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2Instituto Carlos I de Fı́sica Teórica y Computacional, Universidad de Granada, E-18071 Granada, Spain

(Received 16 December 2016; published 27 January 2017)

We study compound systems with a classical sector and a quantum sector. Among other consistency conditions
we require a canonical structure, that is, a Lie bracket for the dynamical evolution of hybrid observables in the
Heisenberg picture, interpolating between the Poisson bracket and the commutator. Weak and strong postulates
are proposed. We explicitly construct one such hybrid bracket when the Hilbert space of the quantum sector is
finite dimensional and show that it is unique if the strong postulates are enforced. The adjoint bracket for the
Schrödinger picture version of the dynamics is also obtained. Unfortunately, preservation of the positivity of the
density matrix under the evolution is not guaranteed. The case of a particle with classical position and momentum
and quantum spin- 1

2 is discussed and the spin-orbit dynamics is worked out.
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I. INTRODUCTION

The purpose of this paper is to consider hypothetical
hybrid physical systems involving a truly classical sector
in interaction with a truly quantum sector, and analyze the
internal consistency of such constructions. There are several
motivations in the literature to study those hybrid systems.

One motivation comes from the foundations and inter-
pretation of quantum mechanics. Classical and quantum
sectors coexist in the Copenhagen interpretation, where a
classical measuring apparatus is postulated [1–4]. A precise
formulation of this interpretation seems to require some
consistent description of quantum and classical sectors in
mutual interaction. Another motivation, also based on the
assumption of the existence of true classical systems in nature,
comes from Einstein gravity, as some authors have argued that
for all we know at present, gravity could be classical. For a
discussion, see [5–12].

A totally different motivation applies for the more plausible
point of view that, strictly speaking, only quantum systems ex-
ist in nature and the classical description is just a macroscopic
approximation. Even so, there are many situations where a
fully quantum treatment is too difficult to work out and a
classical approximation is indicated for some subset of degrees
of freedom. In this regard, a major impulse to the study
of hybrid quantum-classical systems comes from quantum
chemistry, molecular physics, or condensed matter physics,
typically using a quantum description for the fast degrees of
freedom and a classical description for the slow ones [13–18].
In this point of view, the quantum-classical system would
be intrinsically approximated as a description of nature,
yet it would be of interest to have an internally consistent
formulation of it. The situation would be analogous to the
problem of solving a set of ordinary differential equations
using a numerical method, thereby introducing some error;
still, one would like to have some properties exactly preserved
as, e.g., energy conservation or some exact symmetries [19,20].

While classical mechanics is not a faithful description of
nature, it is nevertheless internally consistent. The case of
mathematical consistency is not quite so simple for hybrid
quantum-classical systems, except in the trivial case in which
the two sectors are never coupled. Prescriptions are needed to
specify the hybrid dynamics, and many different approaches

can be found in the literature (see [21] for a classification
of them). Here, we follow the path of previous works [22–25]
which keep a classical description for the classical sector and a
quantum description for the quantum sector, and emphasize the
features that are common to quantum and classical dynamics.
Both in classical and quantum dynamics, the observables of
compound systems are sums of products of observables of
each sector; we assume the same in the hybrid case. Another
common feature is the canonical structure. The main goal will
be to construct a dynamical bracket for the hybrid system,
paralleling the Poisson bracket and the commutator, for the
evolution of the observables. As it is well known, these are Lie
brackets as this property is needed to implement any canonical
dynamics [26], so we seek the same property in the hybrid case.
Here, we study how far one could go in this direction.

We are guided by the following consideration. Let us
consider two classical sectors, each with its own phase space
and with dynamics driven by the Poisson bracket in each
sector. In this case, there is a standard way to combine the
two sectors into a new one: the phase space of the compound
system is the direct product of spaces (this is a fancy name for
the set of linear combinations of products of observables of the
two sectors) and the dynamics uses the Poisson bracket of the
compound system. Instead of assuming this dynamical bracket
for the compound system from the outset, it can be asked
whether there are other possibilities. In [25] it is shown that, the
(compound) Poisson bracket is the only solution if sufficiently
informative constraints are set. The analogous constraints also
uniquely select the commutator as the dynamical bracket of
the compound system in the case of two quantum sectors.
(In passing, the direct product construction guarantees that
observables of two different quantum sectors commute.)
So, for hybrid quantum-classical systems we proceed in a
completely similar manner, that is, by taking the space of
hybrid observables as the direct product space and postulating
conditions common to the classical-classical and the quantum-
quantum cases to be fulfilled by the hybrid dynamical bracket.

In Sec. II we give precise definitions of our set of hybrid
observables and specify how to obtain expectation values from
them. Also, we lay down some general requirements to be
satisfied by the hybrid dynamical bracket in the Heisenberg
picture. The basic requirement being, in addition to a canonical
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structure, that each sector must evolve according to its own
dynamics when the coupling between them is switched off.
Other conditions cannot be maintained: Antisymmetry of the
bracket already leads to an incompatibility with the naive
expectation of the bracket being a derivation, so this latter
requirement is dropped. However, the most stringent condition
is the requirement of the Jacobi identity, due to its lack
of linearity. For instance, considering two quantum sectors
and taking their classical limit, one recovers the classical
dynamics which certainly fulfills the Jacobi identity, but if
the classical limit is taken in just one of the sectors this results
in a violation of the identity [25]. (Classical-quantum limits
have been studied in [27].) As the minimal postulates are too
weak to fully solve for the set of brackets satisfying them,
we consider stronger (more restrictive) axioms, still consistent
with the correct behavior when the two sectors are decoupled.
In the same section, we comment on alternative formulations
found in the literature which would lead to more exotic hybrid
scenarios.

In Sec. III we analyze the example of a particle with a
classical position and momentum and a quantum spin- 1

2 . We
give a precise formulation of such hybrid system showing that
rotational invariance is correctly realized on the system. We
consider a concrete dynamics of the spin-orbit type and solve
explicitly the equations of motion in that case.

In Sec. IV we explicitly construct a hybrid dynamical
bracket for the particular case of quantum sectors with a
finite-dimensional Hilbert space. We show that this bracket
fulfills the strong postulates laid down in Sec. II and also
that it is a Lie bracket, enjoying the Jacobi identity property.
This is very remarkable as it was proved in [25] that the strong
postulates forbid any dynamical Lie bracket when the quantum
sector is of position-momentum type [i.e., H = L2(Rn)].

Section V is rather technical and it is entirely devoted to
prove that the postulates yield precisely one hybrid bracket
when the Hilbert space is finite dimensional. We constructively
determine the most general solution to the postulates and show
that the solution is unique. The proof is similar to that in [25],
where a position-momentum quantum sector was assumed and
a no-go result was derived.

In Sec. VI we discuss the Schrödinger picture for hybrid
systems. From the condition that the expectation values
must coincide in Heisenberg and Schrödinger pictures, we
explicitly construct the adjoint bracket for the dynamics in the
Schrödinger picture. As it turns out, such bracket is not a Lie
bracket nor a derivation.

In Sec. VII we analyze whether the hybrid bracket pre-
viously obtained complies with the essential requirement of
maintaining the positivity of the density matrix. We find that
this is not guaranteed and show counterexamples. This implies
that the hybrid dynamics is not physically meaningful, at least
for generic hybrid systems. It is not excluded that positivity
could be preserved in certain particular cases. This negative
result could be a consequence of too strict postulates set on
the hybrid dynamics, or perhaps it could simply reflect that
hybrid systems cannot be formulated in a consistent manner
as exact systems. In that case, hybrid dynamics would display
intrinsic limitations, remaining as useful approximations to
fully quantum systems.

The conclusions are summarized in Sec. VIII. In Ap-
pendix A we briefly consider the mathematical structure and
possible generalizations. In Appendix B we provide the proof
of a lemma needed in Sec. V.

II. QUANTUM-CLASSICAL HYBRIDIZATION PROBLEM

A. Space of observables

Our starting point to formulate hybrid quantum-classical
systems is the formal similarity between classical and quantum
mechanics within the canonical formalism. In the canonical
formalism, a classical system is described by a phase space
with a set of coordinates xi,ki, i = 1, . . . ,n, and the observ-
ables are real functions A(x,k) defined on the phase space. Let
us denote Ac the set of classical observables. The dynamical
evolution is given by1

dA

dt
= {A,H }, (2.1)

where H (x,k) is the Hamiltonian and { , } denotes the Poisson
bracket

{A,B} =
∑

i

(
∂A

∂xi

∂B

∂ki

− ∂A

∂ki

∂B

∂xi

)
. (2.2)

Of course, the classical phase space need not be of
precisely this type, to which we refer as position-momentum
type in what follows. For instance, one could work in the
subset of observables depending only on the orbital angular
momentum L = x × k, i.e., A = f (L). These observables
close an algebra since the Poisson bracket can be worked out
to give

{A,B} = L · ∂A

∂ L
× ∂B

∂ L
, (2.3)

and {A,B} is again a function of L. Any set of structure
constants of a Lie algebra defines one such Poisson-Lie algebra
where the observables are functions of the generators regarded
as classical variables.

We do not need to assume a classical sector of position-
momentum type in our discussion, for the classical sector it is
only necessary that (i) the variables commute, the dynamical
Poisson bracket be (ii) a Lie bracket (i.e., linear, antisymmetric,
and fulfilling the Jacobi identity), and (iii) a derivation (i.e.,
obeying the product law).2

1For simplicity, we assume observables without explicit time depen-
dence. Otherwise, the equation would be dA/dt = {A,H } + ∂A/∂t .

2The word “derivation” is used here in a technical sense. A
linear application D is a derivation with respect to a product ∗
if it fulfills the product law: D(A ∗ B) = D(A) ∗ B + A ∗ D(B).
Throughout the paper “derivation” refers to the ordinary product,
so for instance D ≡ [A, ] (where [ , ] is the commutator) is a
derivation: [A,BC] = [A,B]C + B[A,C]. Exceptionally, in Sec. V
and Appendix A “derivation” refers to a Lie product. For instance,
the Jacobi identity establishes that D ≡ (A, ) (being ( , ) some Lie
product) is a derivation with respect to the product ( , ): (A,(B,C)) =
((A,B),C) + (B,(A,C)).
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In the quantum case, the states form a Hilbert space, and the
observables correspond to Hermitian operators. Let us denote
Aq the set of quantum observables. In the Heisenberg picture
they evolve as

dA

dt
= 1

i�
[A,H ] =: [[A,H ]], (2.4)

where [ , ] denotes the commutator. Like { , } in Ac, the
operation [[,]] is also a Lie bracket and a derivation in Aq .
We assume throughout that Aq (the quantum observables) is
the set of all Hermitian operators of the quantum Hilbert space.
In Appendix A we briefly consider relaxing this condition by
demanding only that Aq is a Lie algebra, i.e., linear and closed
under commutation, [[Aq,Aq]] ⊆ Aq . (This is necessary if any
observable can be part of the Hamiltonian.)

For two classical particles with position and momentum
(x1,k1) and (x2,k2), the observables of the compound system
are functions of (x1,k1,x2,k2). This is just the tensor product of
the sets of observables in both sectors, i.e., Ac = A (1)

c ⊗ A (2)
c .

A similar tensor product occurs in the quantum case for the
Hilbert space H = H (1) ⊗ H (2) and hence for the set of
observables Aq = A (1)

q ⊗ A (2)
q . For instance, S = S1 ⊗ 12 +

11 ⊗ S2 for a two-spin system. Quite naturally, we will assume
a similar construction for a hybrid quantum-classical system.
That is, the set of hybrid observables is identified with

A = Ac ⊗ Aq . (2.5)

Alternative hybrid constructions in the literature not following
this structure are briefly discussed in Sec. II C.

According to this definition, the elements of A are linear
combinations of products of c-number functions on the
phase space with quantum operators. Equivalently, a hybrid
observable A ∈ A will be any function defined on the classical
phase space taking values on the set of quantum operators Aq .

Classical and quantum observables can be regarded as
particular types of hybrid observables, so Ac and Aq can be
embedded within A . Ac can be identified with the hybrid
observables of the type C1 in A , where 1 denotes the identity
operator on H , and C is a c-number function of the classical
variables. Likewise, Aq can be identified with the Q ∈ A
which are constant functions with respect to the classical
variables. Generic hybrid observables are linear combinations
of products CQ, with C ∈ Ac and Q ∈ Aq . The C’s commute
with every observable, while Q’s commute with C’s but not
with another Q′ in general. It would seem that the embeddings
of Ac and Aq in A are asymmetric, as one requires being a
multiple of 1 and the other invokes the requirement of being
a constant function. The unifying criterion is that [[A, ]] ≡ 0
whenever A ∈ Ac and {A,} ≡ 0 whenever A ∈ Aq . Constant
multiples of 1 are simultaneously elements of Ac and Aq .

The obvious way to assign expectation values to the
hybrids’ observables is

〈A〉ρ =
∫

dnx dnk tr[ρ(x,k)A(x,k)], (2.6)

where the integral is over the classical phase space and the
trace is over the quantum Hilbert space. The density matrix
ρ is a positive operator for each (x,k), with normalization
〈1〉ρ = 1. This form of 〈A〉ρ interpolates between the purely
classical and the purely quantal cases.

By the same token, the hybrid dynamics in A requires a
certain bracket between observables, which will be denoted
(,), so that in the Heisenberg picture

dA

dt
= (A,H ). (2.7)

The hybrid Schrödinger picture is discussed in Sec. VI.

B. Conditions on the hybrid bracket

The hybrid dynamical bracket is subject to certain require-
ments. For instance, if C and C ′ denote classical observables
and Q and Q′ denote quantum ones, one expects3

(C,C ′) = {C,C ′}, (Q,Q′) = [[Q,Q′]],

(C,Q) = 0, C,C ′ ∈ Ac, Q,Q′ ∈ Aq . (2.8)

This guarantees that when the two sectors are decoupled, that
is, in the particular case of a Hamiltonian of the type H = C +
Q, these sectors behave according to their usual dynamics.
These conditions by no means fix the form of ( , ) since generic
hybrid observables are linear combinations of blocks CQ, with
C ∈ Ac and Q ∈ Aq , and a rule for (CQ,C ′Q′) is needed.

Another obvious requirement is

(A,B)† = (A,B), A,B ∈ A , (2.9)

in order to ensure that Hermitian observables remain so under
dynamical evolution. Or, more generally,

(A,B)† = (A†,B†), (2.10)

if we include non-necessarily Hermitian objects.4

Still another obvious requirement is that a constant observ-
able, say 1, should not evolve. This would be automatically
true if ( , ) were a derivation [see Eq. (2.20)]. In that case, one
would have

(1,H ) = (12,H ) = 2(1,H ) = 0. (2.11)

As we will show ( , ) cannot be a derivation (at variance with
{ , } and [[ , ]]), thus, we postulate this property:

(A,1) = 0 ∀ A ∈ A . (2.12)

Of course, these considerations are not new. In [24], a hybrid
dynamical bracket was proposed, namely,

(A,B)a ≡ [[A,B]] + {A,B}. (2.13)

Here, [[A,B]] is the same of Eq. (2.4) considering A and B as
operators. Also, {A,B} is as defined exactly as in Eq. (2.2),
whether A and B are commuting or not. While the bracket

3As usual in the literature, when there is no possibility of confusion,
we omit the identity factor 1 that would appear, e.g., in C1.

4Genuine hybrid observables are Hermitian, however, for conve-
nience we often extend the concept of observable to include complex
functions and non-Hermitian operators (more precisely, operators of
the type A + iB with A and B Hermitian).
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in (2.13) is linear and obeys the conditions (2.8), it is not
antisymmetric. This latter condition is needed to guarantee
that, thanks to (H,H ) = 0, a time-independent Hamiltonian
is conservative also in the hybrid case. A more promising
prescription is [22,23]

(A,B)s ≡ [[A,B]] + 1
2 ({A,B} − {B,A}). (2.14)

This is the hybrid bracket more frequently used in the
literature.5 It is linear and antisymmetric, however, it fails to be
a Lie bracket as the Jacobi identity is not fulfilled. See [28–30]
for other similar brackets suffering the same problem.

Both the classical and the quantum brackets are Lie
brackets, and this is also an essential requirement to have a
consistent canonical formalism in the hybrid case. The set of
all invertible transformations of a system form a group and the
observables act as infinitesimal generators of it. The dynamical
evolution is generated by H so that δHA = (−Hdt,A), but
any transformation can be chosen as the evolution. Thus, other
infinitesimal transformations, such as symmetry groups, are
generated through the same bracket

δGA = (δG,A), δG =
∑

i

δaiGi, (2.15)

where the ai are the parameters of the group and the Gi are
the generators. So, for instance, a relation

(G,H ) = 0 (2.16)

is telling simultaneously that δHG = 0 and so G is a constant
of motion, and that δGH = 0 and so G generates a symmetry
transformation of the dynamics. Hence, Noether theorem holds
also in the hybrid case. As usual, that A is a constant of motion
means that 〈A〉ρ in any state ρ is conserved in time.

The Lie group structure of the transformations, and at
the infinitesimal level the Lie algebra structure, can only be
represented by the action of δG = (δG,) as an operator in
A if ( , ) is a Lie bracket. Specifically, for two infinitesimal
transformations generated by δ1G and δ2G, the commutator
element6 is generated by δ[1,2]G = (δ1G,δ2G). The group
structure demands δ[1,2] = [δ1,δ2] for any representation of
the group [31], and so

((δ1G,δ2G),A) = (δ1G,(δ2G,A)) − (δ2G,(δ1G,A)). (2.17)

This is equivalent to the Jacobi identity, on account of the
antisymmetry.

An immediate consequence of the Jacobi identity is
that if the relation C = (A,B) holds at time t = 0, C(t) =
(A(t),B(t)) holds at any time t , where A(t) represents the
Heisenberg picture evolution of A and similarly for B and C.
More generally, δG = (G,) is an infinitesimal canonical trans-
formation which preserves the canonical relations between the
canonical variables. Also, if A and B are constants of motion,

5Actually, this bracket was introduced to describe the evolution
of the density matrix dρ/dt = (H,ρ)s in the Schrödinger picture.
The new insight of [24] was to introduce the hybrid bracket in the
Heisenberg picture.

6For two elements g1, g2 of a group, its commutator g[1,2] is defined
as g−1

1 g−1
2 g1g2.

(A,B) is again a constant of motion, thanks to the Jacobi
identity.

Some times the generators of a group of transformations
acting in a tensor space are just the sum of generators in each
factor space. For instance, J = L + S in H = L2(R3) ⊗ C2

for a quantum particle with spin- 1
2 . The orbital part generates

the rotations in L2(R3) and S = �σ/2 generates the rotations
in C2. For A = Ac ⊗ Aq , one can consider generators of the
type

Gi = Ci + Qi, Ci ∈ Ac, Qi ∈ Aq . (2.18)

In this case, the conditions in Eq. (2.8) are already sufficient
to guarantee that Gi reproduces the Lie algebra of the group

(Gi,Gj ) = cij
kGk (2.19)

(where cij
k are the structure constants) if Ci and Qi fulfill

the analogous relations. Unfortunately, the tensor product
(or rather tensor sum) form in Eq. (2.18) is not sufficiently
general. It is good enough for some kinematical symmetry
transformations, such as translations and rotations, or some
internal symmetries, but it already fails for the Poincaré
group, which contains the boosts and the Hamiltonian within
the generators. The Hamiltonian takes the tensor sum form
only in the rather trivial case of no interaction between the
classical and quantum sectors, and the same holds for the
boost generators.

Another question is whether the dynamical bracket should
be a derivation, that is, should fulfill Leibniz law,7

(A,BC) = (A,B)C + B(A,C). (2.20)

In fact, the product law leads to a contradiction with linearity,
antisymmetry and (C,Q) = 0 [32]. Consider, for instance, a
hybrid system with classical orbital angular momentum L and
quantum spin S, then, if (2.20) is assumed,

0 = (L · S,L · S) = (LiSi,Lj )Sj + Lj (LiSi,Sj )

= εijkLkSiSj + LjLiεijkSk = i�L · S.

(2.21)

In the second equation, we have used that L and S are angular
momenta [(Li,Lj ) = εijkLk , and similarly Si] and in the last
equality it has been used that S × S = i�S but L × L = 0
classically since the Li are commuting variables.

More generally, if there are two sectors such that (C,Q) = 0
and C’s commute with Q’s, and a bracket ( , ) is a two-sided
derivation, two different expansions hold:

(CQ,C ′Q′) = (CQ,C ′)Q′ + C ′(CQ,Q′)

= (C,C ′)QQ′ + C ′C(Q,Q′),

(CQ,C ′Q′) = (C,C ′Q′)Q + C(Q,C ′Q′)

= (C,C ′)Q′Q + CC ′(Q,Q′). (2.22)

We can see that there is a problem if the C’s are c numbers
and the Q’s are not. More explicitly, subtracting the two
expressions one finds

(C,C ′)[Q,Q′] = [C,C ′](Q,Q′). (2.23)

7Hence, also (AB,C) = A(B,C) + (A,C)B due to antisymmetry.
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This implies that such bracket is only consistent in two cases:
(i) all the variables commute, i.e., both sectors are classical, or
(ii) ( , ) = [ , ]/(i�) for some � common to the two sectors, i.e.,
both sectors are quantal. The uniqueness of � has been noted
in [32–34].

Therefore, a hybrid quantum-classical bracket cannot be a
derivation. The product law would guarantee that, if C = AB

at t = 0, C(t) = A(t)B(t) at any other time. The failure to
comply with this implies that classical variables can evolve
into noncommuting observables, in general.8 This is the way
quantum fluctuations propagate into the classical sector, the
so-called quantum back-reaction. In fact, as shown in [25],
quantum fluctuations are not allowed for degrees of freedom
which are purely c-number variables.

It should be noted that the product of observables has a
physical meaning when the two observables commute with
each other, namely, AB represents the product of the numerical
values of A and B. This is the case of two classical variables
or of two observables belonging to two different sectors. No
such a physical meaning is attached to the product when the
observables do not commute. Actually, the product of two
noncommuting quantum Hermitian operators is not Hermitian,
and so is not an observable.9

The axioms in Eqs. (2.8), (2.9), and (2.12), plus the
Lie bracket condition, are basic requirements on the hybrid
dynamical bracket. A further requirement is that positivity of
a hybrid observable must be preserved by the evolution. This is
the case in quantum and classical dynamics. We postpone the
discussion of this requirement which is deferred to Sec. VII.

Regrettably, the postulates in (2.8) are two general (too
weak) to be able to obtain the most general bracket consistent
with them. So, to be able to obtain definite answers, we will re-
place (2.8) with stronger assumptions. Namely, following [25]
we will require

(C,A) = {C,A}, (Q,A) = [[Q,A]]

∀ C ∈ Ac,Q ∈ Aq,A ∈ A (2.24)

or, equivalently,

(C,C ′Q′) = {C,C ′} Q′, (Q,C ′Q′) = [[Q,Q′]] C ′,

C,C ′ ∈ Ac, Q,Q′ ∈ Aq . (2.25)

Clearly, these postulates imply those in Eq. (2.8). They
also guarantee Eq. (2.12) since 1 is simultaneously a purely
classical and a purely quantal observable.

8In [32] it is argued that if observables of two sectors commute at
t = 0 but not at other times, this implies an unacceptable privileged
origin of time. In fact, this is only so if the product is regarded as a
privileged operation too: one can evolve the product at t = 0 into a
new isomorphic ∗ product at time t and observables would commute
with respect to this new product. Going even further, one can change
the representation of the observables so that in the new representation
the ∗ product is just the ordinary product. This is the Schrödinger
picture.

9In some hybridization schemes, the concept of product of two
arbitrary hybrid observables is simply never introduced nor required.
On the other hand, a meaning can be given to the commutator [A,B]
since 〈−i[A(t1),B(t2)]〉 (t1 > t2) is the perturbation on 〈A(t1)〉 due to
a small term B added to the Hamiltonian at time t2 [35].

The justification of the stronger postulates is as follows:
They are such that the observable C ′Q′ evolves into C ′(t)Q′
if H = C, and to C ′Q′(t) if H = Q. That is, if the two sectors
are dynamically uncoupled (i.e., H = C + Q), each factor in
a product observable C ′Q′ evolves independently, according
to its own dynamics. This property certainly holds true for two
classical sectors or for two quantum sectors, so we postulate
the same property in the hybrid case.

The axioms (2.24) immediately imply that the operators
of the type (C, ) and (Q, ), and hence also (C + Q,),
act as derivations in A . (This property will be used in
Sec. III.)

On the other hand, (A, ) is a derivation on Ac or Aq (but
not in A in general) since

(A,CC ′) = (A,C)C ′ + C(A,C ′),

(A,QQ′) = (A,Q)Q′ + Q(A,Q′). (2.26)

An immediate consequence of this latter property is that when
one or more classical observables Ci are constants of motion
[i.e., (H,Ci) = 0], any function of them is also conserved. The
same is true for functions of quantum-conserved observables.
Nothing would be implied, in principle, for the conservation
of products of two arbitrary (hybrid) constants of motion.
Nevertheless, we show below that the product of a classical
constant of motion with a hybrid constant of motion is indeed
conserved [point (7) at the end of Sec. IV C].

The axioms (2.24) do not directly stipulate any condition
for (CQ,C ′Q′), however, the Lie bracket requirement is
rather stringent. In fact, it is shown in [25] that there is no
Lie bracket fulfilling (2.24) when both the classical and the
quantum sectors are of position-momentum type. The proof
is made explicitly for the one-dimensional case but it holds
for any number of dimensions. Also, the precise nature of
the classical sector is not relevant. This implies that a fully
consistent formulation of hybrid quantum-classical systems
with quantum sector H = L2(Rn) does not exist, at least if
one insists on the stronger postulates (2.24).

What we show below is that if the Hilbert space of
the quantum sector is finite dimensional, it is possible
to construct a quantum-classical Lie bracket obeying the
axioms (2.24) plus (2.9) and, moreover, such bracket is
unique.10 Unfortunately, we also show in Sec. VII that the
hybrid bracket does not preserve positivity, and so it is not
acceptable as a consistent formulation.

C. Alternative hybridization approaches

Before leaving this section, we want to mention other
approaches used in the literature to define quantum-classical
hybrid systems. The traditional approach to mixing quantum
and classical degrees of freedom is through a mean-field or
Ehrenfest dynamics. In such dynamics there is a Hamiltonian
H (x,k) which is a Hermitian operator in the quantum Hilbert
space and a function of the classical variables, so it is a
hybrid observable of A = Ac ⊗ Aq . The quantum sector
evolves following the Schrödinger equation, and there the

10At least if one insists that Aq is the set of all operators.
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classical degrees of freedom act as time-dependent external
parameters appearing in the quantum Hamiltonian. On the
other hand, the classical degrees of freedom evolve classically
using as classical Hamiltonian the expectation value of the
hybrid Hamiltonian in the instantaneous quantum state. That
is,

i�
dψ

dt
= H (x,k)ψ,

dxi

dt
= ∂〈H (x,k)〉ψ

∂ki

,

dki

dt
= −∂〈H (x,k)〉ψ

∂xi
. (2.27)

In this dynamics, the two sectors affect each other but the
classical variables remain classical as they do not inherit
any quantum fluctuations, hence, the so-called quantum back-
reaction is missed [36,37].

Recently, it has been emphasized that the mean-field
dynamics can be expressed in the form of a Lie bracket
between hybrid observables [38–40]. The observables are
represented by functions of xi and ki as well as ψα and i�ψ∗

α ,
where |ψ〉 = ∑

α ψα|α〉. For instance, any quantum operator
Q is represented by 〈ψ |Q|ψ〉, and the Hamiltonian by
〈ψ |H (x,k)|ψ〉, while a classical observable C is represented
by C〈ψ |ψ〉. The normalization 〈ψ |ψ〉 = 1 is preserved by the
dynamics. The dynamical bracket is the Poisson bracket taking
ψα and i�ψ∗

α as canonical conjugated variables, in addition to
xi and ki . The dynamics is generated by the Poisson bracket
between the Hamiltonian and the observables, as in Eq. (2.1).
From this point of view, the canonical Ehrenfest dynamics
has a proper Lie bracket and also preserves the usual classical
and quantum dynamics when the two sectors are not coupled
in the Hamiltonian.

There are several well-known problems with the mean-field
approach (see, e.g., [23,37,41]). Here, we highlight two of
them. The first problem is that initially one starts with
observables of the type 〈ψ |A|ψ〉 with A ∈ A = Ac ⊗ Aq ,
but the Poisson bracket [using (x,k) and (ψ,i�ψ∗) as classical
variables] does not preserve this form (is not the expectation
value of any operator). So, (A ,A ) �⊆ A and A does not
close a Lie algebra of observables. The minimal algebra
containing A is very large; it probably contains all kinds of
functionals F (x,k,ψ,i�ψ∗) subjected only to the condition
of invariance under (ψ,i�ψ∗) → (ωψ,ω∗i�ψ∗) with ω ∈
U(1), that is, arbitrary functions of the blocks ψ∗

αψβ . As
argued above, in classical or in quantum mechanics, when
two different sectors are coupled, the observables are linear
combinations of products of the two sectors. The canonical
Ehrenfest dynamics is qualitatively different in this regard,
as it prompts an explosion in the number of new hybrid
observables. This is one example of emergent phenomena that
would only arise when a classical and a quantum sector are
coupled.

The second problem is related to statistical consistency,
as noted in [42]: Let us assume that initially the two sectors
are decoupled and the hybrid state is a certain density matrix
ρq in the quantum sector and some definite state in the
classical sector (this is not important), then let us switch on the
coupling between both sectors. In order to apply the mean-field
dynamics, one can proceed by decomposing ρq as a statistical

mixture of (not necessarily orthogonal) pure states, that is,

ρq =
∑

n

pn|ϕn〉〈ϕn|, 〈ϕn|ϕn〉 = 1, pn > 0,

∑
n

pn = 1. (2.28)

Then, one can apply the mean-field evolution for each such
pure state |ϕn〉 coupled to the classical sector. By definition
of statistical mixture, the expectation values will be obtained
by averaging over the various histories (one for each pure
state |ϕn〉) with weight pn. However, the decomposition of a
density matrix is not unique. As it turns out [42] the averages
of the hybrid observables depend not only on ρq , but also
on the concrete decomposition adopted. For instance, a beam
of unpolarized electrons (a quantum state) can be obtained
by an equal mixture of spin-up and -down electrons with
respect to any given quantization axis n̂. According to the
mean-field dynamics, if the beam passes through a chunk of
classical material, the evolution will depend on the concrete
choice of axis n̂. This would be another emergent phenomenon:
even if quantum mechanically two systems with the same
density matrix are completely indistinguishable, the coupling
to the classical sector would uncover hidden information in the
mixture: the experiment would be able to distinguish between
different mixtures of pure states leading to the same density
matrix. Note that the presence of hidden information would
be a feature of ordinary quantum mechanics, even if it is only
uncovered through coupling to a classical sector. However,
if all those new variables encoding the hidden information
in ρq exist (in ordinary quantum mechanics), one can ask
whether they would not contribute to the entropy (since they
encode physical information) and get thermalized, as any other
degree of freedom, and reflect on the observed specific heat,
for instance.

We find this very problematic. At variance with [21], we
propose here a principle of non(strong) emergence in quantum-
classical hybrid systems. If there were any truly classical
systems in nature they would be the measuring apparatuses
of the Copenhagen interpretation. But, it is precisely through
experiments that the standard quantum mechanics is estab-
lished, thus, any quantum-classical hybrid approach implying
extraordinary effects uncovered when quantum systems are
coupled to (hypothetical) classical ones should be rejected, in
our view.

Of course, an easy way out would seem to express the mean-
field prescription using a density matrix ρq for the quantum
sector:

i�
dρq

dt
= [H (x,k),ρq],

dxi

dt
= ∂〈H (x,k)〉ρq

∂ki

,

dki

dt
= −∂〈H (x,k)〉ρq

∂xi
. (2.29)

However, even when a hybridization prescription is formulated
using directly ρq (instead of pure states), statistical consistency
is not automatically guaranteed. By definition of mixture, if
ρq = p1ρ1 + p2ρ2, we should demand for the expectation val-
ues that 〈A〉ρq

= p1〈A〉ρ1
+ p2〈A〉ρ2

. Essentially, this requires
linearity in ρq in the evolution equations, and this requirement
is not fulfilled in Eq. (2.29).
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Linearity holds true by construction in the hybrid Heisen-
berg picture described above, Eq. (2.7). When the evolution of
observables is transferred to ρ, through Eq. (2.6), one obtains
in the Schrödinger picture

dρ

dt
= (H,ρ)′, (2.30)

where ( , )′ is the adjoint of ( , ) (see Sec. VI). An equation
like (2.30) cannot be written for the mean-field evolution.

It is easy to see that the two problems of explosion
in the number of hybrid observables and loss of statistical
consistency are related and are intrinsic to any mean-field-like
dynamics. The idea behind the Ehrenfest formulation is to
describe the two sectors in the classical setting of the phase
space M with coordinates X = (x,k,ψ,ψ∗), where ψ is the
vector with components ψα (if desired, one can use real vectors
Re ψ and Im ψ as coordinates, this is unessential). In that
dynamics each point X is a configuration of the hybrid system
and it evolves under a certain classical flow describing an
orbit X(t) on M . A mixed state corresponds to a probability
density σ (X) on M . If initially σ is Dirac delta at some
point X , it will be a Dirac delta at X(t) at time t , so in
particular the marginal density σ (x,k) will also be a Dirac
delta at all times: no fuzziness in the classical variables is
inherited by their coupling to the quantum sector, no quantum
back-reaction. The hybrid observables are functions F (X)
on M which evolve as F (X(t)). The subset of observables
in A corresponds to functions which are bilinear in ψ and
ψ∗, that is, Aαβ(x,k)ψ∗

αψβ . If one goes outside this set, new
observables emerge and also statistical consistency is lost. The
problem is that in all interesting cases (x(t),k(t)) will depend
on the initial (ψ,ψ∗) and this additional dependence implies
a breaking in the bilinearity on (ψ,ψ∗) in the observable. The
problem would be avoided if (x(t),k(t)) did not depend on the
quantum sector but this does not really describe two sectors in
mutual interaction. The problem noted is very general, even
if the concrete flow of the mean-field dynamics were replaced
by something more sophisticated.

We could cast our own hybrid systems using the extended
phase space M and observables as functions of the bilinear
type Aαβ(x,k)ψ∗

αψβ on it. We seek a suitable Lie bracket
defined on that set of functions but do not require from the
outset that A(X; t) = A(X(t)), which as we have just noted,
would break the bilinearity condition.

There are a whole variety of hybridization prescriptions
in the literature, such as those based on the Hamilton-Jacobi
approach [43,44], the mapping of the classical sector into a
quantum one [45,46], or the Bohmian particle [47–49], and
many others (see e.g. [36,50]), each with its own consistency
problems. Some of them are summarized in [21] and criticized
in [25,42,51]. Here, we stick to the Heisenberg picture
approach based on Ac ⊗ Aq with a canonical formulation
based on a dynamical Lie bracket, as it seems to be closest
to a standard purely quantum or purely classical description.
This approach bypasses the problem of explosion of hybrid
observables, the emergence of extraordinary effects uncovered
by the hybrid coupling or problems with statistical consistency.
The one solution we find is flawed, however, by the lack of
positivity of the measure, a fatal problem already observed
long ago in [23] for the bracket ( , )s .

III. PARTICLE WITH CLASSICAL POSITION
MOMENTUM AND QUANTUM SPIN- 1

2

In this section, we consider the hybrid system of a particle
with classical position and momentum and quantum spin- 1

2 .
Versions of this problem have been considered before in the
literature. For instance, Ref. [52] makes one such study in the
context of a Hamilton-Jacobi formulation, which is subject to
the criticism expressed in Sec. II C.

A. Hybrid observables and bracket

The observables of the classical sector are complex-valued
functions f (x,k). This defines the set Ac. On the other hand,
the quantum Hilbert space is C2, so the quantum operators
are 2 × 2 complex matrices. This defines Aq . These can be
expressed as

∑3
μ=0 aμσμ where the aμ are four complex

numbers, σi , i = 1,2,3, are the Pauli matrices, and σ0 = 1
is the 2 × 2 identity matrix.

The hybrid quantum-classical observables are generated
from tensor product of the quantum and classical sectors, so
they are linear combinations of products of functions of (x,k)
with the σμ. This defines A = Ac ⊗ Aq . Therefore, the hybrid
observables are functions of x and k that take values in the set
of 2 × 2 matrices

A ∈ A , A(x,k) =
(

A0 + �

2 A3
�

2 A1 − i�
2 A2

�

2 A1 + i�
2 A2 A0 − �

2 A3

)

= A0(x,k)1 + A(x,k) · S,

S ≡ �

2
σ . (3.1)

For proper observables A = A† and the functions Aμ(x,k) are
real.

A hybrid observable A is purely classical when it acts as
a multiple of the identity on the quantum sector, i.e., when
A = A01 and A ≡ 0. Such observable commutes with any
other observable, that is, [[A, ]] ≡ 0. On the other hand, A is
purely quantal when the four functions Aμ(x,k) are actually
independent of (x,k) i.e., take a constant value aμ on the phase
space. For such a purely quantal observable {A, } ≡ 0.

For a hybrid observable A, we will call A0 the classical
part of the observable and A · S its quantal part. To assign a
canonical structure in the hybrid system, we need to define
a Lie bracket in the set of hybrid observables. A Lie bracket
that fulfills the axioms in Eq. (2.24), as well as (2.9), is the
following one:

(A0 + A · S,B0 + B · S)

:= {A0,B0} + {A0,B} · S + {A,B0} · S + A × B · S.

(3.2)

It is easy to see that this bracket fulfills the axioms (2.24).
Indeed, when B = C1 is purely classical

(A,C) = (A0 + A · S,C) = {A0,C} + {A,C} · S = {A,C},
(3.3)
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Likewise, when Q = Q01 + Q · S is purely quantal [the Qμ

are constant with respect to (x,k)],

(A,Q) = (A0 + A · S,Q0 + Q · S) = A × Q · S = [[A,Q]].

(3.4)

Obviously, the bracket in Eq. (3.2) is also linear and antisym-
metric. Remarkably, it obeys the Jacobi identity too. This will
follow as a particular case in the next section. In fact, this is
the unique Lie bracket consistent with the postulates. This is
shown in Sec. V.

The total angular momentum, with the usual form

J = L + S, L = x × k, (3.5)

fulfills the angular momentum algebra (Ji,Jj ) = iεijkJk , and
is the generator of the rotations in A . As we noted in the
previous section, the postulates (2.24) guarantee that operators
of the form (C + Q,) are derivations. So, ( J, ) is a derivation
and this is useful to construct observables which are scalar
under rotations, or more generally, tensor with well-defined
transformations under rotations. For instance, k and S are
vectors and k · S is a scalar, i.e.,

(Ji,kj ) = εijkkk, (Ji,Sj ) = εijkSk, ( J,k · S) = 0. (3.6)

In general, a hybrid observable constructed with the basic
vectors x, k, and S plus δij and εijk , as usual, has the standard
tensorial behavior under rotations. This follows from the fact
that L in J produces the usual rotation on the classical factors
and S on the quantum factors of the observable, while δij and
εijk are unchanged due to ( J,1) ≡ 0.

B. Hybrid spin-orbit dynamics

Let us consider a concrete dynamics for the particle
with classical position momentum and quantum spin- 1

2 . For
instance, let

H = k2

2M
+ gL · S. (3.7)

In this dynamics, the total angular momentum is conserved

( J,H ) = 0, (3.8)

and, in turn, H is a scalar under rotations. Other constants of
motion are k2, L2, L · S, and S2 as is readily verified (in fact,
S2 = 3

4 �
21).

The classical orbital angular momentum and the quantum
spin are not separately conserved,

(L,H ) = −(S,H ) = −gL × S. (3.9)

This gives their time variation to O(t). The full evolution of S
is given by

S(t) = R−1
t S, (3.10)

where Rt is the rotation with parameters φ = −gt L.11 Corre-
spondingly

L(t) = J − S(t) = L − (R−1
t − 1)S. (3.11)

11For φ = φn̂, with n̂2 = 1, n̂ is the rotation axis and φ the rotation
angle.

So, L(t) picks up a quantum component during its evolution.
Note that because the bracket is not a derivation, (AB)(t)
need not coincide with A(t)B(t). In particular, (L2)(t) =
L2 does not coincide with L(t)2. Nevertheless, L2 is a
constant of motion and this is still a meaningful nontrivial
statement, namely, the expectation value 〈L2〉ρ(t) remains time
independent in any state as ρ(t) evolves in the Schrödinger
picture.

Also, let us note that, even if L̇ = (L,H ) = −gL × S (at
t = 0), this does not imply that L̈ is given by −g(L̇ × S +
L × Ṡ), as the product law does not apply. Actually, that
expression is not even Hermitian. The correct result is instead

L̈ = ((L,H ),H ) = g2(L2 S − L · S L). (3.12)

The full evolution of a generic observable can be worked
out for H = gL · S, i.e., in the large-M limit. (Although in
this case the coupling g can be eliminated by rescaling the
time, we keep it for clarity.) Let

A(x,k; t) = a(x,k; t) + b(x,k; t) · S. (3.13)

The equations of motion (2.7) can be written as

∂a

∂t
= 0,

∂b
∂t

= g{a,L} + gb × L. (3.14)

Note that here x and k, or L ≡ x × k, are just variables, they
do not evolve. The evolution is on a and b.

The first equation says that actually a is time independent.
Taking a new time derivative gives

∂2b
∂t2

= g
∂b
∂t

× L, (3.15)

with solution

∂b
∂t

= Rt

∂b
∂t

∣∣∣∣
t=0

, (3.16)

where Rt is the same as in Eq. (3.10) (i.e., a rotation of angle
−gtL over the axis L/L). Thus, the full solution is

a(t) = a(0),
(3.17)

b(t) = Rt b(0) + gt
h · L
L2

L + 1

L2
(Rt − 1)(L × h),

where L = |L| and

h ≡ {a,L} = x × ∂a

∂x
+ k × ∂a

∂k
. (3.18)

For A(0) = S, this formula reproduces Eq. (3.10), and
Eq. (3.11) is reproduced too. For A(0) = x, one obtains

x(t) = x + gt L × x
L · S
L2

+ L
L2

(Rt x − x) · S . (3.19)

The same expression can be written alternatively as

x(t) = x + gt S × x + L
L2

(Rt x − x + gt L × x) · S. (3.20)

In this form, the connection with ẋ(0) = (x,H ) = gS × x
is more transparent since the last term is O(t2). Completely
similar expressions apply for k(t).

Explicit solutions are also obtained for the special case in
which a and b are functions of L only, as this property is
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preserved during evolution with the spin-orbit Hamiltonian.
This gives

a(t) = a(0), b(t) = ∇a + Rt [b(0) − ∇a]. (3.21)

(The nablas stand for derivatives with respect to L.) In this
simpler setting, we have explicitly checked that the canonical
bracket is preserved during evolution, i.e., (A(t),B(t)) =
(A,B)(t).

IV. HYBRID LIE BRACKET

In this section we show how hybrid brackets on A , fulfilling
the postulates of Eqs. (2.24) and (2.9), can be constructed when
the Hilbert space of the quantum sector is finite dimensional,

dim H = n < ∞. (4.1)

In Appendix A we comment on slightly more general con-
structions.

A. Definition of the bracket

To construct the bracket, let us define ˜Aq ⊆ Aq as the set
of traceless operators

˜Aq = { Q̃ ∈ Aq,tr(Q̃) = 0 }. (4.2)

Then, any Q ∈ Aq can be uniquely decomposed as

Q = Qc + Q̃, (4.3)

where Qc ∝ 1 and tr(Q̃) = 0, with

Qc ≡ 1

n
tr(Q)1. (4.4)

In turn, the hybrid observables can be uniquely decomposed
as

A = C1 + Ã, (4.5)

where C is classical and Ã is traceless. So,

A = Ac ⊕ ˜A , (4.6)

where ˜A denotes the set of traceless hybrid operators. This
set is ˜A = Ac ⊗ ˜Aq , i.e.,

Ã =
∑

i

CiQ̃i, Ci ∈ Ac, Q̃i ∈ ˜Aq . (4.7)

The other property we need is that ˜Aq is closed under
commutation

[[ ˜Aq, ˜Aq]] ⊆ ˜Aq . (4.8)

This follows from tr([Q1,Q2]) = 0 due to the cyclic property
of the trace.

In these definitions it is easy to recognize the pattern of the
example of the particle with classical position momentum and
quantum spin- 1

2 considered in the previous section. There, Ac

is {A0(x,k)1} and ˜A is {A(x,k) · S}. Our statement is that a
Lie bracket ( , ) can be defined in A as follows:

(C + Ã,C ′ + Ã′) := {C,C ′} + {Ã,C ′} + {C,Ã′} + [[Ã,Ã′]].

(4.9)

Here { , } and [[ , ]] are the usual classical and quantum
dynamical brackets, and the 1 operator is implicit. More
explicitly⎛

⎝C1 +
∑

i

CiQ̃i,C
′1 +

∑
j

C ′
j Q̃

′
j

⎞
⎠

= {C,C ′} 1 +
∑

j

{C,C ′
j } Q̃′

j +
∑

i

{Ci,C
′} Q̃i

+
∑
i,j

CiC
′
j [[Q̃i,Q̃

′
j ]]. (4.10)

Here, and also in the proof below, we use the symbols Q̃, Q̃i ,
etc., to denote operators in ˜Aq (rather than to arbitrary elements
of Aq). The symbols C,Ci , etc., will denote elements of Ac,
i.e., classical observables; these are c-number functions on the
phase space. The definition in Eq. (3.2) for a particle with
classical position momentum and quantum spin- 1

2 is just an
instance of the bracket in Eq. (4.10) for the general case.

B. Proof of the Lie bracket property

Clearly, the construction in Eq. (4.9) is linear and antisym-
metric and fulfills the axioms Eq. (2.24), as well as Eq. (2.9).
We now show that it also fulfills the Jacobi identity. The Jacobi
identity states that for any three hybrid observables A1, A2, and
A3,

(A1,(A2,A3)) + (A2,(A3,A1)) + (A3,(A1,A2)) = 0 (4.11)

or, equivalently (using antisymmetry),

(A1,(A2,A3)) = ((A1,A2),A3) + (A2,(A1,A3)). (4.12)

For each observable, it is sufficient to consider the two cases
A = C or A = CQ̃. The eight possibilities so generated can
be classified by the number nq of Q̃’s involved. It is only
necessary to check the four cases nq = 0,1,2,3.

Case nq = 0. For three classical observables C1, C2, and
C3 (as usual we omit the factor 1)

{C1,{C2,C3}} + {C2,{C3,C1}} + {C3,{C1,C2}} = 0. (4.13)

This is trivially true being { , } a Lie bracket.
Case nq = 1. For A1 = C1Q̃1 and Ai = Ci, i = 2,3,

(C1Q̃1,(C2,C3)) = {C1,{C2,C3} } Q̃1,

((C1Q̃1,C2),C3) + (C2,(C1Q̃1,C3))

= ({C1,C2} Q̃1,C3) + (C2,{C1,C3} Q̃1

= {{C1,C2},C3} Q̃1 + {C2,{C1,C3}} Q̃1. (4.14)

The two expressions coincide since { , } is a Lie bracket.
Case nq = 2. For A1 = C1 and Ai = CiQ̃i, i = 2,3,

(C1,(C2Q̃2,C3Q̃3)) = (C1,C2C3[[Q̃2,Q̃3]])

= {C1,C2C3} [[Q̃2,Q̃3]], (4.15)

using that [[Q̃2,Q̃3]] ∈ ˜Aq [Eq. (4.8)] in the second equality.
On the other hand,

((C1,C2Q̃2),C3Q̃3) + (C2Q̃2,(C1,C3Q̃3))

= ({C1,C2} Q̃2,C3Q̃3) + (C2Q̃2,{C1,C3} Q̃3)

= {C1,C2} C3[[Q̃2,Q̃3]] + C2{C1,C3} [[Q̃2,Q̃3]]. (4.16)
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The expressions in (4.15) and (4.16) coincide since { , } is a
derivation and so {C1,C2C3} = {C1,C2} C3 + C2{C1,C3}.

Case nq = 3. For Ai = CiQ̃i, i = 1,2,3,

(CiQ̃i,(CjQ̃j ,CkQ̃k)) = (CiQ̃i,CjCk[[Q̃j ,Q̃k]])

= CiCjCk[[Q̃i,[[Q̃j ,Q̃k]]]]. (4.17)

Clearly, this expression vanishes upon adding cyclic permuta-
tions since this is true for [[ , ]] and the C’s commute.

This completes the proof. �

C. Observations

The following observations are in order:
(1) In the proof we have actually used only certain mathe-

matical properties of A and ˜A . In Appendix A we comment
on more general constructions relaxing the assumptions that
H must be finite dimensional, Aq should contain all operators,
and ˜Aq should be the subset of traceless operators in Aq .

(2) We have noted that there is no hybrid dynamical Lie
bracket fulfilling the axioms in Eq. (2.24) when the classical
and quantum sectors are of position-momentum type [25].
The impediment comes from a quantum sector with Hilbert
space H = L2(Rn). In this case, the condition [[ ˜Aq, ˜Aq]] ⊆

˜Aq (used in the case nq = 2) is violated since the commutator
of two operators produces in general a component along the
1. An obvious example is that of the canonical commutation
relations [[qi,pj ]] = δi

j1.
(3) The bracket in Eq. (4.9) is not a derivation. This can be

seen by comparing our prescription

(CQ̃,C ′Q̃′) = CC ′[[Q̃,Q̃′]] (4.18)

with Eq. (2.22), which has an extra term.
(4) The bracket in Eq. (4.9) is somewhat simi-

lar to the “standard” proposal ( , )s in Eq. (2.14), but
bypasses the problem of the Jacobi identity by treating
separately the classical component (C in A = C + Ã) and
the quantum component (Ã) of the observables. With the
“standard” bracket one would obtain the same result as with
our Lie bracket for the cases covered by the axioms, i.e., when
one of the observables is purely classical or purely quantal,
while for the case of two properly hybrid observables

(CQ̃,C ′Q̃′)s = CC ′[[Q̃,Q̃′]] + 1
2 (Q̃Q̃′ + Q̃′Q̃){C,C ′},

(4.19)

which differs from our prescription in Eq. (4.18) by the last
term.

(5) It is easy to check that our bracket can also be expressed
as

(CQ,C ′Q′) = CC ′[[Q,Q′]] + {C,C ′}(QQ′ − Q̃Q̃′),

(4.20)

where Q = Qc + Q̃, Q′ = Q′
c + Q̃′, with Qc,Q

′
c ∝ 1 and

Q̃,Q̃′ ∈ ˜Aq , and C,C ′ ∈ Ac. The factor QQ′ − Q̃Q̃′ is ac-
tually symmetric with respect to Q ↔ Q′.

(6) Our bracket can be written in form similar to that in
Eq. (3.2), as follows. Let {qi} be a basis of ˜Aq (similar to
Si = �σi/2 for spin- 1

2 ) then because ˜Aq defines a Lie algebra

with the commutator

[[qi,qj ]] = cij
kqk (4.21)

for some structure constants. The elements of ˜Aq can be
written as a = a · q = aiqi and so, using a standard notation,

[[a,b]] = a × b · q, (a × b)k ≡ cij
kaibj . (4.22)

With this notation our hybrid bracket takes the form

(A0 + A · q,B0 + B · q)

= {A0,B0} + {A0,B} · q + {A,B0} · q + A × B · q.

(4.23)

(7) It is interesting to note that for this bracket the product
of a classical constant of motion C with a generic hybrid
observable A gives

(CA,H ) = C(A,H ) ∀ A ∈ A . (4.24)

This follows from the fact that { , } is a derivation and
{C,H0} = {C,H} = 0, where H = H0 + H · q. An immedi-
ate consequence is that if A is also a constant of motion, the
product CA is conserved too. Of course, similar assertions
hold when C is invariant under a transformation group.

V. UNIQUENESS OF THE HYBRID BRACKET

In this section we show that the hybrid bracket of Eq. (4.23)
is the only solution to the double requirement of being a Lie
bracket and fulfilling the axioms in Eq. (2.24). This rather
technical section is entirely devoted to prove this. We explicitly
assume that the Hilbert space is finite dimensional and Aq is
the set of all operators. The uniqueness does not automatically
hold in the generalizations discussed in Appendix A.

Let n = dim H , so Aq is the set of n × n matrices. Any
such matrix can be written as

Q = a1 + b · λ, (5.1)

where the λi, i = 1, . . . ,n2 − 1, are the Gell-Mann matrices
of SU(n) (a generalization of the Pauli matrices) [53]. The
Gell-Mann matrices are n2 − 1 linearly independent Hermitian
and traceless matrices which define a basis of ˜Aq :

λi = λ
†
i , tr(λi) = 0. (5.2)

They fulfill the relations

λiλj = 2

n
δij + dijkλk + ifijkλk, (5.3)

where the tensor dijk is fully symmetric and fijk is fully
antisymmetric. The λi are normalized so that filmfjlm = nδij .

The most general hybrid observable takes the form

A = C + C · q, (5.4)

where C and C are c-number functions on the phase space and
we have introduced the basis of ˜Aq ,

qi ≡ �

2
λi, (5.5)

which fulfills the commutation relations

[[qi,qj ]] = fijk qk, (5.6)

as follows from Eq. (5.3).
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To fix the hybrid bracket, we need to specify (C,C ′),
(Cqi,C

′), and (Cqi,C
′qj ). (We already assume antisymmetry

of the bracket.) The first two are immediate from the postulates

(C,C ′) = {C,C ′}, (Cqi,C
′) = {C,C ′} qi, (5.7)

and the postulates also require

(Cqi,qj ) = fijkC qk. (5.8)

The most general form of (Cqi,C
′qj ) can be written as

(Cqi,C
′qj ) = (C,C ′)ij1 + (C,C ′)ijk qk, (5.9)

where (C,C ′)ij and (C,C ′)ijk are two bilinear operations to be
specified. To do this, let us enforce the Jacobi identity for the
three operators Cqi, C

′qj , and qk . On one hand,

((Cqi,C
′qj ),qk) = (C,C ′)ij lflkm qm, (5.10)

while by Jacobi this equals

((Cqi,qk),C ′qj ) + (Cqi,(C
′qj ,qk))

= fikl(C,C ′)lj + fjkl(C,C ′)il + fikl(C,C ′)ljm qm

+ fjkl(C,C ′)ilm qm. (5.11)

This is equivalent to

0 = fikl(C,C ′)lj + fjkl(C,C ′)il ,

0 = fikl(C,C ′)ljm + fjkl(C,C ′)ilm + fmkl(C,C ′)ij l . (5.12)

The right-hand sides represent the infinitesimal SU(n) rota-
tions of (C,C ′)ij and (C,C ′)ijm, and so the equations imply that
these are SU(n)-invariant tensors. The only available invariant
tensors of rank 2 and 3 are those in Eq. (5.3), thus, this leads
to

(Cqi,C
′qj ) = (C,C ′)δ δij1+(C,C ′)f fijk qk + (C,C ′)ddijk qk.

(5.13)

Here ( , )δ, ( , )f , and ( , )d are three auxiliary brackets to be
specified. The antisymmetry of ( , ) requires

(C,C ′)δ = −(C ′,C)δ,

(C,C ′)f = +(C ′,C)f ,

(C,C ′)d = −(C ′,C)d . (5.14)

Further, Eq. (5.8) requires

(C,1)δ = (C,1)d = 0, (C,1)f = C. (5.15)

Of course, our hybrid bracket in Eq. (4.23) fulfills all these
conditions. Specifically, for our hybrid bracket

(C,C ′)δ = (C,C ′)d = 0, (C,C ′)f = CC ′. (5.16)

We want to show that this is actually the unique solution for a
Lie bracket fulfilling the constraints in Eqs. (5.14) and (5.15).

To restrict the form of the auxiliary brackets ( , )δ , ( , )f ,
and ( , )d , we need to fully enforce the Jacobi identity for three
generic hybrid operators. It is easy to verify that if there are
zero or one qi involved, Jacobi is fulfilled automatically. So,
the first nontrivial constraint comes from three operators with
two qi :

((Cqi,C
′qj ),C ′′) = ((Cqi,C

′′),C ′qj ) + (Cqi,(C
′qj ,C

′′)).

(5.17)

Expanding this expression using Eqs. (5.7) and (5.13), and
noting that the three tensors δij , fijk , and dijk are linearly
independent, leads to the relations

{(C,C ′)δ,C ′′} = ({C,C ′′},C ′)δ + (C,{C ′,C ′′})δ,
{(C,C ′)f ,C ′′} = ({C,C ′′},C ′)f + (C,{C ′,C ′′})f ,

{(C,C ′)d ,C ′′} = ({C,C ′′},C ′)d + (C,{C ′,C ′′})d . (5.18)

In other words, the Poisson bracket acts as a derivation (in
the sense of Lie products [54]) with respect to the auxiliary
brackets. In Appendix B, we show that these conditions
have as unique solutions [using the symmetry conditions in
Eq. (5.14)]12

(C,C ′)δ = α{C,C ′}, (C,C ′)f = βCC ′,
(5.19)

(C,C ′)d = γ {C,C ′},
for some arbitrary constants α, β, and γ . (Our bracket
corresponds to α = γ = 0 and β = 1.)

The value β = 1 follows from Eq. (5.15). To fix α and γ ,
we proceed to impose Jacobi with three qi . Using previous
results, one obtains (for convenience we retain an arbitrary β)

(Cqi,(C
′qj ,C

′′qk)) = αβ{C,C ′C ′′}fijk+αγ {C,{C ′,C ′′}} dijk

+α{C,{C ′,C ′′}}δjkδim qm

+β2CC ′C ′′fjklfilm qm

+βγ {C,C ′C ′′}fjkldilm qm

+βγ C{C ′,C ′′}djklfilm qm

+ γ 2{C,C ′C ′′}djkldilm qm. (5.20)

This expression must vanish upon summation on its three
cyclic permutations. Doing this, the terms with αβ, αγ , and
β2 cancel identically. This leaves, for all C,C ′, and C ′′, and
all i,j,k,m,

0 = α{C,{C ′,C ′′}}δjkδim + βγ {C,C ′C ′′}fjkldilm

+βγ C{C ′,C ′′}djklfilm + γ 2{C,C ′C ′′}djkldilm + c.p.,

(5.21)

where c.p. stands for cyclic permutations of
({C,i},{C ′,j},{C ′′,k}).

For n � 4 the rank-4 invariant tensors span a nine-
dimensional space,13 and a basis is given by [53]

δjkδim, δkiδjm, δij δkm,

djkldilm, dkildjlm, dij ldklm,

djklfilm, dkilfjlm, fijldklm. (5.22)

As a consequence, the vanishing of the components along
δjkδim and djkldilm in Eq. (5.21) requires

0 = α{C,{C ′,C ′′}}, 0 = γ 2{C,C ′C ′′}. (5.23)

12In the proof of Appendix B we explicitly assume that the classical
sector is of position-momentum type. It is not obvious whether the
same proof covers more general cases.

13This is just the number of times that the singlet representation
appears in the direct product of four adjoint representations of SU(n).
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Since {C,{C ′,C ′′}} or {C,C ′C ′′} need not be zero, it follows
that α = γ = 0, which is our bracket (together with β = 1).
For these values, all terms in Eq. (5.21) vanish as well, and
this checks again that ours is a Lie bracket.

When n = 3, the space of rank-4 invariant tensors spans an
eight-dimensional space, due to the relation

δjkδim + δkiδjm + δij δkm = 3(djkldilm + dkildjlm + dijldklm).

(5.24)
Eliminating δij δkm, the vanishing of the components along
δjkδim and djkldilm in Eq. (5.21) implies

0 = α
({C,{C ′,C ′′}} − {C ′′,{C,C ′}}),

0 = γ 2 {C,C ′C ′′} − 3α{C,{C ′,C ′′}}. (5.25)
Once again, the brackets need not vanish14 so α = γ = 0.

For n = 2, dijk = 0 [( , )d does not appear] and the
space has dimension three with δjkδim, δkiδjm, and δij δkm as
basis. Equation (5.21) requires α = 0. Throughout, we have
implicitly assumed n > 1. When dim H = 1, the qi do not
exist. There is just one quantum state which is therefore
completely invariant under evolution or transformations. The
dynamical bracket reduces to the classical one.

This completes the proof of uniqueness. �
It is interesting that a proof along the same lines can

be provided for a quantal-quantal bracket. This means the
following: Let us have two quantum systems provided with
their usual dynamical bracket (the commutator), and let us try
to assign the most general dynamical bracket to the compound
system restricted by postulates similar to those imposed in
the quantum-classical hybrid case. Then, one finds that the
commutator is the unique solution as a consistent dynamical
bracket of the compound system. We have checked this when
one of the sectors is of position-momentum type and the other
a finite-dimensional Hilbert space (adapting the proof given in
this section). As shown in [25], the same holds when the two
quantum sectors are of position-momentum type and also in a
classical-classical system, i.e., only the Poisson bracket is con-
sistent as dynamical bracket of the classical compound system.

VI. SCHRÖDINGER PICTURE

A. Definition of the hybrid bracket in the Schrödinger picture

Up to now, we have been studying the evolution of hybrid
systems within the Heisenberg picture; in this section we
obtain the dual description in the Schrödinger picture, in which
the density matrix ρ carries the dynamical evolution. To this
end, let us introduce the notation

〈〈A〉〉 ≡
∫

dnx dnk tr[A(x,k)], (6.1)

that is, the symbol 〈〈 〉〉 denotes integration over the classical
phase space plus trace over the quantum Hilbert space. In this
way, Eq. (2.6) can be rewritten as

〈A〉ρ = 〈〈Aρ〉〉, (6.2)

where ρ(x,k; t) is the density matrix of the hybrid system.

14For instance, for C = x2, C ′ = k2, and C ′′ = xk, {C,{C ′,C ′′}} −
{C ′′,{C,C ′}} = −8xk.

Throughout this section, we assume that the Hilbert space
is finite dimensional, and as in the rest of the paper (except
Appendix A), Aq contains all operators and Ãq is the subset
of traceless operators. In this case,

〈〈Ã〉〉 = 0 ∀ Ã ∈ ˜A . (6.3)

Further properties are

〈〈AB〉〉 = 〈〈BA〉〉, (6.4)

and also

〈〈{A,B}〉〉 = 〈〈[[A,B]]〉〉 = 0, (6.5)

using integration by parts in the first case and the cyclic
property of the trace in the second case. More generally,

〈〈{A1,A2}A3〉〉 = 〈〈A1{A2,A3}〉〉,
〈〈[[A1,A2]]A3〉〉 = 〈〈A1[[A2,A3]]〉〉. (6.6)

In order to obtain the evolution of ρ, we postulate as usual
that the expectation value must coincide in both pictures.
Therefore,

d

dt
〈A〉ρ =

〈〈
dA

dt
ρ

〉〉
=

〈〈
A

dρ

dt

〉〉
, (6.7)

in the Heisenberg and Schrödinger pictures, respectively. As a
consequence 〈〈

A
dρ

dt

〉〉
= 〈〈(A,H )ρ〉〉. (6.8)

This holds for any A, and so ρ obeys a certain linear equation
which can be written in the form

dρ

dt
= (H,ρ)′. (6.9)

Here, (A,B)′ is an operation which is linear in A and B.
The symbol ( , )′ is the dynamical bracket in the Schrödinger
picture. From the previous relations, it follows that this bracket
satisfies the condition

〈〈A(H,ρ)′〉〉 = 〈〈(A,H )ρ〉〉. (6.10)

Since A is completely arbitrary, this relation fully fixes (H,ρ)′:
indeed, 〈〈AB〉〉 = 0 for all A can only hold if B = 0, and so
〈〈AB1〉〉 = 〈〈AB2〉〉 for all A implies B1 = B2. Alternatively,

δ〈〈AB〉〉
δA

= B, (6.11)

implies that B is fixed from the knowledge of 〈〈AB〉〉 for all A.
Let us note that when all observables are classical

〈〈{A,H }ρ〉〉 = 〈〈A{H,ρ}〉〉 [using Eq. (6.6)]. Likewise, in the
quantum case 〈〈[[A,H ]]ρ〉〉 = 〈〈A[[H,ρ]]〉〉. So, in these two
cases the bracket takes the same form in the Heisenberg and
Schrödinger pictures:

{ , }′ = { , }, [[ , ]]′ = [[ , ]]. (6.12)

However, in the hybrid case ( , )′ need not coincide with ( , ),
and in fact it does not.
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B. Explicit construction of the hybrid bracket
in the Schrödinger picture

In order to fully determine the bracket from Eq. (6.10), we
will consider the most general hybrid operator A, which is
of the type C + C ′Q̃, with C,C ′ ∈ Ac and Q̃ ∈ ˜Aq [that is,
tr(Q̃) = 0]. We follow a procedure similar to that in the proof
of the Jacobi identity, namely, we work out the various cases
classified by the number nq of Q̃’s present in the operators ρ

and H in Eq. (6.10).
Case nq = 0. For arbitrary Ci and Q̃i ,

〈〈C1(C2,C3)′ 〉〉 = 〈〈(C1,C2)C3〉〉 = 〈〈C1{C2,C3}〉〉,
〈〈C1Q̃1(C2,C3)′ 〉〉 = 〈〈(C1Q̃1,C2)C3〉〉 = 〈〈C1Q̃1{C2,C3}〉〉,

(6.13)

where we have used Eq. (6.6). Hence, for all A〈〈A(C2,C3)′ 〉〉 =
〈〈A{C2,C3}〉〉 and so

(C2,C3)′ = {C2,C3}. (6.14)

Case nq = 1. Since we do not assume that ( , )′ is anti-
symmetric, we have to distinguish two cases, depending on
whether the Q̃ is in H or in ρ. In the first instance

〈〈C1(C2Q̃2,C3)′ 〉〉 = 〈〈(C1,C2Q̃2)C3〉〉
= 〈〈C1{C2,C3}Q̃2〉〉 = 0,

〈〈C1Q̃1(C2Q̃2,C3)′ 〉〉 = 〈〈(C1Q̃1,C2Q̃2)C3〉〉
= 〈〈C1C2C3[[Q̃1,Q̃2]]〉〉 = 0, (6.15)

where it has been used that tr(Q̃) = tr([A,B]) = 0. Therefore,

(C2Q̃2,C3)′ = 0. (6.16)

On the other hand, when the factor Q̃ is in ρ,

〈〈C1(C2,C3Q̃3)′ 〉〉 = 〈〈(C1,C2)C3Q̃3〉〉 = 〈〈C1{C2,C3}Q̃3〉〉,
〈〈C1Q̃1(C2,C3Q̃3)′ 〉〉 = 〈〈(C1Q̃1,C2)C3Q̃3〉〉

= 〈〈C1Q̃1{C2,C3}Q̃3〉〉. (6.17)

Hence,

(C2,C3Q̃3)′ = {C2,C3}Q̃3. (6.18)

Case nq = 2. In this case, we derive the following relations:

〈〈C1(C2Q̃2,C3Q̃3)′ 〉〉 = 〈〈(C1,C2Q̃2)C3Q̃3〉〉
= 〈〈C1{C2,C3}Q̃2Q̃3〉〉,

〈〈C1Q̃1(C2Q̃2,C3Q̃3)′ 〉〉 = 〈〈(C1Q̃1,C2Q̃2)C3Q̃3〉〉
= 〈〈C1Q̃1C2C3[[Q̃2,Q̃3]]〉〉. (6.19)

The second relation implies

(C2Q̃2,C3Q̃3)′ = C2C3[[Q̃2,Q̃3]] + C, (6.20)

where C is some element of Ac. This ambiguity follows from
〈〈C1Q̃1C〉〉 = 0. On the other hand, from the first relation it
follows that

(C2Q̃2,C3Q̃3)′ = {C2,C3}Q̃2Q̃3 + Ã, (6.21)

where Ã is some undetermined element of ˜A , since 〈〈C1Ã〉〉 =
0. To fulfill both conditions, we rewrite this relation in the form

(C2Q̃2,C3Q̃3)′ = {C2,C3}1

n
tr(Q̃2Q̃3) + Ã′, (6.22)

using that Q̃2Q̃3 = 1
n

tr(Q̃2Q̃3) + Q̃′, with Q̃′ traceless. Here,
n = dim H = tr(1). The conditions in Eqs. (6.20) and (6.22)
are consistent identifying C with {C2,C3} 1

n
tr(Q̃2Q̃3) and Ã′

with C2C3[[Q̃2,Q̃3]], so finally

(C2Q̃2,C3Q̃3)′ = C2C3[[Q̃2,Q̃3]] + {C2,C3}1

n
tr(Q̃2Q̃3).

(6.23)

In summary, the dynamical bracket in the Schrödinger
picture takes the form

(C1 + C ′
1Q̃1,C2 + C ′

2Q̃2)′

= {C1,C2} + {C1,C
′
2}Q̃2 + C ′

1C
′
2[[Q̃1,Q̃2]]

+{C ′
1,C

′
2}

1

n
tr(Q̃1Q̃2). (6.24)

This reduces to the classical or quantum brackets when the
observables are purely classical or purely quantal, respectively,
as it is easily verified. The density matrix must fulfill the
conditions

〈〈ρ〉〉 = 1, ρ† = ρ. (6.25)

These relations are preserved by the evolution induced by the
bracket since

〈〈(H,ρ)′〉〉 ≡ 0 (6.26)

using Eq. (6.5), and also

(A†,B†)′ = (A,B)′†. (6.27)

The dynamical bracket in the Schrödinger picture is not a
Lie bracket (is not even antisymmetric). Also, (H, )′ is not a
derivation. For instance, for a derivation one would have (with
H = C ′

1Q̃1)

(C ′
1Q̃1,C

′
2Q̃2)′ = (C ′

1Q̃1,C
′
2)′Q̃2 + C ′

2(C ′
1Q̃1,Q̃2)′

= 0 + C ′
2C

′
1[[Q̃1,Q̃2]], (6.28)

while actually

(C ′
1Q̃1,C

′
2Q̃2)′ = {C ′

1,C
′
2}

1

n
tr(Q̃1Q̃2) + C ′

2C
′
1[[Q̃1,Q̃2]].

(6.29)

The Schrödinger picture hybrid bracket can be written in a
form similar to Eq. (4.23) as

(A0 + A · q,B0 + B · q)′

= {A0,B0} + {A0,B} · q + A × B · q + �
2

2n
{A · ,B},

(6.30)

where, for a = aiqi and b = biqi ,

a · b ≡ gij a
ibj , gij = 2

�2
tr(qiqj ). (6.31)

C. Classical particle with classical position momentum
and quantum spin- 1

2

For illustration purposes, let us work out the evolution of
ρ(t) for the Hamiltonian H = gL · S, discussed in Sec. III.
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The general form of the density matrix is

ρ(x,k; t) = α(x,k; t) + β(x,k; t) · S. (6.32)

The equation of motion (6.9) leads to

∂α

∂t
= �

2

4
g{L · ,β}, ∂β

∂t
= gL × β. (6.33)

These equations can be solved to give

α(t) = α(0) − �
2

4L2
tr
(
R−1

t − 1
)
L · β(0)

+ �
2

4L2

[
gtLiLj − (

R−1
t − 1

)
il
εlmjLm

]
hij ,

β(t) = R−1
t β(0), (6.34)

where Rt is the same rotation as in Sec. III, and

hij ≡ {Li,βj (0)}. (6.35)

The expectation value with an observable A = a + b · S takes
the form

〈〈Aρ〉〉 =
〈〈

aα + �
2

4
b · β

〉〉
. (6.36)

The equivalence of the Heisenberg and Schrödinger pictures
requires〈〈

a(t)α(0) + �
2

4
b(t) · β(0)

〉〉
=

〈〈
a(0)α(t) + �

2

4
b(0) · β(t)

〉〉
.

(6.37)

Using integration by parts [Eq. (6.6)], one can verify, after
some algebra, that Eqs. (3.17) and (6.34) fulfill these relations.

In the simpler setting of ρ being a function of L only
(a property preserved by the evolution with the spin-orbit
dynamics) one obtains

α(t) = α(0) + �
2

4
∇ · (

R−1
t − 1

)
β(0), β(t) = R−1

t β(0).

(6.38)

From Eq. (6.36) and the formula of α(t) it is readily verified
that 〈L2〉ρ(t) = 〈〈L2α(t)〉〉 is independent of t for any initial
ρ(0).

VII. POSITIVITY FIASCO

As we have shown in Sec. V, rather general requirements
seem to completely fix in a unique way the form of the hybrid
dynamics. In this section, we show that unfortunately the
requirement of positivity is not fulfilled by such dynamics. The
same problem arises in the standard bracket of Eq. (2.14) [23].
Similar problems with positivity have been discussed in [55].

A. Heisenberg picture

In the Heisenberg picture, the requirement of positivity
is a particular case of the more general requirement of the
preservation of the range of an observable. In quantum
dynamics, the evolution of an observable takes the form

A(t) = U (t)−1AU (t), (7.1)

where U (t) denotes the evolution operator from time zero to
time t . Since this is a similarity transformation, the spectrum
of the observable is unchanged during the evolution, so the
range (in the sense of spectrum) is preserved.

In the classical case, the range of an observable A is the
range of the function A(x,k), i.e., the set of values that this
quantity can take when (x,k) is varied. This range is preserved
by the classical evolution. Indeed, the evolved observable at
time t, A(x,k; t), is nothing else than A(x(t),k(t)), where x(t)
and k(t) are the evolutions of x and k (i.e., the solution of the
Hamilton equations). Since that evolution is a bijection in the
phase space, the range of A is unchanged. For the discussion
of the hybrid case below, it is interesting to see the same thing
from another point of view. Let us assume for simplicity that
the range at time t is [a,∞[ and A(t) attains the minimum value
a at (x0,k0). In order for the range to change at a, one must
have ∂tA(x0,k0; t) different from zero, however, the classical
equation is

∂tA(x,k; t) = ∇xA(x,k; t) · ∇kH (x,k; t)

−∇kA(x,k; t) · ∇xH (x,k; t). (7.2)

So, ∇xA and ∇kA vanish at the minimum (x0,k0) and so does
∂tA(x,k; t).

The reason for the preservation of the range, either in the
classical or the quantum cases, is clear. The range of the
observable is the set of all possible values it can take in any of
the states of the system. The evolution corresponds to a change
of the state of the system, but a change of state cannot modify
the range since it already accounts for all possible values. In
this view it seems natural to demand the preservation of the
range of observables during evolution also in the hybrid case.

For a hybrid observable we define its range as the union
of all quantum spectra from all points of the classical phase
space. Another equivalent definition of the range of A is the
set of values 〈A〉ρ can take as ρ varies (restricted by the
conditions of positivity and normalization). This range must
not change during the evolution. In particular, if A is positive
(as an operator at all points (x,k)) this property ought to be
preserved. However, this is not true for our dynamical hybrid
bracket.

A simple counterexample (of preservation of positivity)
follows from the particle with classical position momentum
and quantum spin- 1

2 considered in Sec. III. Let us consider a
generic observable A = a + b · σ [Eq. (3.13)]. Such observ-
able will be positive at t = 0 provided its spectrum is positive
at all (x,k). Since the local spectrum is a ± ‖b‖, positivity
requires

a(x,k; 0) � ‖b(x,k; 0)‖ ∀ x,k. (7.3)

For the dynamics H = gL · S, the evolution is indicated in
Eq. (3.17). There, we can see in the equation for b(t) that the
first and third terms are bounded components as they depend
on Rt , however, the second term depends linearly with t . This
term, which need not vanish, will eventually dominate for large
(positive or negative) t and will spoil the positivity condition
a(t) � ‖b(t)‖. This shows that positivity is not preserved in
general by the hybrid dynamics.

The previous argument would not directly apply to a
dynamics like that in Eq. (3.21) (with phase space based on
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L only), nevertheless, also in this case one can find instances
of observables which are positive at t = 0 but not at all later
times.

B. Schrödinger picture

In the Schrödinger picture, ρ must be a positive operator
at all points. This guarantees that the expectation value
of arbitrary positive operators are positive. For instance,
〈(A − 〈A〉ρ)2〉

ρ
� 0 (with A Hermitian). And the positivity

of ρ must hold at all times, so it ought to be preserved by the
dynamical evolution. This is true in the classical and quantum
cases, but it is not guaranteed in the hybrid dynamics.

Since we have already seen that the positivity of an
observable is not preserved in the hybrid case, it follows that
the positivity of ρ will also be spoiled. Indeed,

〈A(t)〉ρ = 〈A〉ρ(t) (7.4)

in the Heisenberg and in the Schrödinger picture, respectively.
If A is positive but 〈A(t)〉ρ evolves to negative values (with
positive ρ), in the Schrödinger picture this must correspond to
a ρ(t) that cannot be positive definite.

We can consider again the example of the particle with
classical position momentum and quantum spin- 1

2 . In that
setting, a Hamiltonian takes the form

H = hc + hq · S, (7.5)

where hc and hq are c-number functions of (x,k). The density
matrix is

ρ = α + β · S, (7.6)

where α and β are c-number functions of (x,k) and t , and the
positivity condition on ρ is α � �‖β‖/2.

The dynamical evolution, with the bracket of Eq. (6.24) for
n = 2, takes the form

dρ

dt
= (H,ρ)′ = {hc,α} + {hc,β} · S + hq × β · S

+ �
2

4
{hq · ,β}. (7.7)

That is,

∂tα = {hc,α} + �
2

4
{hq · ,β},

∂tβ = {hc,β} + hq × β. (7.8)

It is instructive to see how positivity of ρ is preserved in
the classical and quantum cases. In the purely classical case
hq = β = 0, and the only remaining relation is ∂tα = {hc,α}.
If α � 0 ever reaches the value 0 at some point, this must be
a minimum, and so { ,α} vanishes there; this prevents α from
passing from positive to negative values. On the other hand, in
the purely quantal case, all functions are (x,k) independent,
and the nontrivial relations are α = const and ∂tβ = hq × β.
This generates a continuous rotation of the vector β around
hq , so if �‖β‖/2 � α at t = 0 it will remain so at all times.

In the hybrid case, positivity of ρ is not so protected. Let
us consider for instance the simple case of

hq = hqêz, β = βêz (t = 0). (7.9)

With this dynamics the form of β parallel to the z axis is
preserved by the evolution. The equations become

∂tα = {hc,α} + �
2

4 {hq,β}, ∂tβ = {hc,β}. (7.10)

Here, we see that the positivity condition α � �|β|/2 at t = 0
needs not be preserved at later times: any of the functions
α′ ≡ α ± �β/2 fulfill the equation

∂tα
′ = {hc,α

′} + �
2

4
{hq,β}. (7.11)

If α′ becomes zero at some point (x,k), this will be a minimum
and {hc,α

′} will vanish there, however, the other contribution
�

2

4 {hq,β} can be negative since β follows its own autonomous
dynamics. So, nothing prevents from having ∂tα

′ < 0 at a
point where α′ = 0. In that case, α′ would become negative
there, implying a violation of positivity of ρ(t). Of course, an
analysis similar to this one can be carried out in the Heisenberg
picture to show that positivity of an observable is not preserved.
The explicit solution of ρ(t) in Eq. (6.34) also illustrates
that positivity is not preserved in general: the term in α(t)
depending linearly with t (while the other terms are bounded)
implies that α(t) can become negative.

C. Discussion

Clearly, preservation of the positivity of ρ is a condition that
must be imposed to any hybrid dynamics. Since our solution
is unique using the strong postulates, we have to consider
weaker axioms. The condition of preservation of positivity is
somewhat more difficult to impose because it is does not have
an algebraic form. We do not attempt to work it out here.

We have seen that there is no problem of positivity in
the classical or quantum cases and this is also true in the
Ehrenfest hybrid formalism discussed at the end of Sec. II C.
There, the density σ (X) on M evolves as σ (X ; t) = σ [X(−t)]
and obviously positivity is preserved (the points X move but
preserve their weight). The ρ corresponding to a given σ is
easily obtained from

〈A〉σ =
∫

dx dk dψ dψ∗ σ (X)〈A(x,k)〉ψ = 〈〈Aρ〉〉, (7.12)

hence,

ρ =
∫

dψ dψ∗ σ (X)|ψ〉〈ψ |. (7.13)

Note, incidentally, that there is an enormously larger number
of different σ than ρ. This is a manifestation of the explosion
of observables in the Ehrenfest approach. Also, different σ

producing the same ρ at t = 0 will evolve producing different
ρ(t) at later times. This breaks statistical consistency.

Clearly, ρ is positive since σ is positive, and this property is
preserved by the evolution. We noted at the end of Sec. II C that
our formulation can be cast similarly on M with the observ-
ables being functions of bilinear type, but it cannot be based
on evolution from orbits X(t) on M as this breaks bilinearity.
Nevertheless, one observes that the positivity preserving flow
of σ (X) follows a continuity equation ∂tσ = ∇X · (vXσ ) while
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the observables obey the adjoint relation ∂tF = vX · ∇XF .15

The conservation properties of the continuity equation depend
on the fact that vX · ∇X is a derivation. If this would translate
as is to our formulation, we should require that, in order to
preserve ρ, the adjoint of ( , )′ should be a derivation, that is,
( , ) should be a derivation. If this is the case, we can certainly
conclude that no solution exists, as we showed above (Sec. II B)
that ( , ) can never be a derivation in A (even with the weak
postulates). However, the translation is not completely obvious
so we cannot give a final answer at present.

VIII. SUMMARY AND CONCLUSIONS

In this work, we have followed the seemingly most natural
path to formulating exact quantum-classical hybrid systems.
As discussed in Sec. II, this entails to have a set of hybrid
observables for which we take the tensor product of the
classical and the quantum spaces of observables [Eq. (2.5)], in
full analogy with the classical-classical or quantum-quantum
cases. Next, in the Heisenberg picture we have to provide a
dynamical bracket between observables, similar to the Poisson
bracket and the commutator [Eq. (2.7)]. To do so, we have
introduced conditions to be fulfilled by the bracket. The
minimal postulates are those in Eqs. (2.8), (2.9), and (2.12),
together with the Lie bracket property, and in particular the
Jacobi identity [Eq. (4.11)]. Another essential condition is the
preservation of the range of the observable (Sec. VII). We
have not attempted to obtain the most general Lie bracket
fulfilling the minimal postulates as that problem looks hard.
Instead, we have considered stronger postulates [Eq. (2.24)]
for which we have been able to obtain a complete solution
in the case of finite-dimensional Hilbert spaces [Eq. (4.9)].
This complements a previous result in [25] showing that such
dynamical bracket does not exist for H = L2(Rn). The proof
of the Lie bracket property is given in Sec. IV B. The bracket
is obtained constructively in Sec. V where it is shown that
the solution is unique (with some additional assumptions of
universality). Generalizations are discussed in Appendix A.
The adjoint bracket, which describes the evolution of the
density matrix in the Schrödinger picture, is explicitly obtained
in Sec. VI. The ideas have been illustrated in Secs. III
and VI with the case of a particle with classical position
momentum and quantum spin- 1

2 . The failure to comply with
positivity (Sec. VII) is a serious problem which invalidates
the solution found. One possible way out would be to weaken
the postulates. This would allow new solutions, perhaps one
of them preserving the positivity of the matrix density. In
the same section, we have speculated that the preservation of
the positivity of the density matrix in its evolution could require
( ,H ) to be a derivation (as in the classical or quantum cases).
Since this requisite can never be satisfied in the hybrid case,
this would be a no-go situation. Apart from this speculation,
there is the real possibility that no acceptable solution exists
even for the minimal postulates. In this case, either one has to
admit more exotic formulations, somehow sorting the many
problems noted in Sec. II C, or else admit that no formulation

15In the Hamiltonian case, both operators ∇X · vX and vX · ∇X

coincide due to (∇X · vX) = 0.

of the exact type exists for quantum-classical systems, which
would remain as useful approximations of quantum-quantum
systems.
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APPENDIX A: MATHEMATICAL STRUCTURE OF
THE HYBRID BRACKET

Here, we want to analyze the mathematical structure of our
hybrid bracket and its possible generalizations. In the theory of
Lie algebras, the semidirect sum of two Lie algebras is defined
as follows [54]. Let L1 and L2 be two Lie algebras with Lie
products denoted by [ , ]1 and [ , ]2, respectively. In addition,
for any X ∈ L2, let DX be a derivation on L1, that is,

∀ X ∈ L2, ∀ Y,Z ∈ L1, DX(Y ) ∈ L1,

DX([Y,Z]1) = [DX(Y ),Z]1 + [Y,DX(Z)]1. (A1)

Then, if X → DX is a homomorphism, that is,

∀ X,Y ∈ L2, D[X,Y ]2 = [DX,DY ], (A2)

one can define a new Lie algebra

L = L1 ⊕s L2 (A3)

called the semidirect sum of L1 and L2. The vector space of L

is the external direct sum of L1 and L2. External means that
the elements of L are ordered pairs of elements X1 ∈ L1 and
X2 ∈ L2 denoted by X1 + X2. Within L,L1 and L2 are linearly
independent by definition and in the finite-dimensional case
dim L = dim L1 + dim L2. The Lie product of two elements
of L is defined as

[X1 + X2,Y1 + Y2]

= [X1,Y1]1 + [X2,Y2]2 + DX2 (Y1) − DY2 (X1), (A4)

where X1,Y1 ∈ L1 and X2,Y2 ∈ L2. It is readily verified that
this is a Lie bracket using Eqs. (A1) and (A2).

In the hybrid quantum-classical case, L2 is Ac, understood
as a set of classical observables endowed with the Poisson
bracket as Lie product. This set need not be all classical
observables, but it must be a Lie algebra, i.e., a linear space
closed under the Poisson bracket

{Ac,Ac} ⊆ Ac. (A5)

Further, L1 is ˜A understood as a set of hybrid observables
(functions on the phase space taking values in operators) with
the requirement of being a Lie algebra with the commutator,
that is, a linear space such that

[[ ˜A , ˜A ]] ⊆ ˜A . (A6)

So, here we no longer insist on the Hilbert space being finite
dimensional and the observables of ˜A being traceless. Also,

˜A need not be closed under multiplication. For the derivation
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DX we take the Poisson bracket DX = {X,} since it fulfills
Eqs. (A1) and (A2). Because DX(Y ) ∈ L2, we further require

{Ac, ˜A } ⊆ ˜A . (A7)

Under these conditions, we can construct the semidirect sum

A = ˜A ⊕s Ac, (A8)

with

(Ã + C,Ã′ + C ′) = [[Ã,Ã′]] + {C,C ′} + {C,Ã′} − {C ′,Ã}
(A9)

which will be a Lie bracket in A .
One way to guarantee Eqs. (A5), (A6), and (A7) is to include

in Ac all classical observables and take ˜A = Ac ⊗ ˜Aq , where
˜Aq is a Lie algebra of operators with the commutator (i.e.,

[[ ˜Aq, ˜Aq]] ⊆ ˜Aq). In this case, A = ˜A ⊕ Ac = (Ac ⊗ ˜Aq) ⊕
Ac as vector space or, equivalently, A = Ac ⊗ Aq with Aq =

˜Aq ⊕ U , where U is a one-dimensional vector space. In the
particular case in which the identity of the Hilbert space is not
contained in ˜Aq , one can simply identify U with {λ1,λ ∈ R},
and Ã + C with Ã + C1. This is what has been done in Sec. IV
for a finite-dimensional Hilbert, along with choice of ˜Aq as
the set of traceless operators.

For H = L2(Rn), the condition [[ ˜Aq, ˜Aq]] ⊆ ˜Aq implies
that 1 ∈ ˜Aq (at least for ˜Aq sufficiently large to be useful). So,
if one insists in carrying out the construction above, one would
have 1 in ˜Aq and an additional, linearly independent 1′ in U .
The resulting A , or more specifically Aq = ˜Aq ⊕ U , does not
conform to the structure assumed in Sec. II A since ˜Aq would
be all quantum operators and Aq would be something else,
with a new dimension along 1′ outside the original Hilbert
space and with no obvious physical meaning.

Another observation is that in the finite-dimensional case,
one can choose some Lie algebra of operators ˜Aq not including
1 and make the construction with Aq = ˜Aq ⊕ U (with U =
{λ1,λ ∈ R}) and A = Ac ⊗ Aq , as already noted. Often, for a
given space Aq , the requirement of ˜Aq being a Lie algebra will
completely fix this space in the decomposition Aq = ˜Aq ⊕ U

(always with U = {λ1,λ ∈ R}), but not in all cases. In those
cases, each choice of ˜Aq will define a different hybrid bracket.
So, the proof of uniqueness in Sec. V relies on the assumption
that all operators are included in Aq . This assumption is also
used explicitly in the construction of the hybrid bracket in the
Schrödinger picture ( , )′.

APPENDIX B: PROOF OF EQ. (5.19)

In this Appendix, we prove that Eqs (5.14) and (5.18) imply
Eq. (5.19). Since Eq. (5.18) is identical for the three brackets
( , )δ, ( , )f , and ( , )d , we just consider one of them explicitly.
We explicitly assume that our classical sector is of position-
momentum type, with Ac containing all functions of (x,k).
It is not clear whether the proof covers the case of restricted
subsets of classical observables (but still forming a Lie algebra,
{Ac,Ac} ⊆ Ac) as in Eq. (2.3).

Following [25], let us introduce a plane-wave basis in the
set of functions defined on the phase space

er = exp(ikr · x − ixr · k), xr ,kr ∈ Rn. (B1)

(x,k) are the classical dynamical variables and xr ,kr parame-
ters. These basis functions fulfill the relations

{er ,x} = ixr er , {er ,k} = ikr er , (B2)

and also

{er ,es} = vrs er+s (B3)

with

vrs ≡ kr · xs − xr · ks , (xr+s ,kr+s) ≡ (xr + xs ,kr + ks).

(B4)

Using this basis,

(er ,es)δ =
∑

t

Frst et (B5)

for some function Frst . However, using Eqs. (5.18) and (B2),

{(er ,es)δ,x} = ixr+s(er ,es)δ, {(er ,es)δ,k} = ikr+s(er ,es)δ.

(B6)

This implies [comparing with Eq. (B2) ] that in the sum over
t in Eq. (B5), only the term t = r + s can have a contribution.
That is,

(er ,es)δ = Frser+s , (B7)

where Frs is some function of (xr ,kr ) and (xs ,ks).
In order to pinpoint this function, let us impose Eq. (5.18)

with C = er , C
′ = es , and C ′′ = et . This gives

Frsvr+s,t = vrtFr+t,s + vstFr,s+t ∀ r,s,t. (B8)

Let us show that this relation implies that Frs must be a function
of vrs only.16 To do this, let us take

kt = −kr , xt = −xr − vrs

ks

k2
s

. (B9)

With this choice

vst = 0, vr+s,t = vrt . (B10)

Hence, Frs = Fr+t,s or more explicitly

F (xr ,kr ; xs ,ks) = F

(
−vrs

ks

k2
s

,0; xs ,ks

)
. (B11)

That is, for given (xs ,ks), all the dependence on (xr ,kr ) is
through vrs . Taking an analogous choice of t this time with
vrt = 0, one obtains that all dependence on (xs ,ks) is also
through vrs . So

Frs = f (vrs), (B12)

for some function f (v) to be specified, and Eq. (B8) becomes

f (vrs)vr+s,t = vrtf (vr+t,s) + vstf (vr,s+t ). (B13)

16The idea is that if t is such that vst = 0, then vr+s,t = vrt and
hence Frs = Fr+t,s . That is, r , which is a 2n-dimensional variable,
can be changed in 2n − 1 directions (those of t restricted by vst = 0)
without modifying Frs , so the dependence on r is really through vrs .
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Taking

v1 ≡ vrs, v2 ≡ vr+t,s , v3 ≡ vr,s+t (B14)

as independent variables, so that

vr+s,t = v3 − v2, vrt = v3 − v1, vst = v1 − v2, (B15)

the equation on f (v) becomes

f (v1)(v3 − v2) = (v3 − v1)f (v2) + (v1 − v2)f (v3),

(B16)

where v1,v2,v3 are arbitrary. Paying attention to any of
the three variables with the other two fixed, it follows

that

f (v) = αv + β (B17)

for some constants α and β. In turn, this form fulfills Eq. (B16)
identically. Hence, the most general solution is

(er ,es)δ = (αvrs + β)er+s , (B18)

which corresponds to the bracket

(C,C ′)δ = α{C,C ′} + βCC ′. (B19)

Since ( , )δ and ( , )d are antisymmetric, β = 0 in those cases.
On the other hand ( , )f is symmetric, so α = 0 for that bracket.
This proves Eq. (5.19). �
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[18] G. Csányi, T. Albaret, M. C. Payne, and A. De Vita, Learn on the
Fly: A Hybrid Classical and Quantum-Mechanical Molecular
Dynamics Simulation, Phys. Rev. Lett. 93, 175503 (2004).

[19] W. Magnus, On the exponential solution of differential equations
for a linear operator, Commun. Pure Appl. Math. 7, 649
(1954).

[20] S. Blanes, F. Casas, J. A. Oteo, and J. Ros, The Magnus
expansion and some of its applications, Phys. Rep. 470, 151
(2009).

[21] C. Barcelo, R. Carballo-Rubio, L. J. Garay, and R. Gomez-
Escalante, Hybrid classical-quantum formulations ask for hybrid
notions, Phys. Rev. A 86, 042120 (2012).

[22] I. V. Aleksandrov, The statistical dynamics of a system consist-
ing of a classical and a quantum subsystem, Z. Naturforsch., A
36, 902 (1981).

[23] W. Boucher and J. H. Traschen, Semiclassical physics and
quantum fluctuations, Phys. Rev. D 37, 3522 (1988).

[24] A. Anderson, Quantum Back Reaction on ‘Classical’ Variables,
Phys. Rev. Lett. 74, 621 (1995).

[25] J. Caro and L. L. Salcedo, Impediments to mixing classical and
quantum dynamics, Phys. Rev. A 60, 842 (1999).

[26] H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3rd
ed. (Addison Wesley, New York, 2002).

[27] T. A. Oliynyk, Classical-quantum limits, Found. Phys. 46, 1551
(2016).

[28] O. V. Prezhdo, A quantum-classical bracket that satisfies the
Jacobi identity, J. Chem. Phys. 124, 201104 (2006).

[29] L. L. Salcedo, Comment on ‘A quantum-classical bracket that
satisfies the Jacobi identity, J. Chem. Phys. 126, 057101 (2007).

[30] O. V. Prezhdo, Reply to “Comment on ‘A quantum-classical
bracket that satisfies the Jacobi identity’ ”, J. Chem. Phys. 126,
057102 (2007).

[31] J. S. Schwinger, Particles, Sources, and Fields, Vol. 1 (Addison
Wesley, Reading, 1970).

[32] L. L. Salcedo, Absence of classical and quantum mixing, Phys.
Rev. A 54, 3657 (1996).

[33] D. Sahoo, Mixing quantum and classical mechanics and unique-
ness of Planck’s constant, J. Phys. A: Math. Gen. 37, 997
(2004).

[34] T. Dass, A stepwise planned approach to the solution of Hilbert’s
sixth problem. I: Noncommutative symplectic geometry and
hamiltonian mechanics, arXiv:0909.4606.

012137-18

https://doi.org/10.1016/j.physrep.2012.11.001
https://doi.org/10.1016/j.physrep.2012.11.001
https://doi.org/10.1016/j.physrep.2012.11.001
https://doi.org/10.1016/j.physrep.2012.11.001
https://doi.org/10.1016/0029-5582(63)90279-7
https://doi.org/10.1016/0029-5582(63)90279-7
https://doi.org/10.1016/0029-5582(63)90279-7
https://doi.org/10.1016/0029-5582(63)90279-7
https://doi.org/10.1088/0305-4470/13/1/015
https://doi.org/10.1088/0305-4470/13/1/015
https://doi.org/10.1088/0305-4470/13/1/015
https://doi.org/10.1088/0305-4470/13/1/015
https://doi.org/10.1103/PhysRevLett.47.979
https://doi.org/10.1103/PhysRevLett.47.979
https://doi.org/10.1103/PhysRevLett.47.979
https://doi.org/10.1103/PhysRevLett.47.979
https://doi.org/10.1103/RevModPhys.61.561
https://doi.org/10.1103/RevModPhys.61.561
https://doi.org/10.1103/RevModPhys.61.561
https://doi.org/10.1103/RevModPhys.61.561
https://doi.org/10.1007/s10701-009-9282-0
https://doi.org/10.1007/s10701-009-9282-0
https://doi.org/10.1007/s10701-009-9282-0
https://doi.org/10.1007/s10701-009-9282-0
https://doi.org/10.1088/0264-9381/25/15/154010
https://doi.org/10.1088/0264-9381/25/15/154010
https://doi.org/10.1088/0264-9381/25/15/154010
https://doi.org/10.1088/0264-9381/25/15/154010
https://doi.org/10.1016/j.physleta.2014.02.005
https://doi.org/10.1016/j.physleta.2014.02.005
https://doi.org/10.1016/j.physleta.2014.02.005
https://doi.org/10.1016/j.physleta.2014.02.005
https://doi.org/10.1021/cr00023a010
https://doi.org/10.1021/cr00023a010
https://doi.org/10.1021/cr00023a010
https://doi.org/10.1021/cr00023a010
https://doi.org/10.1002/(SICI)1097-461X(1996)58:2<153::AID-QUA4>3.0.CO;2-X
https://doi.org/10.1002/(SICI)1097-461X(1996)58:2<153::AID-QUA4>3.0.CO;2-X
https://doi.org/10.1002/(SICI)1097-461X(1996)58:2<153::AID-QUA4>3.0.CO;2-X
https://doi.org/10.1002/(SICI)1097-461X(1996)58:2<153::AID-QUA4>3.0.CO;2-X
https://doi.org/10.1063/1.471952
https://doi.org/10.1063/1.471952
https://doi.org/10.1063/1.471952
https://doi.org/10.1063/1.471952
https://doi.org/10.1063/1.474382
https://doi.org/10.1063/1.474382
https://doi.org/10.1063/1.474382
https://doi.org/10.1063/1.474382
https://doi.org/10.1063/1.478811
https://doi.org/10.1063/1.478811
https://doi.org/10.1063/1.478811
https://doi.org/10.1063/1.478811
https://doi.org/10.1103/PhysRevLett.93.175503
https://doi.org/10.1103/PhysRevLett.93.175503
https://doi.org/10.1103/PhysRevLett.93.175503
https://doi.org/10.1103/PhysRevLett.93.175503
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1103/PhysRevA.86.042120
https://doi.org/10.1103/PhysRevA.86.042120
https://doi.org/10.1103/PhysRevA.86.042120
https://doi.org/10.1103/PhysRevA.86.042120
https://doi.org/10.1515/zna-1981-0819
https://doi.org/10.1515/zna-1981-0819
https://doi.org/10.1515/zna-1981-0819
https://doi.org/10.1515/zna-1981-0819
https://doi.org/10.1103/PhysRevD.37.3522
https://doi.org/10.1103/PhysRevD.37.3522
https://doi.org/10.1103/PhysRevD.37.3522
https://doi.org/10.1103/PhysRevD.37.3522
https://doi.org/10.1103/PhysRevLett.74.621
https://doi.org/10.1103/PhysRevLett.74.621
https://doi.org/10.1103/PhysRevLett.74.621
https://doi.org/10.1103/PhysRevLett.74.621
https://doi.org/10.1103/PhysRevA.60.842
https://doi.org/10.1103/PhysRevA.60.842
https://doi.org/10.1103/PhysRevA.60.842
https://doi.org/10.1103/PhysRevA.60.842
https://doi.org/10.1007/s10701-016-0028-5
https://doi.org/10.1007/s10701-016-0028-5
https://doi.org/10.1007/s10701-016-0028-5
https://doi.org/10.1007/s10701-016-0028-5
https://doi.org/10.1063/1.2200342
https://doi.org/10.1063/1.2200342
https://doi.org/10.1063/1.2200342
https://doi.org/10.1063/1.2200342
https://doi.org/10.1063/1.2431650
https://doi.org/10.1063/1.2431650
https://doi.org/10.1063/1.2431650
https://doi.org/10.1063/1.2431650
https://doi.org/10.1063/1.2431651
https://doi.org/10.1063/1.2431651
https://doi.org/10.1063/1.2431651
https://doi.org/10.1063/1.2431651
https://doi.org/10.1103/PhysRevA.54.3657
https://doi.org/10.1103/PhysRevA.54.3657
https://doi.org/10.1103/PhysRevA.54.3657
https://doi.org/10.1103/PhysRevA.54.3657
https://doi.org/10.1088/0305-4470/37/3/031
https://doi.org/10.1088/0305-4470/37/3/031
https://doi.org/10.1088/0305-4470/37/3/031
https://doi.org/10.1088/0305-4470/37/3/031
http://arxiv.org/abs/arXiv:0909.4606


CANONICAL BRACKET IN QUANTUM-CLASSICAL HYBRID . . . PHYSICAL REVIEW A 95, 012137 (2017)

[35] J. W. Negele and H. Orland, Quantum Many Particle Systems
(Addison-Wesley, Redwood City, 1988).

[36] L. Diosi, N. Gisin, and W. T. Strunz, Quantum approach to
coupling classical and quantum dynamics, Phys. Rev. A 61,
022108 (2000).

[37] C. F. Craig, W. R. Duncan, and O. V. Prezhdo, Trajectory
Surface Hopping in the Time-Dependent Kohn-Sham Approach
for Electron-Nuclear Dynamics, Phys. Rev. Lett. 95, 163001
(2005).

[38] Q. Zhang and B. Wu, General Approach to Quantum-Classical
Hybrid Systems and Geometric Forces, Phys. Rev. Lett. 97,
190401 (2006).

[39] J. L. Alonso, A. Castro, J. Clemente-Gallardo, J. C. Cuchi, P.
Echenique, and F. Falceto, Statistics and Nosé formalism for
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