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Low-temperature behavior of the Casimir free energy and entropy of metallic films
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We derive an analytic behavior of the Casimir free energy, entropy, and pressure of metallic films in a vacuum
at low temperature. It is shown that this behavior differs significantly depending on whether the plasma or the
Drude model is used to describe the dielectric properties of film metal. For metallic films described by the lossless
plasma model the thermal corrections to the Casimir energy and pressure drop to zero exponentially fast with
increasing film thickness. There is no classical limit in this case. The Casimir entropy satisfies the Nernst heat
theorem. For metallic films with perfect crystal lattices described by the Drude model, the Casimir entropy at zero
temperature takes a nonzero value depending on the parameters of a film, i.e., the Nernst heat theorem is violated.
The Casimir entropy at zero temperature is positive, as opposed to the case of two metallic plates separated with
a vacuum gap, where it is negative if the Drude model is used. Possible applications of the obtained results in
investigations of the stability of thin films are discussed.
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I. INTRODUCTION

During the last few years the van der Waals and Casimir
interactions have attracted widespread interest due to impor-
tant role they play in many physical phenomena [1,2]. In most
cases, however, the emphasis has been made on the forces
acting between two closely spaced bodies, be it two atoms or
molecules, an atom or a molecule and a macroscopic surface,
or two macroscopic surfaces. It is common knowledge that the
van der Waals and Casimir forces are caused by the zero-point
and thermal fluctuations of the electromagnetic field and are
described by the Lifshitz theory of dispersion forces [3]. At
the moment these forces are being actively investigated not
only theoretically but also experimentally (see Refs. [4,5] for
a review) and are used in technological applications [6–8].

Another important role of dispersion interactions is that
they contribute to the free energy of free-standing material
films and films deposited on some material plates. The
formulation of this problem goes back to Derjaguin, who took
into account the dispersion-force contribution in studies of
stability of thin films and introduced the concept of disjoining
pressure (see Refs. [9,10] for a review). Over a few decades
this contribution to the free energy, which depends on the film
thickness, was estimated using the power-type force law and
the Hamaker constant.

In the present state of the art, the question of the Casimir
energy for a free-standing or sandwiched between two di-
electric plates metallic film was raised in Ref. [11]. Then the
Casimir energy of a free-standing in vacuum metallic film
was considered in Refs. [12,13]. In doing so, the dielectric
properties of metal were described by either the Drude or
the plasma model. When employing the plasma model, the
Lifshitz theory at nonzero temperature has been used in
calculations. However, all calculations employing the Drude
model have been performed at zero temperature. This did not
allow revelation of significant differences in theoretical results
for the free energy of metallic films predicted by the Lifshitz
theory combined with either the Drude or the plasma model.

Full investigation of the Casimir free energy and pressure
for metallic films in the framework of the Lifshitz theory at
nonzero temperature was performed in Refs. [14–16]. The
cases of free-standing or sandwiched between two dielectric
plates [14] deposited on a metal plate [15] or made of
magnetic metal [16] metallic films have been considered. The
dielectric properties of metals were described by using the
optical data for the complex index of refraction extrapolated
to zero frequency by the Drude or plasma models. It was
shown that magnitudes of the free energy of metallic films of
less than 150 nm thickness differ by up to a factor of 1000
depending on the calculation approach used [14–16]. So great
difference is explained by the fact that the Casimir free energy
of metallic films drops to zero exponentially fast when the
plasma model is used for extrapolation and goes to the classical
limit when the optical data are extrapolated by the Drude model
[14–16]. This limit is already reached for the film of 150 nm
thickness.

Here we note that although routinely it is quite natural
to use the Drude model for extrapolation of the optical
data to lower frequencies because it takes into account the
relaxation properties of conduction electrons, there are also
strong reasons for using the lossless plasma model for this
purpose in the case of fluctuating fields. The point is that the
measurement data of all precise experiments on measuring the
Casimir interaction between two material bodies separated
with a vacuum gap exclude theoretical predictions of the
Lifshitz theory combined with the Drude model and are
consistent with predictions of the same theory using the plasma
model [17–23]. For the gap width below 1 μm, used in these
experiments, the variation in theoretical predictions of both
approaches is below a few percent. Recently, however, the
differential force measurement scheme has been proposed
[24–26], where this variation is by up to a factor 1000. The
results of one of these experiments, already performed [27,28],
exclude with certainty the predictions of the Drude model
and are consistent with the plasma model. Based on this, it
was hypothesized that the reaction of a physical system to
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real and fluctuating electromagnetic fields (having a nonzero
and zero expectation values, respectively) might be different
[16,29].

On the theoretical side, it was shown [30,31] that for
two metallic plates, separated by more than 6 μm distance,
the classical statistical physics predicts the same Casimir
force as does the Lifshitz theory combined with the plasma
model. By contrast, for metals with perfect crystal lattices
the Lifshitz theory was shown to violate the third low of
thermodynamics (the Nernst heat theorem) when the Drude
model is used [32–36]. In this respect, one may guess that even
at separations exceeding 6 μm, where the major contribution
to the Casimir force between two parallel plates becomes
classical, the quantum effects still remain important and make
the classical treatment inapplicable.

In view of the above problem, which is often called “the
Casimir puzzle,” it is desirable to present additional arguments
regarding an applicability of the Drude and plasma models in
calculations of the Casimir free energy of metallic films. Here
the calculation results differ greatly, and the subject is not of
only an academic character because the obtained values should
be taken into account in the conditions of film stability.

In this paper, we derive the asymptotic expressions at
low temperature for thermal corrections to the Casimir free
energy and pressure of metallic films described by the plasma
model. The asymptotic behavior of the Casimir entropy
is also obtained. Unlike the familiar case of two parallel
plates separated with a gap, all these quantities decrease
exponentially fast with increasing film thickness and do not
have the classical limit by depending on � at arbitrarily large
film thicknesses. It is shown that the Casimir entropy of a
film preserves the positive values and, in the limiting case
of zero temperature, goes to zero. Thus, it is proved that the
Casimir entropy of metallic films described by the plasma
model satisfies the Nernst heat theorem, i.e., the Lifshitz theory
is thermodynamically consistent.

Then the low-temperature behavior of the Casimir free
energy and entropy for metallic films described by the Drude
model is considered. We show that in the limiting case of
zero temperature the Casimir entropy goes to a positive
value depending on the parameters of a film. Therefore, the
Nernst heat theorem is violated [37,38]. Furthermore, it is
demonstrated that in this case the Casimir free energy does
not go to zero in the limiting case of ideal metal film, which
is in contradiction to the fact that electromagnetic oscillations
cannot penetrate in an interior of ideal metal. Thus, the
description of a film metal by the Drude model in the Lifshitz
theory results in violation of basic thermodynamic demands.
Because of this, the dispersion-force contribution to the free
energy of metallic films might need a reconsideration taking
into account that the low-frequency behavior of the film metal
is described by the plasma model.

The paper is organized as follows. In Sec. II we present
a general formalism and derive the low-temperature behavior
of the Casimir free energy, pressure, and entropy for metallic
films described by the plasma model. In Sec. III we consider
the low-temperature behavior of the Casimir free energy
and entropy of metallic films with perfect crystal lattices
described by the Drude model and demonstrate violation of the
Nernst heat theorem. Section IV contains our conclusions and

discussion. In the Appendix, some details of the mathematical
derivations are presented.

II. METALS DESCRIBED BY THE PLASMA MODEL

The free energy per unit area of a free-standing metallic
film of thickness a in vacuum at temperature T in thermal
equilibrium with an environment is given by the Lifshitz
formula [2,3]:

F(a,T ) = kBT

2π

∞∑
l=0

′ ∫ ∞

0
k⊥ dk⊥

×
∑

α

ln
[
1 − r2

α(iξl,k⊥)e−2ak(iξl ,k⊥)
]
. (1)

Here kB is the Boltzmann constant, k⊥ is the magnitude of
the projection of the wave vector on the film plane, ξl =
2πkBT l/�, l = 0, 1, 2, . . . are the Matsubara frequencies, the
prime on the summation sign multiplies the term with l = 0
by 1/2, and

k(iξl,k⊥) =
√

k2
⊥ + εl

ξ 2
l

c2
, (2)

where εl ≡ ε(iξl) is the frequency-dependent dielectric per-
mittivity of film metal calculated at the pure imaginary
Matsubara frequencies.

The reflection coefficients for two independent polariza-
tions of the electromagnetic field, transverse magnetic (α =
TM) and transverse electric (α = TE), are given by

rTM(iξl,k⊥) = k(iξl,k⊥) − εlq(iξl,k⊥)

k(iξl,k⊥) + εlq(iξl,k⊥)
,

rTE(iξl,k⊥) = k(iξl,k⊥) − q(iξl,k⊥)

k(iξl,k⊥) + q(iξl,k⊥)
, (3)

where

q(iξl,k⊥) =
√

k2
⊥ + ξ 2

l

c2
. (4)

Equation (1) is obtained [14] from the standard Lifshitz
formula for a three-layer system [39–41], where the metallic
plate is sandwiched between two vacuum semispaces. Note
that the reflection coefficients (3) have the opposite sign, as
compared to the case of two plates separated by the vacuum
gap [2]. The reason is that here an incident wave inside the
film material goes to its boundary plane with a vacuum, and
not from the vacuum gap to the material boundary. Another
distinctive feature of Eq. (1) from the standard Lifshitz formula
is that here the dielectric permittivity of metal enters the power
of the exponent [in the standard case this exponent contains
the quantity q defined in Eq. (4)]. This makes the properties
of the free energy (1) quite different from those in the case of
two parallel plates separated by a vacuum gap.

It is convenient to introduce the dimensionless integration
variable

y = 2aq(iξl,k⊥). (5)
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Using the characteristic frequency ωc ≡ c/(2a), we also pass
on the dimensionless Matsubara frequencies:

ζl = ξl

ωc

= 4π
kBT a

�c
l ≡ τ l. (6)

Then the Casimir free energy (1) takes the form

F(a,T ) = kBT

8πa2

∞∑
l=0

′ ∫ ∞

ζl

y dy

×
∑

α

ln
[
1 − r2

α(iζl,y)e−
√

y2+(εl−1)ζ 2
l

]
. (7)

In terms of the quantities (5) and (6), the reflection coefficients
(3) are given by

rTM(iζl,y) =
√

y2 + (εl − 1)ζ 2
l − εly√

y2 + (εl − 1)ζ 2
l + εly

,

rTE(iζl,y) =
√

y2 + (εl − 1)ζ 2
l − y√

y2 + (εl − 1)ζ 2
l + y

. (8)

Now we assume that at the imaginary Matsubara frequen-
cies the film metal is described by the lossless plasma model

εl,p = 1 + ω2
p

ξ 2
l

, (9)

where ωp is the plasma frequency. In terms of dimensionless
frequencies (6), the dielectric permittivity (9) takes the form

εl,p = 1 + ω̃2
p

ζ 2
l

, ω̃p ≡ ωp

ωc

= 2aωp

c
. (10)

Substituting Eq. (10) in Eq. (8), one obtains the reflection
coefficients in the case when the plasma model is used:

rTM,p(iζl,y) =
ζ 2
l

(√
y2 + ω̃2

p − y
) − ω̃2

py

ζ 2
l

(√
y2 + ω̃2

p + y
) + ω̃2

py
,

rTE,p(iζl,y) = rTE,p(y) =
√

y2 + ω̃2
p − y√

y2 + ω̃2
p + y

. (11)

For the film described by the plasma model, it is convenient
to rewrite the Casimir free energy (7) as

Fp(a,T ) = kBT

8πa2

∞∑
l=0

′
	(ζl)

= kBT

8πa2

∞∑
l=0

′
[	TM(ζl) + 	TE(ζl)], (12)

where

	TM(TE)(x) =
∫ ∞

x

y dy ln
[
1 − r2

TM(TE),p(ix,y)e−
√

y2+ω̃2
p
]
.

(13)

It is well known that the Casimir free energy can be presented
in the form

Fp(a,T ) = Ep(a,T ) + 
TFp(a,T ), (14)

where the Casimir energy per unit area at zero temperature is
given by [2,3]

Ep(a,T ) = �c

32π2a3

∫ ∞

0
dζ	(ζ ), (15)

and 
TFp is the thermal correction to it.
Applying the Abel-Plana formula to Eq. (12) and taking

into account that ζl = τ l, one arrives at


TFp(a,T ) = i
kBT

8πa2

∫ ∞

0
dt

	(iτ t) − 	(−iτ t)

e2πt − 1
. (16)

It is evident that the low-temperature behavior of the Casimir
free energy of thin metallic films can be found from the
perturbation expansion of Eq. (16) under the condition τ t � 1.
In doing so, it is convenient to consider the contributions of the
TM and TE modes to Eq. (16) separately taking into account
Eq. (12). Note that for two media with a gap between of them
the low temperature expansion in the Lifshitz formula was
performed in Refs. [32–36]. These results were systemized
and partly extended in Ref. [42].

We start from the TE mode because in this case the function
under the integral in Eq. (13) does not depend on x due to
the second equality in Eq. (11). This means that the total
dependence of 	TE(x) on x is determined by only the lower
integration limit in Eq. (13).

Now we expand the function 	TE(x) in a series in powers
of x. The first term in this series is

	TE(0) =
∫ ∞

0
y dy ln

[
1 − r2

TE,p(y)e−
√

y2+ω̃2
p
]
. (17)

This is a converging integral, which does not contribute to the
difference:


	TE ≡ 	TE(iτ t) − 	TE(−iτ t), (18)

appearing in Eq. (16). Then, calculating the first and second
derivatives of Eq. (13), one finds

	′
TE(0) = 0, 	′′

TE(0) = − ln(1 − e−ω̃p ). (19)

The respective terms of the power series again do not contribute
to the difference (18).

Finally, we find

	′′′
TE(0) = − 8

ω̃p

1

eω̃p − 1
, (20)

and, thus,

	TE(x) = 	TE(0) − x2

2
ln(1 − e−ω̃p )

− 4

3ω̃p

x3

eω̃p − 1
+ O(x4), (21)

where 	TE(0) is defined in Eq. (17).
Restricting ourselves by the third perturbation order,

Eqs. (18) and (21) result in


	TE ≈ i
8

3ω̃p

τ 3t3

eω̃p − 1
. (22)
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We come now to the contribution of the TM mode to the
quantity (16). This case is more complicated because both the
lower integration limit and the function under the integral in
Eq. (13) depend on x.

By calculating several first derivatives of Eq. (13), where the
reflection coefficient is defined by the first equality in Eq. (11),
one finds

	TM(0) =
∫ ∞

0
y dy ln

(
1 − e−

√
y2+ω̃2

p
)
,

	′
TM(0) = 0,

	′′
TM(0) = 8

ω̃2
p

∫ ∞

0
dy

√
y2 + ω̃2

p

e
√

y2+ω̃2
p − 1

− ln(1 − e−ω̃p ),

	′′′
TM(0) = − 16

ω̃p

1

eω̃p − 1
. (23)

It is evident that the first two terms in the power series, defined
by Eq. (23),

	TM(x) = 	TM(0) + 	′′
TM(0)x2

2
− 8

3ω̃p

x3

eω̃p − 1
+ O(x4),

(24)
do not contribute to the quantity


	TM ≡ 	TM(iτ t) − 	TM(−iτ t). (25)

Then, restricting ourselves by the third perturbation order,
we arrive at


	TM ≈ i
16

3ω̃p

τ 3t3

eω̃p − 1
. (26)

By summing Eqs. (22) and (26), one obtains

	(iτ t) − 	(−iτ t) = 
	TM + 
	TM ≈ i
8

ω̃p

τ 3t3

eω̃p − 1
. (27)

Substituting this result in Eq. (16), integrating with respect
to t and returning to the dimensional variables, we find the
behavior of the thermal correction to the Casimir energy of
metallic film at low temperature:


TFp(a,T ) = − 2π2(kBT )4

15�3c2ωp(e2aωp/c − 1)
. (28)

The respective thermal correction to the Casimir pressure of a
free-standing metallic film at low T takes the form


T Pp(a,T ) = −∂Fp(a,T )

∂a
= −4π2(kBT )4

15�3c3

e2aωp/c

(e2aωp/c − 1)2
.

(29)

An interesting feature of Eqs. (28) and (29) is that the thermal
corrections to the Casimir energy and pressure of metallic film,
calculated using the plasma model, go to zero exponentially
fast with increasing film thickness a. Thus, there is no classical
limit in this case.

Another important point is that for fixed film thickness the
Casimir free energy and pressure of the film go to zero in the
limiting case ωp → ∞. This is true for both the thermal cor-
rections (28) and (29) and for the zero-temperature quantities
E(a) and P (a). Note that for ωp → ∞ the magnitudes of both
the TM and TE reflection coefficients (11) go to unity, i.e., the

film becomes perfectly reflecting. One can conclude that when
the plasma model is used in calculations an ideal metal film
is characterized by the zero Casimir energy and pressure, as
it should be because the electromagnetic fluctuations cannot
penetrate an interior of ideal metal.

From Eq. (28) one can also obtain the low-temperature
behavior of the Casimir entropy of metallic film:

Sp(a,T ) = −∂Fp(a,T )

∂T
= 8π2kB(kBT )3

15�3c2ωp(e2aωp/c − 1)
. (30)

It is seen that the Casimir entropy of a film is positive. When
the temperature vanishes, one has from Eq. (30)

Sp(a,T ) → 0; (31)

i.e., the Casimir entropy of metallic film calculated using the
plasma model satisfies the Nernst heat theorem.

In the end of this section, we discuss the application
region of asymptotic Eqs. (28)–(30), which were derived
under a condition x � 1, i.e., τ t � 1. Taking into account
that the dominant contribution to the integral (16) is given by
t ∼ 1/(2π ) and considering the definition of τ in Eq. (6), one
rewrites the application condition in the form

kBT � �c

2a
= �ωc. (32)

For a typical film thickness a = 100 nm, this inequality re-
sults in T � 11 400 K, i.e., Eqs. (28)–(30) are well applicable
under a condition T � 1000 K. With increasing film thickness
the application region of Eqs. (28)–(30) becomes more narrow,
For example, for a = 1 μm these equations are applicable at
T � 100 K.

III. METALS DESCRIBED BY THE DRUDE MODEL

Now we describe metal of the film by the Drude model,
which takes into account the relaxation properties of conduc-
tion electrons. At the pure imaginary Matsubara frequencies
the dielectric permittivity of the Drude metal takes the form

εl,D = 1 + ω2
p

ξl[ξl + γ (T )]
, (33)

where γ (T ) is the temperature-dependent relaxation parame-
ter.

Using the dimensionless variables (6) and (10) and intro-
ducing the dimensionless relaxation parameter,

γ̃ (T ) = γ (T )

ωc

, (34)

Eq. (33) can be rewritten as

εl,D = 1 + ω̃2
p

ζl[ζl + γ̃ (T )]
. (35)

It is convenient also to introduce one more dimensionless
parameter,

δl(T ) = γ̃ (T )

ζl

= γ (T )

ξl

= �γ (T )

2πkBT

1

l
, (36)

where l � 1.
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It is easily seen that for metals with perfect crystal lattices
this parameter satisfies a condition

δl(T ) � 1, (37)

and becomes progressively smaller with decreasing tem-
perature. Thus, at T = 300 K for good metals we have
γ ∼ 1013 rad/s (for Au γ = 5.3×1013 rad/s), whereas ξ1 =
2.5×1014 rad/s. In the temperature region TD/4 < T <

300 K, where TD is the Debye temperature (for Au we have
TD = 165 K [43]), it holds γ (T ) ∼ T , i.e., the value of δl

remains unchanged. In the region from TD/4 down to liquid
helium temperature γ (T ) ∼ T 5 in accordance to the Bloch-
Grüneisen law [44] and at lower temperatures γ (T ) ∼ T 2 for
metals with perfect crystal lattices [43]. As a result, even the
quantity δ1(T ) and, all the more, δl(T ) go to zero when T

vanishes. For example, for Au at T = 30 and 10 K one has
δ1 ≈ 5×10−2 and 2×10−3, respectively.

Now we express the permittivity (35) in terms of the small
parameter (37)

εl,D = 1 + ω̃2
p

ζ 2
l [1 + δl(T )]

(38)

and, in the first perturbation order in this parameter, obtain

εl,D ≈ εl,p − ω̃2
p

ζ 2
l

δl(T ). (39)

We next use the following identical representation for the
Casimir free energy of metallic film calculated using the Drude
model:

FD(a,T ) = Fp(a,T ) + F (0)
D (a,T ) − F (0)

p (a,T ) + F (γ )(a,T ).

(40)

Here Fp is the free energy (12) calculated using the plasma
model and F (0)

p is its zero-frequency term

F (0)
p (a,T ) = kBT

16πa2

∫ ∞

0
y dy

{
ln

(
1 − e

−
√

y2+ω̃2
p
)

+ ln
[
1 − r2

TE,p(y)e−
√

y2+ω̃2
p
]}

, (41)

where the reflection coefficient rTE,p is defined in the second
line of Eq. (11).

The quantity F (0)
D in Eq. (40) is the zero-frequency term in

the Casimir free energy of a film when the Drude model is
used in calculations. From Eqs. (7) and (8) one obtains

F (0)
D (a,T ) = kBT

16πa2

∫ ∞

0
y dy ln(1 − e−y)

= − kBT

16πa2
ζ (3), (42)

where ζ (z) is the Riemann zeta function.
Finally, the quantity F (γ ) in Eq. (40) is the difference of all

nonzero-frequency Matsubara terms in the Casimir free energy
(7) calculated using the Drude and plasma models:

F (γ )(a,T ) = kBT

8πa2

∞∑
l=1

∫ ∞

ζl

y dy

×{
ln

[
1 − r2

TM,D(iζl,y)e−
√

y2+ω̃2
p(1−δl )

]

+ ln
[
1 − r2

TE,D(iζl,y)e−
√

y2+ω̃2
p(1−δl )

]
− ln

[
1 − r2

TM,p(iζl,y)e−
√

y2+ω̃2
p
]

− ln
[
1 − r2

TE,p(iζl,y)e−
√

y2+ω̃2
p
]}

. (43)

As shown in the Appendix,

lim
T →0

F (γ )(a,T ) = 0, lim
T →0

∂F (γ )(a,T )

∂T
= 0. (44)

Because of this, we concentrate our attention on the other
contributions to the right-hand side of Eq. (40).

The quantity Fp is already found in Eqs. (14) and (28), and
the quantityF (0)

D is presented in Eq. (42). Here we calculate the
quantity F (0)

p defined in Eq. (41). Let us start with the integral

I1(ω̃p) ≡
∫ ∞

0
y dy ln

(
1 − e−

√
y2+ω̃2

p
)
. (45)

Expanding the logarithm in power series and introducing
the new integration variable

t = n

√
y2 + ω̃2

p, (46)

one obtains from Eq. (45)

I1(ω̃p) = −
∞∑

n=1

1

n3

∫ ∞

nω̃p

t dtet

= −
∞∑

n=1

1

n3
(1 + nω̃p)e−nω̃p . (47)

After a summation, Eq. (47) results in

I1(ω̃p) = −[Li3(e−ω̃p ) + ω̃pLi2(e−ω̃p )], (48)

where Lik(z) is the polylogarithm function.
Now we consider the second integral entering Eq. (41),

I2(ω̃p) ≡
∫ ∞

0
y dy ln

[
1 − r2

TE,p(y)e−
√

y2+ω̃2
p
]
, (49)

where the reflection coefficient rTE,p is defined in Eq. (11).
Note that for physical values of ω̃p the quantity subtracted
from unity under the logarithm in Eq. (49) is much smaller
than unity. The reason is that if ω̃p is not large the squared
reflection coefficient r2

TE,p is rather small. Then one can expand
the logarithm up to the first power of this parameter and obtain

I2(ω̃p) ≈ −
∫ ∞

0
y dy r2

TE,p(y)e−
√

y2+ω̃2
p . (50)

Numerical computations show that Eqs. (49) and (50) lead
to nearly coincident results for ω̃p � 0.5. Taking into account
the definition of ω̃p in Eq. (10), this results in the condition
a � 5.4 nm for a thickness of Au film with ωp =
1.37×1016 rad/s. This is quite sufficient for our purposes
because here we consider metallic films of more than 7 nm
thickness, which can be described by the isotropic dielectric
permittivity [45] (for thinner Au films the effect of anisotropy
should be taken into account [46]).

Now we introduce the variable t = y/ω̃p and, using
Eq. (11), identically represent the quantity r2

TE,p in the form

r2
TE,p(y) = 1 + 8t2 + 8t4 − 4t

√
1 + t2 − 8t2

√
1 + t2. (51)
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Introducing the integration variable t in Eq. (50), one finds

I2(ω̃p) ≈ −ω̃2
p

∫ ∞

0
t dte−ω̃p

√
1+t2

(1 + 8t2 + 8t4

− 4t
√

1 + t2 − 8t2
√

1 + t2). (52)

Calculating all the five integrals in Eq. (52) [47], we arrive at

I2(ω̃p) ≈ −
(

ω̃p + 17 + 112

ω̃p

+ 432

ω̃2
p

+ 960

ω̃3
p

+ 960

ω̃4
p

)
e−ω̃p

+ 4

[
ω̃pK1(ω̃p) + 9K2(ω̃p) + 30

ω̃p

K3(ω̃p)

]
. (53)

As a result, the Casimir free energy (40), calculated using the
Drude model, can be rewritten in the form

FD(a,T ) = Fp(a,T ) + F (γ )(a,T )

− kBT

16πa2

[
ζ (3) + I1

(
2aωp

c

)
+ I2

(
2aωp

c

)]
,

(54)

where Fp and F (γ ) are presented in Eqs. (14), (28), (43), and
I1 and I2 are found in Eqs. (48) and (53).

Now we calculate the negative derivative of Eq. (54) with
respect to T and find the limiting value of this derivative when
T goes to zero using Eqs. (28) and (44). The result is

SD(a,0) = kB

16πa2

[
ζ (3) + I1

(
2aωp

c

)
+ I2

(
2aωp

c

)]
. (55)

As is seen in Eq. (55), the Casimir entropy of metallic film
at zero temperature, calculated using the Drude model, is not
equal to zero and depends on the parameters of a film (the
thickness a and the plasma frequency ωp). Thus, in this case
the Nernst heat theorem is violated [37,38].

Calculations using Eqs. (48) and (53) show that

SD(a,0) > 0. (56)

Thus, for ω̃p = 1 (i.e., for a Au film of approximately
11 nm thickness) one has I1 = −0.79575, I2 = −0.02456,
which leads to the number in square brackets in Eq. (55)
C = 0.38175. For ω̃p = 5 (a = 55 nm) the respective results
are I1 = −0.04049, I2 = −0.006684, and C = 1.15489. Fi-
nally, for ω̃p = 15 (a = 165 nm) I1 = −4.894×10−6, I2 =
−1.5966×10−6, and C = 1.20205. We see that with increas-
ing film thickness the magnitudes of the quantities I1 and I2

become negligibly small, as compared with ζ (3).

IV. CONCLUSIONS AND DISCUSSION

In the foregoing, we have considered the low-temperature
behavior of the Casimir free energy, entropy, and pressure of
metallic films in vacuum. It was shown that the calculation
results are quite different depending on whether the plasma or
the Drude model is used to describe the dielectric response of a
film metal. If the lossless plasma model is used, as is suggested
by the results of several precise experiments on measuring the
Casimir force, we have obtained explicit analytic expressions
for the thermal corrections to the Casimir energy and pressure
and for the Casimir entropy of a film, which are applicable
over the wide temperature region down to zero temperature.

These expressions do not have a classical limit and go to
zero when the film material becomes perfectly reflecting. The
Casimir entropy is shown to be positive and satisfying the
Nernst heat theorem; i.e., it goes to zero in the limiting case of
zero temperature.

If the film metal is described by the Drude model taking into
account the relaxation properties of conduction electrons at
low frequencies, the calculation results are quite different, both
qualitatively and quantitatively. In accordance to what was
shown in previous work [14–16], the Casimir free energy and
pressure reach the classical limit for rather thin metallic films
of approximately 150 nm thickness. However, in contradiction
to physical intuition, the Casimir free energy does not go to
zero in the limiting case of ideal metal film.

We have found analytically the Casimir entropy of metallic
films with perfect crystal lattices, described by the Drude
model, at zero temperature. It is demonstrated that this quantity
takes a positive value depending on the parameters of a film,
i.e., the Nernst heat theorem is violated. Thus, the case of a free-
standing film is different from the case of two nonmagnetic
metal plates described by the Drude model interacting through
a vacuum gap. In the latter case the Nernst heat theorem is
also violated if the Drude model is used in calculations, but
the Casimir entropy takes a negative value at T = 0 [32–34].

The obtained results raise a problem on what is the proper
way to calculate the dispersion-force contribution to the
free energy of metallic films. As discussed in Sec. I, the
resolution of this problem is important for investigations
of stability of thin films. Previous precise experiments on
measuring the Casimir force between metallic test bodies
[17–23,27,28] have always been found in agreement with
theoretical predictions of the thermodynamically consistent
approach using the plasma model and excluded the theoretical
predictions obtained using the Drude model. Recently it
was shown [48] that theoretical description of the Casimir
interaction in graphene systems by means of the polarization
tensor, which is in agreement [49] with the experimental data
[50], also satisfies the Nernst heat theorem. Thus, there is
good reason to suppose that the contribution of dispersion
forces to the free energy of metallic films should also be
calculated in a thermodynamically consistent way, i.e., using
the plasma model. An experimental confirmation to this
hypothesis might be expected within the next few years.
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APPENDIX

Here we investigate the low-temperature behavior of the
quantity F (γ ) defined in Eq. (43) and prove Eq. (44) used in
Sec. III. For this purpose we expand F (γ ) up to the first order
in small parameter δl(T ) defined in Eq. (36). According to the
results of Sec. III, for metals with perfect crystal lattices this
parameter becomes progressively smaller with decreasing T .
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The reflection coefficients in the case when the Drude model is used can be obtained by substituting Eq. (39) in Eq. (8):

rTM,D(iζl,y) ≈
√

y2 + (εl,p − 1)ζ 2
l − ω̃2

pδl − εl,py + ω̃2
py

ζ 2
l

δl√
y2 + (εl,p − 1)ζ 2

l − ω̃2
pδl + εl,py − ω̃2

py

ζ 2
l

δl

,

rTE,D(iζl,y) ≈
√

y2 + (εl,p − 1)ζ 2
l − ω̃2

pδl − y√
y2 + (εl,p − 1)ζ 2

l − ω̃2
pδl + y

. (A1)

Expanding the second powers of these coefficients up to the first order of δl = δl(T ), one obtains

r2
TM,D(iζl,y) ≈ r2

TM,p(iζl,y) − δl(T )RTM(iζl,y),

r2
TE,D(iζl,y) ≈ r2

TE,p(iζl,y) − δl(T )RTE(iζl,y), (A2)

where the quantities RTM and RTE are given by

RTM(iζl,y) =
2ω̃2

pζ 2
l y

(
ω̃2

p + 2y2 − ζ 2
l

)(
ω̃2

py + ζ 2
l y − ζ 2

l

√
y2 + ω̃2

p

)
√

y2 + ω̃2
p

(
ω̃2

py + ζ 2
l y + ζ 2

l

√
y2 + ω̃2

p

)3
,

RTE(iζl,y) = RTE(y) =
2ω̃2

py
(√

y2 + ω̃2
p − y

)
√

y2 + ω̃2
p

(√
y2 + ω̃2

p + y
)3

. (A3)

It is easily seen that for any y � ζl it holds RTM > 0 and RTE > 0.
Now we consider the exponential factor in the first two contributions to Eq. (43). Up to the first order in δl , this factor can be

presented in the form

e
−
√

y2+ω̃2
p(1−δl ) = e

−
√

y2+ω̃2
p

√
1− δl ω̃

2
p

y2+ω̃2
p

≈ e
−
√

y2+ω̃2
p

[
1− δl ω̃

2
p

2(y2+ω̃2
p )

]
. (A4)

Next we use the fact that not only δl , but also δlω̃p/2 is the small parameters at sufficiently low temperature. Really, in accordance
to Eq. (36), the largest value of this parameter is

δ1
ω̃p

2
= γ

ξ1

aωp

c
. (A5)

For Au at T = 10 K we have γ /ξ1 ≈ 2×10−3, so that the quantity (A5) does not exceed 0.2 for film thicknesses a � 2 μm. At
T = 5 K the parameter (A5) does not exceed 0.2 for Au films with a � 20 μm thickness.

Expanding the right-hand side of Eq. (A4) up to the first order in parameter δlω̃p/2, we obtain

e−
√

y2+ω̃2
p(1−δl ) ≈ e−

√
y2+ω̃2

p

⎛
⎝1 + δl

ω̃2
p

2
√

y2 + ω̃2
p

⎞
⎠. (A6)

Substituting Eqs. (A2) and (A6) in Eq. (43), expanding the first two logarithms in powers of δl and preserving only the terms of
the first order, one arrives at

F (γ )(a,T ) ≈ − kBT

8πa2

∞∑
l=1

δl(t)
∫ ∞

ζl

y dy

⎡
⎣ QTM(iζl,y)

e
√

y2+ω̃2
p − r2

TM,p(iζl,y)
+ QTE(iζl,y)

e
√

y2+ω̃2
p − r2

TE,p(iζl,y)

⎤
⎦. (A7)

Here we have introduced the notations

QTM(iζl,y) = ω̃2
p

2
√

y2 + ω̃2
p

− RTM(iζl,y),

QTE(iζl,y) = QTE(y) = ω̃2
p

2
√

y2 + ω̃2
p

− RTE(y), (A8)

and the quantities RTM and RTE are defined in Eq. (A3).
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It is easily seen that QTM > 0 and QTE > 0, so that
F (γ )(a,T ) < 0. This is because the magnitude of the Casimir
free energy of a film described by the Drude model is larger
than that of a film described by the plasma model (as opposed
to the case of metallic plates separated with a vacuum gap
[34]).

Equation (A7) can be used to prove the validity of Eq. (44).
For this purpose we increase the magnitude of the right-hand
side of Eq. (A7) by replacing r2

TM(TE),p with unities in the
denominators, and by omitting the quantities RTM(TE) in
Eq. (A8) for the numerators. Using also the definition of δl

in Eq. (36), and the definition of ω̃p from Eq. (10) in the
prefactor, one obtains

|F (γ )(a,T )| <
�γ (T )ω2

p

4π2c2

∞∑
l=1

1

l

∫ ∞

ζl

y dy√
y2+ω̃2

p

1

e
√

y2+ω̃2
p−1

.

(A9)

Now we introduce the new variable t =
√

y2 + ω̃2
p and

expanding in powers of e−t find

|F (γ )(a,T )| <
�γ (T )ω2

p

4π2c2

∞∑
n=1

∞∑
l=1

1

l

∫ ∞
√

ζ 2
l +ω̃2

p

dt e−nt . (A10)

Calculating the integral and using the inequality
ζl + ω̃p√

2
<

√
ζ 2
l + ω̃2

p, (A11)

we arrive at

|F (γ )(a,T )| <
�γ (T )ω2

p

4π2c2

∞∑
n=1

1

n

∞∑
l=1

1

l
e
−n

ω̃p+ζl√
2 . (A12)

Taking into account that ζl = τ l, we perform a summation
with respect to l and obtain

|F (γ )(a,T )| < −�γ (T )ω2
p

4π2c2

∞∑
n=1

1

n
e
−n

ω̃p√
2 ln

(
1 − e

−n τ√
2
)
,

(A13)

where, due to a smallness of τ ,

ln
(
1− e

−n τ√
2
)≈ ln

(
n

τ√
2

)
= ln τ + ln n − 1

2
ln 2. (A14)

Substituting Eq. (A13) in Eq. (A12), we represent the final
results in the form

|F (γ )(a,T )| < X(a,T ), (A15)

where

X(a,T ) = �γ (T )ω2
p

4π2c2

(
C1 ln

4πkBT a

�c
− C2

)
, (A16)

and the following independent on T coefficients are intro-
duced:

C1 = −
∞∑

n=1

1

n
e
−n

ω̃p√
2 = ln

(
1 − e

− ω̃p√
2
)
,

C2 =
∞∑

n=1

2 ln n − ln 2

2n
e
−n

ω̃p√
2 . (A17)

Note that the second series is converging, as well as the first
one.

Taking into account that for metals with perfect crystal
lattices at very low temperature γ (T ) ∼ T 2 (see Sec. III), one
concludes from Eq. (A16) that X(a,T ) → 0 when T → 0.
Then, from Eq. (A15), one obtains the first equality in Eq. (44).

From Eq. (A16) it is seen that not only X(a,0) = 0, but

∂X(a,T )

∂T

∣∣∣∣
T =0

= 0 (A18)

as well. Using Eqs. (A15) and (A18), one easily proves that
the second equality in Eq. (44) is valid.

To end, it is pertinent to note that the above results,
including Eq. (44), are also valid under a slower vanishing
of the relaxation parameter with temperature according to
γ (T ) ∼ T β where β > 1.
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[20] R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya, D. E.
Krause, and V. M. Mostepanenko, Eur. Phys. J. C 51, 963 (2007).

[21] C.-C. Chang, A. A. Banishev, R. Castillo-Garza, G. L.
Klimchitskaya, V. M. Mostepanenko, and U. Mohideen,
Phys. Rev. B 85, 165443 (2012).

[22] A. A. Banishev, G. L. Klimchitskaya, V. M. Mostepanenko, and
U. Mohideen, Phys. Rev. Lett. 110, 137401 (2013).

[23] A. A. Banishev, G. L. Klimchitskaya, V. M. Mostepanenko, and
U. Mohideen, Phys. Rev. B 88, 155410 (2013).

[24] G. Bimonte, Phys. Rev. Lett. 112, 240401 (2014).
[25] G. Bimonte, Phys. Rev. Lett. 113, 240405 (2014).
[26] G. Bimonte, Phys. Rev. B 91, 205443 (2015).
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