let U = (U1,d )(U2,d−1) · · · (Um,d+1−m), where m =
min{k,d − k}. Then

〈φb|(U ⊗ U )†W−(U ⊗ U )|φb〉

= (
√

λ1 − √
λd )2

2
+ · · · + (

√
λm − √

λd−m+1)2

2

= m

2(d − k)
(
√

(d − k)t − √
1 − kt)2

= m

2(d − k)

(
d(1 − b)

k

)
= d(1 − b)

2

min{k,d − k}
k(d − k)

� d(1 − b)

2

1

d − 1
,

with equality if and only if k = d − 1 or k = 1 (or b = 1).
The result follows.
The proof of the other case is analogous. In this case, suppose
that λ is of the form

λ = (t, . . . ,t,1 − kt,0, . . . ,0),

with (
∑d

i=1

√
λi)2 = (k

√
t + √

1 − kt)2 = db. Using the uni-
tary U = (U1,d )(U2,d−1) · · · (U� d

2 �,d−� d
2 �+1), it is not difficult to

show that

〈φb|(U ⊗ U )†W−(U ⊗ U )|φb〉 � d(1 − b)

2(d − 1)

with equality if and only if k = d − 1 (or b = 1). �

APPENDIX D: PURE TO ISOTROPIC
CONVERSION WITNESS

For a fixed Schmidt vector λ we define

fk(μ) = Ek(λ) − Ek(μ),

and write this as fk(μ) = μ1 + · · · + μk − (λ1 + · · · + λk).
The goal is to compute

Wiso(λ,μ) = max
μ

min
k

fk(μ).

We can split this into d − 1 separate optimization problems
as follows. For each k ∈ {1, . . . ,d − 1}, we maximize fk(μ)
over all μ for which k yields the minimum. That is, maximize
over all μ for which fk(μ) � f�(μ) for all � ∈ {1, . . . ,d − 1}.
Minimizing this over all k yields the desired result

Wiso(λ,μ) = min
k

[
max

μ
{fk(μ)|fk(μ) � f�(μ) for all �}],

where the maximizations are taken over all Schmidt vectors
satisfying

∑d
i=1

√
μi = √

db.
For each k, these suboptimization problems can be rewritten

as follows:

maximize:
k∑

i=1

μi,

subject to:
d∑

i=1

μi =1,

d∑
i=1

√
μi =

√
db,

�∑
i=2

μi �
�∑

i=2

λi for all � ∈ {1, . . . ,k − 1},

�+1∑
i=k+1

λi �
�+1∑

i=k+1

μi for all � ∈ {k + 1, . . . ,d − 1}.

There are d constraints for these d-dimensional optimization
problems, so we may use the method of Lagrange multipliers
to find optimal solutions.
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