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Constraints on scattering amplitudes in multistate Landau-Zener theory

Nikolai A. Sinitsyn,1 Jeffmin Lin,2 and Vladimir Y. Chernyak3

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Department of Mathematics, University of California, Berkeley, California 94720-3840, USA

3Department of Chemistry and Department of Mathematics, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, USA
(Received 20 September 2016; published 30 January 2017)

We derive a set of constraints, which we will call hierarchy constraints, on scattering amplitudes of an arbitrary
multistate Landau-Zener model (MLZM). The presence of additional symmetries can transform such constraints
into nontrivial relations between elements of the transition probability matrix. This observation can be used to
derive complete solutions of some MLZMs or, for models that cannot be solved completely, to reduce the number
of independent elements of the transition probability matrix.
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I. INTRODUCTION

Control over quantum matter can be achieved by applying
time-dependent fields, whose effects are described by the
nonstationary Schrödinger equation. This equation is often
hard to explore even numerically because of a lack of
conservation laws, strongly oscillatory behavior, and typically
large size of a phase space (e.g., for 280 spins- 1

2 , the size
of the state vector exceeds the estimated number of atoms in
the observable Universe). Within a multistate Landau-Zener
model (MLZM), it is possible to study quantum dynamics in
time-dependent fields without approximations. In this model,
evolution is described by a Hamiltonian with parameters that
change linearly with time [1]:

i
d�

dt
= Ĥ (t)�, Ĥ (t) = Â + B̂t. (1)

Here, � is the state vector in a space of N states; Â and
B̂ are constant Hermitian N × N matrices. One can always
choose the so-called diabatic basis in which the matrix B̂ is
diagonal, and if any pair of its elements are degenerate, then
the corresponding off-diagonal element of the matrix Â can be
set to zero by a time-independent change of the basis, that is,

Bij = δijβi, Anm = 0 if βn = βm, n �= m ∈ (1, . . . ,N).
(2)

This can be achieved by diagonalizing the matrix B̂, followed
by (in the case of degeneracy) diagonalizing the projections
of the matrix Â onto the spaces of eigenvectors of B̂ that
correspond to degenerate eigenvalues of the latter. Constant
parameters βi are called the slopes of diabatic levels. Nonzero
off-diagonal elements of the matrix Â in the diabatic basis
are called the coupling constants. We will denote them by
gij ≡ Aij . Diagonal elements of the Hamiltonian

Hii = βit + εi, εi ≡ Aii, (3)

are called the diabatic energies. Unless specially stated, we
will order indexes according to the sizes of corresponding
state energies at t → −∞, so that for i > j we have βi > βj ,
or if βi = βj then εi < εj .

The goal of the multistate Landau-Zener theory is to find
the scattering N × N matrix Ŝ, whose element Snn′ is the am-
plitude of the diabatic state |n〉e−iϕn(t) at t → +∞, given that
at t → −∞ the system was in the diabatic state |n′〉e−iϕn′ (t),
where ϕk(t) is the time-dependent adiabatic phase of the state

|k〉 at t → ±∞, as explained in detail in Appendix A. In many
applications, only the matrix P̂ , with elements Pnn′ ≡ Pn′→n ≡
|Snn′ |2 called transition probabilities, is needed.

Applications of MLZM in mesocopic, atomic, and molec-
ular physics are ubiquitous [2–6]. The origin of this model
can be traced to the work of Majorana [7] who generalized
any solution for a spin- 1

2 in a time-dependent field, using the
two-state Landau-Zener-Majorana-Stückelberg model [7–9]
as an example, to arbitrary spin values.

A general analytical solution of MLZM is unknown,
but there are many choices of parameters in Eq. (1) for
which scattering matrices have been found [10–18]. Recently,
considerable progress in deriving nontrivial solvable MLZMs
has been achieved due to the discovery that if a model
satisfies specific integrability conditions, its exact analytical
solution can be obtained by application of a semiclassical
ansatz that corresponds to applying the solution for two levels
at all pairwise diabatic level crossings [16–18]. Currently,
integrability conditions and the way to determine transition
probabilities are conjectures, which are not explained but
which are well supported by all known analytically solved
models and extensive numerical checks.

In our article, we derive a result that explains at least some
of the puzzling properties of MLZM. We will argue that, in any
model of the form (1), scattering matrix elements satisfy a set
of constraints with hierarchical structure, i.e., the lower-level
constraints can be used to reduce the number of variables that
are connected at higher levels. We will refer to such constraints
with the abbreviation “HC” meaning the hierarchy constraint.

Going ahead, we formulate the central result. The Mth level
of the hierarchy (M < N ) is the expression for the M × M

minor that stays at the upper left corner of the scattering matrix.
For example, the first three HCs read as

S11 = e
−π

N∑
k=2

|gk1|2/|β1−βk |
, (4)

Det

(
S11 S12

S21 S22

)
= e

−π
N∑

k=3
( |gk1 |2

|β1−βk | +
|gk2 |2

|β2−βk | )
, (5)

Det

⎛
⎝S11 S12 S13

S21 S22 S23

S31 S32 S33

⎞
⎠ = e

−
N∑

k=4
( π |gk1 |2

|β1−βk | +
π |gk2 |2
|β2−βk | +

π |gk3 |2
|β2−βk | )

. (6)
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There is a second hierarchy that starts with the right lower
corner of the scattering matrix. The first two such HCs read as

SNN = e
−π

N−1∑
k=1

|gkN |2/|βN−βk |
, (7)

Det

(
SN−1,N−1 SN−1,N

SN,N−1 SNN

)
= e

−
N−2∑
k=1

( π |gkN |2
βN −βk

+ π |gk,N−1 |2
βN−1−βk

)
. (8)

More generally, HCs are given by

Det

⎛
⎜⎜⎝

S11 S12 . . . S1M

S21 S22 . . . S2M

... . . .
. . .

...
SM1 . . . . . . SMM

⎞
⎟⎟⎠ = e

−π
N∑

k=M+1

M∑
r=1

|gkr |2
|βr −βk |

,

M = 1, . . . ,N − 1 (9)

Det

⎛
⎜⎜⎝

SN−M+1,N−M+1 SN−M+1,N−M+2 . . . SN−M+1,N

SN−M+2,N−M+1 SN−M+2,N−M+2 . . . SN−M+2,N

... . . .
. . .

...
SN,N−M+1 . . . . . . SNN

⎞
⎟⎟⎠

= e
−π

N−M∑
k=1

N∑
r=N−M+1

|gkk |2
|βr −βk |

,

M = 1, . . . ,N − 1. (10)

The reader familiar with the prior literature on MLZM can
recognize that the first-level constraints (4) and (7) correspond
to the known result called the Brundobler-Elser formula that
provides the amplitude to remain on a level with an extremal
slope. The fact that this formula is only one of a bigger
set of exact constraints is our main observation, which has
consequences that we will discuss.

The structure of our article is as follows. In Sec. II, we
derive HCs (9) and (10). In Sec. III, we review some of
the basic information about MLZM. In Sec. IV, we discuss
simple applications that lead to relations between transition
probabilities in chain models. In Sec. V, we show how HCs
imply no-go constraints in MLZM [19] and argue that the
solution of the Demkov-Osherov model can be derived using
only HCs and the unitarity of evolution. In Sec. VI, we prove
the validity of the previously conjectured solution of a model
with four interacting states. In Sec. VII, we derive the solution
of the four-state generalized bowtie model using HCs and
compare this solution to the result of the application of HCs to
a very similar but not fully integrable model. We then discuss
our findings in the Conclusion, where we also outline open
questions.

II. DERIVATION OF HIERARCHY CONSTRAINTS

The derivation of Eqs. (9) and (10) is based on the fact
that first-level HCs (4) and (7) are already rigorously proved
[20] (see also [19,21] for an earlier, more intuitive proof and
[22,23] for mathematical studies of the Stokes phenomenon in
MLZM). Another ingredient is the observation made in [15]
that each model of the type (1) can be used to generate a
bigger model of the form (1), with the scattering matrix of
the bigger model being fully constructed from the scattering
matrix of the original model. We formalize this property in

Appendix B. For this article, we will only need that with the
original matrix Hamiltonian Ĥ we can associate the secondary
quantized Hamiltonian Ĥ ′:

Ĥ ′ =
N∑

i,j=1

ĉ
†
i Hij ĉj , (11)

where ĉi and ĉ
†
i are, respectively, annihilation and creation

operators of spinless fermions. Note that there are N such
operators, i.e., one per diabatic level of the original model.
So, one can think about the Hamiltonian (11) as describing
hopping of noninteracting fermions among N sites.

The Hamiltonian (11) conserves the number of fermions.
For example, if there is only one fermion in the model,
the matrix form of the Hamiltonian Ĥ ′ coincides with Ĥ .
However, if we populate this system with M > 1 fermions,
then the matrix form of Ĥ ′ would correspond to evolution
of N !/[M!(N − M)!] quantum states. Reference [15] showed
that such a Hamiltonian acting in the space of M fermions has
the form (1). If an arbitrary operator X̂ is time independent
in the Schrödinger picture, then in the Heisenberg picture this
operator changes with time according to

dX̂

dt
= −i[X̂,Ĥ ′]. (12)

So, in the Heisenberg picture, the Hamiltonian (11) leads to
the equation

i
d

dt
ĉi =

∑
j

Hij (t)ĉj , i,j = 1, . . . ,N (13)

which coincides with the Schrödinger equation for state
amplitudes in the single-particle sector of the model. Since
the evolution equation (13) is linear, we can write the solution
for operator evolution from t → −∞ to t → +∞ in terms of
the scattering matrix elements of the single-particle sector:

ĉi(+∞) =
∑

j

Sij ĉj (−∞). (14)

For a sector with M fermions, let indexes γ1 < γ2 <

· · · < γM correspond to levels that are initially (at t → −∞)
populated with fermions, and let α1 < α2 < · · · < αM be
indexes of the levels populated with fermions at t → +∞.
Corresponding states are constructed as

|γ1, . . . ,γM〉 ≡ ĉ†γ1
(−∞) . . . ĉ†γM

(−∞)|0〉, (15)

|α1, . . . ,αM〉 ≡ ĉ†α1
(+∞) . . . ĉ†αM

(+∞)|0〉. (16)

Transition amplitudes between such states are given by

S ′
α1...αM,γ1...γM

= 〈α1, . . . ,αM |γ1, . . . ,γM〉 = Det(Q̂), (17)

where

Q̂ =

⎛
⎜⎜⎜⎜⎝

Sα1γ1 Sα1γ2 . . . Sα1γM

Sα2γ1 Sα2γ2 . . .
...

...
...

. . .
...

SαMγ1 . . . . . . SαMγM

⎞
⎟⎟⎟⎟⎠. (18)

In Appendix C, we provide an illustrative example of
how one solvable model can produce another model whose
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solution can be obtained using Eq. (17). For this section,
however, we do not assume that the single-particle sector of
the model is exactly solvable. Instead, we note that first-level
HCs [Eqs. (4) and (7)] can be equally applied to the sector
with M fermions. In such a model, the lowest slope diabatic
level corresponds to the state in which all fermions occupy
the M first lowest slope levels of the original N -state system,
i.e., γk = k, k = 1, . . . ,M . This state is coupled directly to
and only to states with one of the indexes γk replaced by
some r , such that N � r > M . Corresponding couplings are
equal to ±grk , where (±) sign depends on rearrangement of
fermion indexes according to ordering of creation operators
in the definition of multifermion states in (15) and (16).
Corresponding differences of level slopes are equal, in absolute
value, to |βk − βr |.

The survival amplitude for such an extremal state is given
by Eq. (17) with γk = αk = k, k = 1, . . . ,M , which coincides
with the left-hand side of Eq. (9). On the other hand, according
to Eq. (4), this survival amplitude is given by the exponential
of the sum over terms corresponding to directly coupled states
to the extremal one, which is written on the right-hand side of
Eq. (9). Note that since such an amplitude depends only on the
absolute value of the couplings, inevitable different signs, ±,
near couplings of the multifermion sector do not produce any
effect on the survival amplitude. Combining two expressions
for this amplitude, we arrive at the desired Eq. (9). The second
hierarchy (10) is proved analogously by assuming that all M

fermions initially occupy M levels with the highest rather than
lowest slopes.

The above derivation of Eqs. (9) and (10) was achieved by
application of the fist-level HCs (4) and (7) to the M-fermion
Hamiltonian. One may wonder whether more complex cases
of Eqs. (9) and (10) can give rise to even more complex HCs
after such constraints are applied to multiparticle sectors. Our
test in Appendix D shows, however, that such HCs are likely
not independent.

Despite the abundance of HCs, there is the question of how
much they reveal about transition probabilities. Numerical
simulations of MLZM have shown that scattering matrices
generally depend on parameters εi , defined in (3), and on the
phases of coupling constants. In contrast, HCs do not depend
explicitly on εi and depend on couplings and level slopes only
via combinations |gij |2/|βi − βj |. Moreover, unlike Eqs. (4)
and (7), higher-order HCs depend on phases of scattering
matrix elements nontrivially. We will show that, nevertheless,
HCs can become sufficient to solve a model if this model has
additional symmetries.

III. PRELIMINARY INFORMATION

Before we proceed with applications, here we review some
of the known properties of MLZM. We will then often use this
section for references.

A. Diabatic level diagram

It is convenient to illustrate the parameters of any multistate
Landau-Zener model on a graph with time-energy axes, as
shown in Fig. 1. Lines of the graph show the time dependence
of diabatic levels (diagonal elements of the Hamiltonian).

FIG. 1. Typical diagram of diabatic levels of a multistate Landau-
Zener model. Here, levels 1 and 2 have equal extremal (lowest) slope,
and ε1 > ε2.

Small black filled circles mark the intersections of levels with
nonzero pairwise couplings. Integers on the left side of diabatic
levels mark level indexes. On the right, levels are marked by
analytic expressions for diabatic energies. It is easy to read
off the Hamiltonian of the model from such a picture. For
example, we have for Fig. 1

Ĥ =

⎛
⎜⎜⎜⎝

−b1t + ε1 0 0 g14

0 −b1t + ε2 g23 g24

0 g∗
23 b3t g34

g∗
14 g∗

24 g∗
34 β4t

⎞
⎟⎟⎟⎠, ε1 > ε2.

(19)

Direct couplings of parallel levels, such as levels 1 and 2
in Fig. 1, are always considered zero, and if the intersection
of two levels is not specially marked, then the corresponding
coupling is also assumed to be zero, e.g., the coupling between
levels 1 and 3 in Fig. 1.

B. Demkov-Osherov (DO) and bowtie models

Two models of the type (1) have been known to be
completely solvable for quite some time. One is the Demkov-
Osherov (DO) model [10] and another is the bowtie model
[12,13]. Their parameters are illustrated in Fig. 2.

The DO model describes the case when a single diabatic
level crosses a band of parallel levels [Fig. 2(a)]. The bowtie
model describes the case when some N − 2 levels intersect
at one point and do not interact with each other directly
[Fig. 2(b)]. Instead, each of them interacts with two parallel
levels that are equally distanced from the multilevel crossing
point. For any level of the first set, the coupling to each of the
parallel levels is the same.

Originally, solutions of these models were found using
methods from complex analysis, which could not be applied
to any other system of the type (1). Interestingly, it was
observed that, despite the complexity of derivation, transition
probabilities in both models are provided by a simple semiclas-
sical ansatz [12,16]. For real-valued couplings, the transition
probabilities are generated as follows:

(1) One should first identify all possible trajectories on a
graph in Fig. 2(a) or Fig. 2(b) that respect causality and connect
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FIG. 2. Diabatic level diagrams of (a) Demkov-Osherov (DO)
and (b) bowtie models. Numbering of levels in DO model starts with
zero.

one initial state and one final state of interest. If there are no
such trajectories, the corresponding transition probability is
zero.

(2) The amplitude of each trajectory is given by a product
of simple Landau-Zener passing or turning amplitudes
that are encountered along the trajectory: if the diabatic
level of a trajectory does not change at the crossing point
with coupling gi and crossing level slopes βi and βj ,
then the trajectory amplitude gains the factor

√
pi , where

pi = exp(−2π |gi |2/|βi − βj |). If the trajectory turns at such
a crossing point, then it gains an amplitude ±i

√
1 − pi , where

the sign (±) is the same as the sign of the coupling constant gi .
(3) The final transition probability is obtained by summing

the amplitudes of all trajectories that connect the initial state
to the final state, and then taking the square of the absolute
value of the result.

Within these models, this ansatz can also be used to
reconstruct the scattering matrix up to a dynamic phase that
is always the same for different interfering trajectories, so that
this phase does not influence final transition probabilities, as
is discussed in detail in [12]. We also note that, according
to the semiclassical ansatz, solutions of the DO and bowtie
models depend only on combinations of parameters of the
form |gi |2/|βi − βj |, just as in the HCs (9) and (10).

C. Unitarity conditions

The scattering matrix is unitary:

ŜŜ† = Ŝ†Ŝ = 1̂N . (20)

Taking [Ŝ†Ŝ]nn = [ŜŜ†]nn = 1 and using the definition Pij ≡
|Sij |2, we find that the unitarity of evolution imposes con-
straints on transition probabilities:

N∑
k=1

Pkr =
N∑

k=1

Prk = 1, r = 1, . . . ,N (21)

i.e., the matrix P̂ is doubly stochastic. It is easy to verify that
one of the equations in (21) is dependent on the others. For

example, an arbitrary model with four states has in general
seven independent constraints of the form (21), and hence
9 out of 16 elements of the matrix P̂ can be independent.
Additional symmetries of a model may reduce the number of
independent transition probabilities further, as we will show
in the following sections.

IV. LANDAU-ZENER CHAIN MODELS

In Landau-Zener chains, all diabatic levels intersect at one
point and only pairs of states with adjacent indexes interact
with each other directly. One can show that a simple gauge
transformation can make all couplings in a chain real [24],
which we will assume done. So, the Schödinger equation for
diabatic state amplitudes reads as

iȧn = bntan + gnan+1 + gn−1an−1, n = 1, . . . ,N (22)

where it is also assumed that g0 = gN = 0 to keep dynamics
within only N states.

A. Constraints on probabilities in arbitrary chain

Equation (22) does not change if we replace t → −t and
then change sign of all even indexed amplitudes: a2k →
−a2k . Such discrete symmetries lead to a symmetry of the
scattering matrix. The equation that is obtained by replacement
t → −t is equivalent to evolution backwards in time, so
its scattering matrix is the complex-conjugate transpose of
the one for the original model [25]. Similarly, a change of
sign for some amplitude an leads to a change of sign of
corresponding scattering matrix elements that contain the
index n, Smn and Snm, with m �= n. Since Eq. (22) is invariant
in the simultaneous application of these two operations, the
scattering matrix should be invariant too. This means that the
scattering matrix elements of the chain model satisfy additional
constraints [25]:

Sij = (−1)i+j S∗
ji , i,j = 1, . . . ,N. (23)

Equation (23) means that diagonal elements of the scattering
matrix are purely real and that the transition probability
matrix is symmetric: Pij = Pji . Substituting (23) into (5) and
recalling that couplings for chain models are only between
levels with adjacent indexes, we find

S11S22 + P12 = e
− πg2

2
|b2−b3 | . (24)

Using (4) we then obtain

P22 ≡ |S22|2 = (
e
− πg2

2
|b2−b3 | − P12

)2
e

2πg2
1

|b1−b2 | . (25)

Although Eq. (25) does not fix any of the probabilities
separately, it is a nontrivial constraint that relates probabilities
P22 and P12. We checked that Eq. (25) holds true for two
exactly solvable semi-infinite chain models that were studied
in [24] and for the four-state chain model that was solved in
[18].
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FIG. 3. Diabatic level diagram of a three-state chain model.

B. Complete solution of three-state chain model

One of the earliest known solvable models of the type (1)
is the three-state chain model. Its Hamiltonian is

Ĥ =
⎛
⎝b1t g1 0

g1 b2t g2

0 g2 b3t

⎞
⎠. (26)

It is also illustrated in Fig. 3. The original solution of this
model in [11] was very complex. Here, we suggest a different
approach.

First, the symmetry Pij = Pji that follows from (23)
reduces the number of independent elements of P̂ from nine
to six. We also recall that this matrix is doubly stochastic.
Generally, there are four independent constraints of the type
(21) for N = 3, but only three of them are independent for a
symmetric matrix. We can use

P13 + P23 + P33 = 1,

P11 + P12 + P13 = 1,

P12 + P22 + P32 = 1. (27)

This reduces the number of unknown elements to three. We
then have two HCs (4) and (7):

P11 = e
− 2πg2

1
|b1−b2 | , P33 = e

− 2πg2
2

|b3−b2 | . (28)

Finally, we use constraint (25), which is specific for chain
models. Altogether, we have six equations in (25), (27),
and (28) for six unknowns: P11, P22, P33, P12, P23, and P13.
Solving them, we reproduce the solution in [11], e.g.,

P22 = (
1 − e

− πg2
1

|b1−b2 | − e
− πg2

2
|b3−b2 |

)2
, (29)

P12 = (
1 − e

− πg2
1

|b1−b2 |
)(

e
− πg2

1
|b1−b2 | + e

− πg2
2

|b3−b2 |
)
, (30)

etc. Such an algebraic solution is considerably simpler than
the solution based on complex analysis of this model in [11].

V. BAND MODELS

Here, we will explore the application of HCs to the subclass
of models of the type (1), in which some of the levels have
the same slope. We have already shown an example of such a

model in Fig. 1, in which levels 1 and 2 have the same (lowest)
slope.

A. No-go rule and extension of Brundobler-Elser formula

Brundobler and Elser, who noticed Eqs. (4) and (7) in
numerical simulations [1], conjectured these formulas only
for absolute values |S11| and |SNN |. The first proofs of these
formulas in [19,21] showed, however, that S11 and SNN are
purely real, so one can drop modulus brackets. Reference
[19] went further and pointed that there are nonrigorous
arguments showing that there are two types of extensions of
the Brundobler-Elser formula in the case when instead of one
level with an extremal slope there is a band of several levels
having the same extremal slope but different parameters εi that
we defined in (3).

Assume that the band of parallel levels has the lowest slope.
First, Ref. [19] suggested that the constraint (4) is applicable
to each of the parallel levels:

Srr = e−π
∑N

k=n+1 |gkr |2/|βk−βn|, r = 1, . . . ,n (31)

where n is the number of levels in the band with extremal
slope. Here, we recall that parallel levels are assumed not to
be directly coupled to each other.

The second suggestion in Ref. [19] was the following no-go
rule: for the band with the lowest slope, transitions from level
k to level r of the same band (i.e., 1 � k,r � n) have zero
amplitude if εk > εr , i.e.,

Srk = 0, εk > εr . (32)

There is analogous rule in the case when band levels have the
highest slope. Then, for levels with εk > εr we have Skr = 0.

The method suggested in [19,21] could not be extended
rigorously beyond Eq. (4) for the element S11. Eventually, an
alternative approach was developed in [20] that proved both
the no-go rule and Eq. (31). This approach is quite complex. It
is based on tedious analysis of perturbation series in powers of
coupling constants. Thus, finding a simpler proof of the no-go
rule and Eq. (31) is still desirable. Here, we will argue that the
no-go rule and Eq. (31) are consequences of HCs (9).

We will illustrate our arguments using the example of
the four-state Hamiltonian Ĥ in Eq. (19) and Fig. 1. This
Hamiltonian has two parallel levels with the lowest slope. By
our assumptions, Eq. (4) can be applied to level 1:

S11 = e−π |g14|2/(b4−b1). (33)

Let us substitute t → −t in the Schrödinger equation (1) with
this Hamiltonian. The resulting equation can still be written in
the form (1) but with a new Hamiltonian:

Ĥ τ =

⎛
⎜⎝

−b1t − ε1 0 0 −g14

0 −b1t − ε2 −g23 −g24

0 −g∗
23 b3t −g34

−g∗
14 −g∗

24 −g∗
34 β4t

⎞
⎟⎠,

ε1 > ε2 (34)

for which the level diagram is shown in Fig. 4. Note that
the time-reversal operation is equivalent to change of sign of
all couplings and parameters εi . Since the Hamiltonian (34)
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FIG. 4. Diabatic levels of the Hamiltonian (34) for time-reversed
evolution of the model in Fig. 1.

describes time-reversed evolution with the original Hamilto-
nian (19), their scattering matrices are related by the conjugate
transpose: Ŝτ = Ŝ†. This means, in particular, that

Sτ
22 = S∗

22. (35)

The next observation is that although matrices (19) and (34)
are related, their corresponding level diagrams in Figs. 1 and 4
have different geometries: In Fig. 4, level 2 has higher diabatic
energy than level 1. Therefore, according to our assumptions,
Eq. (4) can be applied to level 2 in Fig. 4:

Sτ
22 = e−π[|g23|2/(b3−b2)+|g24|2/(b4−b2)]. (36)

Substituting this into (35) we find

S22 = e−π[|g23|2/(b3−b2)+|g24|2/(b4−b2)], (37)

which proves that Eq. (31) works for both parallel levels in
this model.

Let us turn to the no-go rule. For model (19) it says that

S21 = 0. (38)

Let us apply the second-level HC to this model:

S11S22 − S21S12 = e
−π( |g14 |2

b4−b1
+ |g23 |2

b3−b2
+ |g24 |2

b4−b2
)
. (39)

Substituting (37) into (39) we find

S21S12 = 0. (40)

This equation can be satisfied either when S21 = 0 or when
S12 = 0. Both perturbative and semiclassical calculations
would show that S12 �= 0 so the only possibility for corre-
sponding parameter ranges is (38). Since S21 is expected to be
an analytical function of some combination of parameters, its
zero value in a finite interval of parameters means the general
validity of (38).

The above proof of (31) and (38) is elementary and
extendable to any model (1) with only two levels in the
extremal band. Unfortunately, similar analysis for higher
number n has to include an additional nontrivial step that
we cannot pursue here in detail: it is expected that transition
probabilities are continuous functions of the level slopes
if diabatic energies remain nondegenerate except for a few
discrete time moments. This should follow from the fact

that the time interval with essential nonadiabatic transitions
is finite, as one can conclude from analysis of nonadiabatic
transitions at large negative and positive time. Therefore, a
small variation of level slopes in the Hamiltonian leads to small
variations of the corresponding transition probabilities. If we
accept this intuitively obvious but mathematically nontrivial
property of scattering amplitudes as true, we can assume that
all but two of the band levels with indexes r and s (s > r) have
slightly lower slopes than other levels of the band, and then
end up with (31) for levels r and s and to Ssr = 0. We can
then extend this argument to all other pairs of band indexes
and thus complete the proof for arbitrary n.

B. Next-to-lowest slope band

As another application of HCs, consider now that there
is only one level with the lowest slope and then there are n

parallel levels whose slope is the next to the lowest. All other
levels are arbitrary except that their slopes are even higher. We
are going to derive relations between some combinations of
transition probabilities in such models.

Let us “populate” such a model with two noninteracting
fermions by a process described in Sec. II. Then, the first n

levels in the two-fermion model will have the same (lowest)
slope, and we can apply the no-go rule to them:

S1r,1k = S11Srk − S1kSr1 = 0, n + 1 � r > k � 2, (41)

where Sij,kl and Smn are defined as in Eqs. (17) and (18).
Moving one of the terms in (41) into the right-hand side and
equating the absolute value squared in both sides of equation
we find

P11Prk = P1kPr1, n + 1 � r > k � 2, (42)

where P11 is known due to (4).
As in the case of a similar relation (25) in the chain

model, Eq. (42) does not provide an explicit value of any
transition probability. However, it is a nontrivial constraint on
the transition probability matrix that reduces the number of its
independent parameters.

C. Demkov-Osherov (DO) solution as consequence of HCs

Consider the DO model in which one level with index 0
has a slope −b < 0. This level crosses a band of N parallel
levels with zero slopes, as in Fig. 2(a). The band levels are
enumerated so that for i < j , we have εi > εj . No other
diabatic states are present. This model is special because all
its levels are extremal, and we can apply (31) to all of them.
Let us denote

pk ≡ e−2π |gk |2/b, qk = 1 − pk, k = 1, . . . ,N. (43)

Then, (31) implies

P00 =
N∏

k=1

pk, Pkk = pk. (44)

In addition, the no-go constraints for levels of the band, which
have the highest slope here, read as

Prk = 0, 1 � r < k � N. (45)
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Using the semiclassical ansatz in Sec. III B, we can
reconstruct other transition probabilities:

Pm0 = qm

m−1∏
k=1

pk, P0m = qm

N∏
k=m+1

pk, (46)

Pmn = qmqn

m−1∏
k=n+1

pk, m > n > 0. (47)

A semiclassical ansatz, however, is a conjecture itself. So,
we would rather not use it for a mathematical proof yet.
Instead, we are going to show now that Eqs. (46) and (47)
are also consequences of the HCs. It is easy to check that the
solutions (44)–(47) satisfy the constraints (42). We count the
number of constraints given by Eqs. (42)–(45) in addition to
the constraints (21) on the transition probabilities: for N levels
in the band, there are N (N − 1)/2 constraints (42). We have
also N (N − 1)/2 no-go rules (45), and N + 1 rules of the type
(44). The rules (21) give 2(N + 1) − 1 independent constraints
for N + 1 levels. Thus, the total number of such constraints is
N2 + 2N + 2, which is one larger than the number (N + 1)2

of matrix elements of the transition probability matrix. Such a
counting, however, does not prove that we have a sufficient
number of independent constraints. To show that we have
enough of them, we will construct the solution (46) and (47)
explicitly, starting from Eqs. (42)–(45).

Note that (47) is a consequence of (46) and (42): (42)
implies that for m > n > 0, Pmn = P0nPm0/P00. Performing
the substitutions given by (46) directly implies (47). Hence,
we are left with showing that (46) is a result of Eqs. (42)–(45).

The constraints given by Eqs. (42)–(45) impose the follow-
ing structure on the P̂ matrix of the DO model:

P̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P00 P01 P02 P03 . . . P0N

P10 p1 0 0 . . . 0

P20
P20P01

P00
p2 0 . . . 0

P30
P30P01

P00

P30P02
P00

p3 . . . 0
...

...
...

...
. . .

...
PN0

PN0P01
P00

PN0P02
P00

PN0P03
P00

. . . pN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(48)

As numbering of levels in the DO model starts with zero, we
accept the convention for this model that the numbering of
columns and rows of the matrix (48) also starts with zero.

The parameters pk and P00 here are considered known due
to Eqs. (43) and (44). Therefore, matrix (48) is parametrized
by 2N unknown elements P0k and Pk0, for k = 1, . . . ,N . The
only constraints that are left express the property that the sum
of elements of any row or any column of P̂ are equal to one.
Applying this property to row 1 (containing P10) and column
N (containing P0N ) we find

P0N = qN, P10 = q1. (49)

The expressions in (49) coincide with the prediction (46)
for the same probabilities. Next, let us equate the sum
of elements of column 1 or row N to one. Using that

∑N
k=2 Pk0 = 1 − P00 − P10 and

∑N−1
k=1 P0k = 1 − P00 − P0N

and then rearranging terms, we find

P01 = P00q1

1 − P10
, PN0 = P00qN

1 − P0N

. (50)

Since the elements P0N and P10 are known from (49), we
conclude that we can also derive P01 and PN0 explicitly.

We continue inductively: look at column m and row
(N − m + 1). The constraint for the sum of the elements in
this column and row gives the expressions

P0m = P00qm

1 − ∑m
k=1 Pk0

, PN−m+1,0 = P00qN−m+1

1 − ∑m
k=1 P0,N−k+1

.

(51)

In particular, setting m = N − 1 we find from (51)

P0,N−1 = P00qN−1

P00 + PN0
, P20 = P00q2

P00 + P01
. (52)

Now, since PN0 and P01 are considered known from (50),
elements P20 and P0,N−1 can be considered also known due to
Eq. (52). In turn, we can substitute their values in (51) with
m = 2 and obtain P02 and PN−1,0, and so on.

In general, the inductive procedure is as follows: given
the values for P01 through P0,k−1, P0,N−k+2 through P0N ,
P10 through Pk−1,0, and PN−k+2,0 through PN0, we can use
(51) with m = N − k + 1 to find P0,N−k+1 and Pk0. Then,
using (51) with m = k gives P0k and PN−k+1,0, continuing the
induction.

Consequently, Eqs. (42)–(45) can be solved recursively
reproducing Eqs. (46) and (47). So, indeed, the simplicity
of transition probabilities in the DO model is purely the
consequence of HCs.

VI. COMPLETE SOLUTION OF SPIN- 3
2 MODEL

In [16–18], several models of the type (1) were identified
that satisfied specific integrability conditions. These models
were solved with the semiclassical ansatz that we described
in Sec. III B. Despite definite agreement with the results of
numerical simulations, none of these solutions have been
rigorously proved analytically yet. Here, we consider the
simplest of such models that we take from Ref. [17] in order
to show that HCs, indeed, can be responsible for integrability
in this broad class of solvable models.

The Hamiltonian of our model is a 4 × 4 matrix:

Ĥ =

⎛
⎜⎝

b1t + e 0 g γ

0 −b1t + e −γ g

g −γ b2t − e 0
γ g 0 −b2t − e

⎞
⎟⎠.

(53)

Its structure is explained in Fig. 5. Note that the numbering
of levels is different here from our convention in order
to be consistent with the notation of Ref. [17]. The name
“spin- 3

2 model” is chosen because this model describes the
experimentally relevant situation [6] of a spin- 3

2 experiencing
quadratic anisotropy and linearly time-dependent magnetic
fields, as is explained in [26].
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FIG. 5. Diabatic levels and couplings of the spin- 3
2 model.

Let us introduce time-dependent amplitudes of the four
diabatic states: a1(t),a2(t),a3(t),a4(t). It was shown in [17]
that the Schrödinger equation (1) with the Hamiltonian
(53) remains invariant after the simultaneous application of
three mutually commuting operations: (a) time reversal, i.e.,
the change of t → −t , as well as ai → a∗

i , i = 1,2,3,4;
(b) complex conjugation, i.e., the change of the sign near
the imaginary unit i → −i and replacing ai → a∗

i ; (c) parity
operation, i.e., renaming the amplitudes a1 → −a2, a2 → a1

and a3 → −a4, a4 → a3.
As a result, the scattering matrix can be parametrized as

shown in [17]:

Ŝ =

⎛
⎜⎝

S11 0 S13 S14

0 S11 S23 S24

S24 −S14 S44 0
−S23 S13 0 S44

⎞
⎟⎠. (54)

Comparing the off-diagonal elements in (20) with Ŝ from (54)
we find relations such as

(ŜŜ†)13 = S11S
∗
24 + S13S

∗
44 = 0. (55)

Based on these relations and using Eq. (4), Ref. [17] derived
relations for transition probabilities:

P11 = P22 = P33 = P44 = p1p2,

P13 = P24 = P31 = P42,
(56)

P14 = P23 = P32 = P41,

P12 = P21 = P34 = P43 = 0,

where

p1 ≡ e
− 2πg2

|b1−b2 | , p2 ≡ e
− 2πγ 2

|b1+b2 | . (57)

Equations (21) and (56) fix the transition probabilities up to
one unknown parameter. We now show that a second-order
HC fixes the value of this parameter.

For the Hamiltonian (53), we take the extremal level 1 and
the next-to-lowest slope level 3. Combining the second-order
HC (5) with Eq. (54) we find

S11S44 − S13S24 = p2. (58)

Isolating S24 in (58), then substituting the result in (55), and
then using that P11 ≡ |S11|2 is given in (56), we find the
missing element of the transition probability matrix:

P13 ≡ |S13|2 = p2q1. (59)

Now, using the unitarity of the scattering matrix, e.g., P11 +
P12 + P13 + P14 = 1, and Eqs. (56) and (59), we find

P14 = q1. (60)

With (56) and (57), we can then reconstruct all other elements
of the transition probability matrix. This result coincides with
the analytical expression suggested in [17]. Thus, the solution
in [17] can now be considered rigorously proven.

Finally, we note that the two-fermion version of this model
turns out to belong to the class of the bowtie model, as we
discuss in Appendix E. This relation can be used to derive not
only probabilities, but also phases of scattering amplitudes in
model (53).

VII. INTEGRABLE VS NONINTEGRABLE
LANDAU-ZENER MODELS

In this section, we consider two relatively simple models:
one is fully solvable and another is not. Both models are
intentionally chosen to look very similar, including the
presence of a simple discrete symmetry. We will pursue three
goals: First, we will keep testing the hypothesis that HCs
supplemented by other symmetries are completely responsible
for the integrability of known solvable models. Second, we
will explore how much information one can extract using
HCs about the transition probability matrix of a nonintegrable
model. Finally, by comparing very similar integrable and
nonintegrable models, we identify critical properties of the
scattering matrix that lead to full integrability.

A. Four-state bowtie model

Our integrable model is shown in Fig. 6. It is the four-
state bowtie model, which is exactly solvable as described in
Sec. III B. Its Hamiltonian is

Ĥ =

⎛
⎜⎝

β1t γ γ 0
γ ε 0 g

γ 0 −ε g

0 g g β4t

⎞
⎟⎠, (61)

FIG. 6. Diabatic level diagram of the Hamiltonian (61).
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FIG. 7. Eigenvalues of the Hamiltonian (61) as functions of t .
Parameters: ε = 2, β1 = 1, β4 = 0.75, γ = 0.7, g = 0.8. There is an
exact crossing point at time t = 0 at the place of crossing of diabatic
levels 1 and 4. This is a signature of Landau-Zener integrability.

where we assume ε > 0, β1 < 0, β4 > 0. In Fig. 7, we show
the dependence of eigenvalues of the Hamiltonian (61) on
time, treating t as a parameter of the matrix. Note that at t = 0
there is an exact crossing point that coincides with the crossing
point of diabatic levels 1 and 4, which are not directly coupled
to each other. According to [16], the presence of such crossing
points is the signature of Landau-Zener integrability.

In order to derive transition probabilities, we first note
that the Schrödinger equation of this model is invariant
under the simultaneous application of the following com-
muting transformations: (a) t → −t ; (b) a2 → a3, a3 → a2;
(c) a1 → −a1, a4 → −a4.

So, if we take the conjugate transpose of the scattering
matrix, exchange indexes 2 and 3 of its elements, and add
minus signs at all elements with only one of the indexes being
1 or 4, the result will coincide with the original scattering
matrix: ⎛

⎜⎝
S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

⎞
⎟⎠

=

⎛
⎜⎜⎜⎝

S∗
11 −S∗

31 −S∗
21 S∗

41

−S∗
13 S∗

33 S∗
23 −S∗

43

−S∗
12 S∗

32 S∗
22 −S∗

42

S∗
14 −S∗

34 −S∗
24 S∗

44

⎞
⎟⎟⎟⎠. (62)

Comparing these two matrices, we can infer various relations,
e.g., S23 = S∗

23, etc. We then use such constraints to reduce the
number of independent parameters of the scattering matrix

Ŝ =

⎛
⎜⎝

X S12 S13 S14

−S∗
13 S22 A S∗

42−S∗
12 B S∗

22 S34

S∗
14 −S∗

34 −S∗
24 Y

⎞
⎟⎠, (63)

where

A ≡ S23, B ≡ S32 (64)

are introduced to emphasize that the corresponding matrix
elements are real numbers. We also introduced the real-valued

parameters

X = e
− 2π |γ |2

|β1 | , Y = e
− 2π |g|2

β4 , Z ≡
√

XY, (65)

and we included HCs (4) and (7) in (63) explicitly.
The second-order HCs (5) and (8) now lead to

XS∗
22 + S13S

∗
12 = Z, YS∗

22 + S12S
∗
12 = Z. (66)

In addition, two parallel levels in the model (61) have the
next-to-extremal slope, so we can apply the relations (41) to
them. Writing these conditions in terms of the elements of
matrix (63) we find

XB + |S12|2 = 0, YA + |S24|2 = 0. (67)

Consider now the unitarity constraint

[Ŝ†Ŝ]23 = 0, (68)

which explicitly reads as

S∗
13S12 + S22(B + A) + S24S

∗
24 = 0. (69)

With constraints (66), this simplifies to

S22(B + A − X − Y ) + 2Z = 0. (70)

Since the term 2Z and the factor B + A − X − Y are always
real, the condition (70) can be generally satisfied only if S22 is
also real. This fact has profound consequences because the
expressions (66) can now be converted to constraints that
do not involve phases of scattering matrix elements. Indeed,
rearranging terms and taking absolute value squared on both
sides of these equations we find

P12P13 = (Z − XS22)2, P24P24 = (Z − YS22)2. (71)

Two more useful constraints follow from [Ŝ†Ŝ]22 = [Ŝ†Ŝ]33 =
1, which can be written in components as

P12 + B2 + S2
22 + P34 = 1, (72)

P13 + S2
22 + A2 + P24 = 1. (73)

We can solve Eqs. (71)–(73) for P12, P13, P34, P24 in terms of
real parameters A, B, S22. Substituting them back into (67),
we obtain two constraints:

−XB = (Z − XS22)2

1 − A2 − S2
22 + YA

, (74)

−YA = (Z − YS22)2

1 − B2 − S2
22 + XB

. (75)

Together with Eq. (70), Eqs. (74) and (75) provide three
equations for three unknown variables A, B, and S22. Since
the equations are nonlinear, they generally have more than one
solution.

From (67) follows that A and B are negative. Hence, from
(70) it follows that S22 is positive. By restricting our search to
only physical ranges A,B ∈ (−1,0) and S22 ∈ (0,1), we find

A = Y − 1, B = X − 1, S22 = Z. (76)

Substituting this into (71)–(73) and using other constraints of
the type (21), we restore the exact solution of the four-state
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bowtie model:

P̂ =

⎛
⎜⎜⎝

X2 X(1 − X) Y (1 − X) (1 − X)(1 − Y )
(1 − X)Y XY (1 − Y )2 Y (1 − Y )
X(1 − X) (1 − X)2 XY X(1 − Y )

(1 − X)(1 − Y ) X(1 − Y ) Y (1 − Y ) Y 2

⎞
⎟⎟⎠, (77)

which coincides with predictions of the semiclassical ansatz
from Sec. III B.

B. Pseudobowtie model

Consider a four-state system with the Hamiltonian

Ĥ =

⎛
⎜⎝

β1t −γ γ 0
−γ ε 0 g

γ 0 −ε g

0 g g β4t

⎞
⎟⎠. (78)

Its diabatic level diagram is shown in Fig. 8. We will assume the
same choice of parameters as in model (61). Model (78) is dif-
ferent from model (61) only by a sign change at one of the cou-
pling constants. Figure 9 shows that, although diabatic levels
1 and 4 do not interact with each other directly, corresponding
eigenvalues of the Hamiltonian (78) experience avoided level
crossings near the point t = 0. Such a behavior is the signature
of the breakdown of the model’s integrability [16].

Nevertheless, model (78) has almost the same discrete
symmetry as the bowtie model (61). Namely, the Schrödinger
equation with the Hamiltonian (78) remains the same after
application of three mutually commuting operations: (a)
change of sign of time t → −t ; (b) change of sign of one
amplitude: a4 → −a4; (c) renaming amplitudes of two parallel
levels: a2 → a3 and a3 → a2.

Repeating the same steps as for the previously considered
bowtie model, we can parametrize the scattering matrix as

Ŝ =

⎛
⎜⎜⎜⎝

X S12 S∗
21 S14

S21 S22 A S24

S∗
12 B S∗

22 S34

−S∗
14 −S∗

34 −S∗
24 Y

⎞
⎟⎟⎟⎠. (79)

FIG. 8. Diabatic levels and parameters of the nonintegrable model
with the Hamiltonian (78).

There are, in total, eight unknown scattering amplitudes in
(79). Considering the symmetries of (79), only four constraints
of the type (21) are expected to be independent. So for
full integrability, we require four extra constraints on the
transition probabilities. Second-order HCs written in terms
of the parametrization in (79) read as

XS22 − S21S12 = Z, YS∗
22 + S∗

24S34 = Z. (80)

The analog of Eq. (67) here is

XB − |S12|2 = 0, YA + |S24|2 = 0. (81)

Considering equation [ŜŜ†]23 = 0, we find

S12S21 + S22(B + A) + S∗
34S24 = 0, (82)

which is the analog of Eq. (69) for the bowtie model. So far,
Eqs. (80)–(82) look very similar to their counterparts in the
bowtie model. Problems start when we substitute Eq. (80) into
(82). We find then

S22[X − Y + B + A] = 0. (83)

In comparison to the analogous equation (70), now the free
term that depended on Z has canceled out. As a result, we
cannot conclude that S22 is purely real and hence cannot plug
it back to (80) in order to derive additional constraints on
transition probabilities. In fact, Eq. (83) tells nothing about
S22 now.

In principle, Eq. (83) still means a useful constraint on real
parameters:

B + A + X − Y = 0. (84)

Moreover, there is still one constraint on probabilities that can
be derived from (80). For this, we move terms with S22 to the

FIG. 9. Eigenvalues of the Hamiltonian (78) as functions of t .
Parameters are the same as in Fig. 7. Although according to Fig. 8
diabatic levels 1 and 4 are not directly coupled to each other, there is
a gap opening near their crossing. This indicates that the model (78)
is not integrable.

012140-10



CONSTRAINTS ON SCATTERING AMPLITUDES IN . . . PHYSICAL REVIEW A 95, 012140 (2017)

right-hand side and take the absolute value squared on both
sides. Eliminating Re(S22) we find a nonlinear relation for
probabilities

XY (X − Y )(P22 − 1) = YP21P12 − XP24P34. (85)

One can still hope that Eqs. (81), (84), and (85) provide
the four missing constraints; however, our studies showed
that this is not the case. They are not independent and only
reduce the number of unknown parameters in the transition
probability matrix to two. However, when used altogether with
four independent constraints (21), they lead to some useful
relations. For example, if we set P12 and P22 as independent
parameters, then we find

P32 = (P12/X)2,

P23 = (Y − X − P12/X)2,

P24 = P43 = [P12 + X(X − Y )]Y

X
,

P14 = P41 = P22 + (P12 + X2)(P12 − XY )

X2
. (86)

In Fig. 10, we tested relations (86) by simulating evolution
with the Hamiltonian (78) numerically from large negative
to large positive times. We found perfect agreement with
our theory. Figure 10 demonstrates clearly that transition
probabilities in the nonintegrable model are quite sensitive to
the distance between parallel levels. In contrast, the solution
of the integrable bowtie model in Eq. (77) does not depend on
ε at all.

FIG. 10. Numerical test of Eqs. (86). Parameter ε is the half-
distance between parallel levels 2 and 3. Discrete points correspond
to transition probabilities that were obtained directly from numerical
simulations of quantum mechanical evolution with the Hamiltonian
(78). Solid curves are predictions of formulas in (86) that take
numerically obtained probabilities P12 ≡ P2→1 and P22 ≡ P2→2 as an
input. Parameters for simulations: γ = 0.37, g = 0.45, β1 = −1.0,
β2 = 1.25. Evolution proceeds from t = −2000 to 2000 with a time
step dt = 0.00005. Simulation algorithm is described in Ref. [18].

VIII. DISCUSSION

Multistate Landau-Zener model (MLZM) has provided
unusually many nonperturbative exact results. Some of them
correspond to interactions among only a few states [15–17],
others describe truly many-body mesoscopic dynamics [18].
In terms of complexity, DO and bowtie models [10,12] stay
somewhere in-between. It has always been puzzling why
all such seemingly different systems produce simple final
results with many common properties. The discovery of the
Brundobler-Elser formula in [1] provided an important piece
to this puzzle and generated a lot of interest.

Here, we showed that the Brundobler-Elser formula is actu-
ally only one of many nontrivial exact “hierarchy constraints”
(HC) on the scattering matrix of an arbitrary model of the type
(1). The effect of higher than first-order HCs on transition
probabilities is, however, not straightforward to understand in
detail. We showed that HCs can lead to nonlinear relations
among transition probabilities, such as Eq. (25) for an arbitrary
chain model and Eq. (42) for models with a band of parallel
diabatic levels. In combination with other symmetries, these
relations can lead to considerable simplifications. Thus, using
new HCs, we were able to prove expressions for transition
probabilities of the spin- 3

2 model that were conjectured in [17].
It is also encouraging that all known simple solvable

systems, such as the three-state chain, DO, and the four-
state bowtie models can be fully solved using elementary
symmetries and HCs. We argued that even such a general result
as the no-go rule in MLZM [19] is one of the consequences
of HCs. Moreover, HCs depend only on specific parameter
combinations that appear in all known exactly solved MLZMs
with a finite number of levels. All such observations point to
the possibility that HCs are responsible for the phenomenon
of integrability in MLZM.

We would like to conclude with raising questions about
MLZM that still need resolution. First, even in combination
with other symmetries, HCs lead generally to a set of strongly
nonlinear algebraic equations. We showed how to resolve such
equations in relatively simple situations, but how to use even
more nonlinear constraints remains an open problem. Second,
both HCs and solutions obtained by applying the semiclasscial
ansatz, which we described in Sec. III B, depend on the same
combinations of parameters. This indicates that HCs can be
responsible for the validity of the semiclassical ansatz. It
remains unclear as to whether this is true and whether some
other form of an exact solution is possible. Third, it is not clear
what type of additional symmetry can be responsible for most
complex solvable cases such as in Ref. [18]. For example,
quantum groups are under suspect [27].

One unexplained signature of the Landau-Zener integrabil-
ity is the presence of specific exact crossings of eigenvalues of
the Hamiltonian [28,29], such as the one shown in Fig. 7 for the
four-state bowtie model. We showed in Sec. VII A that, almost
miraculously, all independent constraints play in synergy in
this case, fixing the values of all transition probabilities. On
the other hand, we showed in Sec. VII B that in a very
similar model without such an eigenvalue crossing, phases
of the scattering matrix cannot be eliminated from important
equations. It is impossible then to close these equations for
probability variables only.
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In Ref. [26], the role of one type of exact crossing points
of adiabatic energy levels was completely understood within
the context of multistate Landau-Zener problem. It was found
that such points lead to specific constraints on the scattering
matrix even for models that are not completely integrable.
Thus, it seems that exact crossing points play some important
role, which is the next key puzzle that should be resolved
in order to connect numerous observations about MLZM
into a coherent theory of integrable explicitly time-dependent
quantum systems.

Apart from making an insight into the origin of the Landau-
Zener integrability, HCs set an unusual example of an exact
result that describes evolution with an arbitrary Hamiltonian of
some very broad type. Indeed, in Ĥ (t) = Â + B̂t , matrices Â

and B̂ are practically arbitrary by definition. Thus, at t = 0, the
Hamiltonian Ĥ = Â can describe a macroscopic system with
strongly nonlinear and chaotic behavior. However, applying
linearly growing fields and then measuring scattering ampli-
tudes between asymptotically simple microstates it becomes
possible to extract some simple combinations of the matrix Â

elements. Having such properties, HCs can extend previously
discussed applications of the Brundobler-Elser formula in
physics of decoherence [5] and dynamic passage through a
quantum phase transition [24].

The example of HCs in MLZM raises questions about
existence of similar results beyond the linearly time-dependent
Hamiltonian. Such extensions are certainly possible within the
bigger class of so-called Landau-Zener-Coulomb systems that
include terms decaying as ∼1/t with time. Analogs of the
Brundobler-Elser and the no-go relations have been already
derived for such models in [25], so corresponding extensions
of HCs can be found along the same path as in this article. The
question “what is the most general evolution equation leading
to HCs” is important but still open. We hope that our article
will stimulate interest also inside the mathematical community
to resolve it.
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APPENDIX A: SCATTERING MATRICES OF
LANDAU-ZENER MODELS

In this Appendix we provide a definition of the scattering
matrix Snn′ , associated with a multistate Landau-Zener (LZ)
problem. This is done mostly for the sake of introducing a
convention, which is needed since the off-diagonal elements
of Ŝ are defined up to phase factors that do not depend on
the model parameters, and a convention is needed to fix the
aforementioned ambiguity.

As stated in Sec. I, a multistate LZ problem is a system of
linear equations, given by Eq. (1). Diagonalizing the matrix
B̂, using a basis set (e1, . . . ,eN ) we obtain a set of real
eigenvalues β1, . . . ,βN , referred to as the diabatic slopes.

In case of degeneracy there is ambiguity in the choice of
the basis set. However, in this case we can consider the
vector subspace of the eigenmodes that correspond to a
degenerate eigenvalue βk , project the matrix Â to this subspace,
obtaining a Hermitian matrix, and further diagonalize the latter
using a basis set. We assume that the eigenvalues of the
aforementioned projection, referred to as diabatic energies,
are nondegenerate, treating the latter condition as a restriction,
needed to define a proper LZ problem, i.e., one that possesses a
well-defined scattering matrix. Applying the above procedure
to all degenerate levels of B̂ we obtain an ordered basis set
by applying the lexicographic ordering, introduced in Sec. I,
i.e., i > j , if βi > βj , or if βi = βj then εi < εj . The obtained
ordered basis set (e1, . . . ,eN ) is referred to as the diabatic basis
set; it is defined with a minimal ambiguity of choosing phases
of the normalized elements of the basis.

We further introduce the adiabatic phases ϕk(t), associated
with the diabatic states ek:

ϕk(t) = −βk

2
t2 − εkt − ηk

2
ln(t2 + 1),

ηk =
l �=k∑
l

|gkl|2
βk − βl

. (A1)

The reason for such a choice of the phases is the following.
At t → ±∞ the system evolves adiabatically. Since the
difference between the adiabatic and diabatic states tends
to zero as ∼|t |−1 at t → ±∞, we can represent N linearly
independent solutions �±

k (t) asymptotically at t → ±∞,
respectively,

�±
k (t) ∼ eke

iϕ±
k (t), ϕ±

k (t) = −
∫ t

t±
dτ ε̄k(τ ), (A2)

with t± sitting in the corresponding adiabatic regions, and
ε̄k(τ ) being the adiabatic energies. Applying the standard
perturbation theory

ε̄k(t) ∼ βkt + εk + ηk

t
, (A3)

where we neglected the higher-order terms, since they tend to
zero after time integration in the adiabatic regions. Substituting
Eq. (A3) into (A2), we obtain the asymptotic expressions for
the adiabatic phase in the adiabatic regions

ϕ±
k (t) = −βk

2
t2 − εkt − ηk ln |t | + c±

k , (A4)

and setting the integration constants c±
k = 0 to zero, which

actually determines our convention, we arrive at the expression
in Eq. (A1) that has the same asymptotic form as in Eq. (A4),
while being defined on the whole real axis.

Since �±
k (t) form two basis sets in the N -dimensional

vector space of the solutions of the LZ problem [Eq. (1)], the
scattering matrix can be defined as the transformation from
one to another:

�+
n (t) =

∑
n′

Snn′�−
n′ (t), (A5)

and note that by definition Ŝ does not depend on time, whereas
�±

k (t) are well defined for all real t , and also can be uniquely
analytically continued to all complex values of z, while they
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have a simple asymptotic form at t → ±∞. Since the solutions
of Eq. (1) can be explicitly expressed in terms of the evolution
operator

Û (t,t ′) = T exp

[
−i

∫ t

t ′
dτĤ (τ )

]
, (A6)

we arrive at an explicit expression for the scattering matrix

Snn′ = lim
t→∞ lim

t ′→−∞
Unn′ (t,t ′)e−i[ϕn(t)−ϕn′ (t ′)]. (A7)

The expression for the scattering matrix in terms of the
evolution counterpart allows the scattering matrices of the
composite LZ problems to be derived based on the corre-
sponding properties of the evolution matrices, the latter being
dealt using standard linear algebra.

While the adiabatic phases ϕk(t) do not enter the expres-
sions for the scattering matrices of the composite (tensor-
product and exterior-product) LZ problems, considered in
Appendix B [Eqs. (B2) and (B5)], and need to be carefully
considered just for justification purposes, they play an im-
portant and explicit role in certain symmetry properties of
the LZ problems. In particular, linear transformations of time
t = λt ′ + t0 that change both the time scale and the position
of its reference zero point. By switching to the new variables
in Eq. (1) we obtain the transformed value of the LZ-problem
parameters

β ′
k = λ2βk, ε′

k = λ(εk + βkt0), g′
kr = λgkr . (A8)

A straightforward computation yields for t → ±∞

ϕk(t) − ϕ′
k(t ′) ∼ βkt

2
0

2
+ εkt0 + ηk ln |λ| ≡ ζk, (A9)

which yields the following relation between Ŝ = Ŝ(β,ε,g) and
Ŝ ′ = Ŝ(β ′,ε′,g′):

S ′
nn′ = Snn′ei(ζn−ζ ′

n). (A10)

APPENDIX B: LINEAR ALGEBRA AND
COMPOSITE MODELS

In this Appendix, we will interpret the procedure of
building composite LZ problems, including the models of
noninteracting fermions, applied in Sec. II to derive the
constraints, as linear algebra in the space of multistate LZ
problems.

Consider two LZ problems in vector spaces V1 and V2

of dimensions N1 and N2, with the Hamiltonians Ĥ1(t) =
Â1 + B̂1t and Ĥ2(t) = Â2 + B̂2t , respectively. As outlined
above, the vector spaces are equipped with the preferred
ordered diabatic basis sets (e(1)

1 , . . . e
(1)
N1

) and (e(2)
1 , . . . e

(2)
N2

). The
composite LZ problem, also referred to as the tensor product
of the above two, has the space V = V1 ⊗ V2, of dimension
N = N1N2 equipped with the preferred basis set, represented
by eks = e

(1)
k ⊗ e(2)

s , with the Hamiltonian

Ĥ (t) = Ĥ1(t) ⊗ Î + Î ⊗ Ĥ2(t),

Â = Â1 ⊗ Î + Î ⊗ Â2,

B̂ = B̂1 ⊗ Î + Î ⊗ B̂2. (B1)

It follows from Eq. (1) that Û (t,t ′) = Û (1)(t,t ′) ⊗ Û (2)(t,t ′),
which, combined with the obvious property ϕkr (t) = ϕ

(1)
k (t) +

ϕ(2)
r (t), immediately extends the product property of the

evolution operator to the scattering matrices

Ŝ = Ŝ1 ⊗ Ŝ(2), Skr,k′r ′ = S
(1)
kk′S

(2)
rr ′ . (B2)

If we consider a tensor product of a space with itself,
and further an iterated n-fold tensor product, we can restrict
ourselves to its completely antisymmetric components called
the nth exterior degree, denoted

∧n
V , which is equipped

with a preferred basis set, given by ek1...kn
= ek1 ∧ · · · ∧ ekn

in
terms of the preferred basis set of V , associated with a LZ
problem, with the wedge denoting an antisymmetric product.
In the language of physics,

∧n
V represents n-fermion states

of the system. For a linear map f : V → V we consider its
nth exterior power ∧nf :

∧n
V → ∧n

V defined by

∧n f (u1 ∧ · · · ∧ un) = f (u1) ∧ · · · ∧ f (un). (B3)

Then, the result obtained in Sec. II, reformulated in linear
algebra terms, means Û (n)(t,t ′) = ∧nÛ (t,t ′), with Û (n)(t,t ′)
being the evolution operator of the n-fermion LZ problem.
Combining it with the property

ϕk1...kn
(t) = ϕk1 (t) + · · · + ϕkn

(t), (B4)

inherited from the tensor product property of the adiabatic
phases, considered above in the context of the tensor products
of LZ problems, we arrive to the following property of the
n-fermion scattering matrix:

Ŝ(n) = ∧nŜ, (B5)

and in particular this means that the matrix elements of S(n) are
given by the determinants of the corresponding n × n minors
of the N × N scattering matrix Ŝ of the original LZ problem.

APPENDIX C: EXAMPLE OF A COMPOSITE MODEL

It was shown in [15] that one can generate new solvable
multistate Landau-Zener models from already solved ones.
To do this, one should assume that a known solvable model
describes evolution of either fermionic or bosonic operators
in the Heisenberg picture. Switching to the Fock space,
i.e., to evolution of the state amplitudes, we find then the
matrix Hamiltonian that depends on the number of particles.
When restricted to the single-particle sector, this Hamiltonian
describes the original model but multiparticle sectors look
more complex.

The goal of this Appendix is to support our discussion in
Sec. II with a specific example of this procedure. In order not
to overlap with Ref. [15], we choose a model that was not
studied there. As a by-product, we will provide the proof of
the six-state model solution that was conjectured in Ref. [16]
based on integrability conditions.

Consider the secondary quantized Hamiltonian of four
interacting fermions

Ĥ = β1t â
†â + β2t b̂

†b̂ + (β3t + e)ĉ†1ĉ1 + (β3t − e)ĉ†2ĉ2

+ [gâ†(ĉ1 + ĉ2) + γ b̂†(ĉ1 + ĉ2) + H.c.], (C1)
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with constant parameters β1, β2, β3, g, γ , e. Heisenberg evolution equation for operators then reads as

i
d

dt

⎛
⎜⎜⎝

â

b̂

ĉ1

ĉ2

⎞
⎟⎟⎠ =

⎛
⎜⎝

β1t 0 g g

0 β2t γ γ

g γ β3t + e 0
g γ 0 β3t − e

⎞
⎟⎠

⎛
⎜⎜⎝

â

b̂

ĉ1

ĉ2

⎞
⎟⎟⎠. (C2)

Equation (C2) has the same form as the Schrödinger equation for amplitudes in the four-state bowtie model, whose scattering
matrix is known. Since Eq. (C2) is linear in operators, we can write its solution in terms of the scattering matrix elements Sij

of the bowtie model. We can read elements Sij directly from the diagram in Fig. 11 using the semiclassical ansatz defined in
Sec. III B. Let us denote

p1 = e
−2π

g2

|b3−b2 | , p2 = e
−2π

γ 2

|b3−b1 | , q1,2 = 1 − p1,2.

The scattering matrix for a single-particle sector with b1 < b2 < b3 then reads as

Ŝ =

⎛
⎜⎜⎜⎝

p2 −√
p2q2q1 i

√
p1p2q2 i

√
q2

−√
p2q2q1 p1 + q1q2 ip2

√
p1q1 i

√
p2q1

i
√

q2 i
√

p2q1
√

p1p2 0

i
√

p2q2p1 ip2
√

p1q2 −q1 − p1q2
√

p1p2

⎞
⎟⎟⎟⎠. (C3)

Let us now consider the sector of the model (C1) with two fermions. In the basis

|1〉 ≡ â†b̂†|0〉, |2〉 ≡ ĉ
†
1ĉ

†
2|0〉, |3〉 ≡ â†ĉ†1|0〉, (C4)

|4〉 ≡ â†ĉ†2|0〉, |5〉 ≡ b̂†ĉ†1|0〉, |6〉 ≡ b̂†ĉ†2|0〉,
the Hamiltonian (C1) is a 6 × 6 matrix:

Ĥ ′ =

⎛
⎜⎜⎜⎜⎜⎝

(β1 + β2)t 0 γ γ −g −g

0 2β3t −g g −γ γ

γ −g (β1 + β3)t + e 0 0 0
γ g 0 (β1 + β3)t − e 0 0

−g −γ 0 0 (β2 + β3)t + e 0
−g γ 0 0 0 (β2 + β3)t − e

⎞
⎟⎟⎟⎟⎟⎠

. (C5)

Up to state renumbering, model (C5) contains the six-state model in Ref. [17] as a special case. The scattering amplitudes in
model (C5) can be derived now using Eqs. (17) and (C3). For example, S ′

11 = S11S22 − S12S21 = p1p2. Taking P ′
ij ≡ |S ′

ij |2 of
such amplitudes, we find the matrix of transition probabilities of the composite six-state model:

P̂ ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p2
1p

2
2 0 p1q1p

2
2 p2q1 p1p2q2 q2

0 p2
1p

2
2 q2 p1p2q2 p2q1 p1q1p

2
2

p2q1 p1p2q2 p1p2 q2
2 0 p2q2q1

p1q1p
2
2 q2 p2

2q
2
1 p1p2 p2q2q1 0

q2 p1q1p
2
2 0 p2q2q1 p1p2 p2

2q
2
1

p1p2q2 p2q1 p2q2q1 0 q2
2 p1p2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (C6)

The matrix (C6) coincides, up to redefinition of state indexes, with the matrix in Eq. (32) in Ref. [17]. This fact proves the
conjecture made in that reference about the integrability of its six-state model.

APPENDIX D: TEST OF A MORE COMPLEX
CONSTRAINT FOR INDEPENDENCE OF EQS. (9) AND (10)

Let us try to generate a new constraint by considering the
MLZM Hamiltonian Ĥ , which we populate with two non-
interacting fermions to generate a new matrix Hamiltonian. Let
us apply the second-level HC (5) to the two-fermion scattering
matrix:

Det

(
S12,12 S12,13

S13,12 S13,13

)

= e
− ∑

k �=1,2

π |gk1 |2
|β1−βk |

e
− ∑

k �=1,3

π |gk1 |2
|β1−βk | −

∑
k �=1,2,3

π |gk2 |2
|β2−βk | −

∑
k �=1,2,3

π |gk3 |2
|β3−βk |

, (D1)

where indexes ij mark two levels of the original model that
are populated by fermions. On the other hand, Eq. (17) gives

S12,12 = S11S22 − S12S21, S12,13 = S11S23 − S21S13,

S13,12 = S11S32 − S31S12, S13,13 = S11S33 − S13S31.

Substituting this into (D1) we find a constraint that relates
some of the amplitudes and parameters of the original model.
However, it is straightforward to check that

Det

(
S12,12 S12,13

S13,12 S13,13

)
= S11Det

⎛
⎝S11 S12 S13

S21 S22 S23

S31 S32 S33

⎞
⎠, (D2)
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FIG. 11. Diabatic level diagram of the four-state Hamiltonian
corresponding to the single-particle sector of the model (C1) at
b1 > b2 > b3.

so, constraint (D1) is merely the result of a product of HCs (4)
and (6). Hence, the constraint (D1) is a pure consequence of
the hierarchy (9).

Finally, we note that hierarchies (9) and (10) are not
independent of each other because populating M lowest-slope
levels of an N -state system with noninteracting electrons
is physically equivalent to populating N − M highest-slope
levels with noninteracting holes. While electrons produce
HC (9), holes produce HC (10), so the second hierarchy
follows from the first one via the particle-hole duality of
fermionic systems. Therefore, we have generally only N − 1
independent HCs in an arbitrary N -level model.

APPENDIX E: REDUCTION OF SOLVABLE MODELS

Here, we show that the model in Sec. VI can be solved in
an alternate way which we will call the reduction. Namely, we
show that solution of the four-state model in Sec. VI can be
derived from solution of a more complex but previously solved
six-state bowtie model.

Let us populate four diabatic levels of the Hamiltonian
(53) with two noninteracting fermions. The corresponding
fermionic Hamiltonian reads as

Ĥ = (β1t + e)â†â + (−β1t + e)b̂†b̂ + (β2t − e)ĉ†ĉ

+ (−β2t − e)d̂†d̂ + g[â†ĉ + b̂†d̂ + H.c.]

+ γ [â†d̂ − b̂†ĉ + H.c.]. (E1)

We then choose the basis

|1〉 ≡ â†b̂†|0〉, |2〉 ≡ ĉ†d̂†|0〉,
|3〉 ≡ â†ĉ†|0〉, |4〉 ≡ â†d̂†|0〉,
|5〉 ≡ b̂†ĉ†|0〉, |6〉 ≡ b̂†d̂†|0〉. (E2)

Instead of writing an explicit matrix, we illustrate the
parameters of the corresponding 6 × 6 Hamiltonian in Fig. 12.
It is clear that this model belongs to the class of bowtie models
shown in Fig. 2(b).

FIG. 12. Diabatic levels of the Hamiltonian (E1) in the basis (E2).

Let us derive the transition probability P
(4)
3→1 ≡ |S13|2,

where the upper index “(4)” marks the probabilities and
indexes in the four-state model (53). The probability to find
the fermion â after evolution with the Hamiltonian (E1) in the
two-fermion sector, assuming that the system starts in state
|3〉, defined in (E2), is given by

〈3|â†(+∞)â(+∞)|3〉(6) = P
(4)
1→1 + P

(4)
3→1, (E3)

where the upper index “(6)” means that we refer to the model
in Fig. 12. On the other hand, in terms of the Hamiltonian
illustrated in Fig. 12, such a probability is the sum of
probabilities of transitions from level 3 in this figure to all
levels that correspond to a filled fermion of type â, which are
levels 1, 3, and 4 in Fig. 12. The bowtie model solution is
reproduced by a semiclassical ansatz described in Sec. III B.
None of the transitions from level 3 to levels 1, 3, and 4
involve path interference, so we can readily read such transition
probabilities:

P
(6)
3→3 = p2

2, (E4)

P
(6)
3→1 = p2(1 − p2)p1, (E5)

P
(6)
3→4 = p2(1 − p2)(1 − p1), (E6)

where p1 and p2 are defined in (57). We also know, from
Eq. (4), that P

(4)
1→1 = p1p2. We can now equate results of both

ways to calculate 〈3|â†(+∞)â(+∞)|3〉(6):

P
(6)
3→1 + P

(6)
3→3 + P

(6)
3→4 = P

(4)
1→1 + P

(4)
3→1, (E7)

which leads to

P
(4)
3→1 = p2(1 − p1), (E8)

which in turn coincides with the main result in Sec. VI.
This approach to solve the spin- 3

2 model demonstrates that
some instances of already solved models can be themselves
reducible to interesting and more compact systems like the
spin- 3

2 model.
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