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Experimental demonstration of real-time adaptive one-qubit quantum-state tomography

Qi Yin, Li Li, Xiao Xiang, Guo-Yong Xiang,* Chuang-Feng Li, and Guang-Can Guo
Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences,

Hefei 230026, People’s Republic of China
and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China,

Hefei 230026, People’s Republic of China
(Received 11 August 2016; published 20 January 2017)

Quantum-state tomography plays a pivotal role in quantum computation and information processing. To
improve the accuracy in estimating an unknown state, carefully designed measurement schemes, such as adopting
an adaptive strategy, are necessarily needed, which have gained great interest recently. In this work, based on
the proposal of Sugiyama et al. [Phys. Rev. A 85, 052107 (2012)], we experimentally realize an adaptive
quantum-state tomography for one qubit in an optical system. Since this scheme gives an analytical solution to
the optimal measurement basis problem, our experiment is updated in real time and the infidelity between the
real state and the estimated state is tracked with the detected photons. We observe an almost 1/N scaling rule of
averaged infidelity against the overall number of photons, N , in our experiment, which outperforms 1/

√
N of

nonadaptive schemes.
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I. INTRODUCTION

Quantum-state tomography is a process to experimentally
characterize the state of any given quantum system and has
been widely applied in quantum computation and information
processing [1–3]. Usually, an ensemble of identical copies
of the targeted states is prepared and then passed through
different measurement settings. Based on the collected data,
one can reconstruct the state with the help of certain classical
algorithms [4–6]. Nevertheless, with limited resources the
quantum state can only be estimated up to certain accuracy;
thus, the problem to improve accuracy in estimating an un-
known state has always attracted lots of attention [6–13]. For a
qubit system, the traditional way is to fix several measurement
bases prior to the experiment and then reconstruct the density
matrix based on the measurement results [6], whose estimation
error scales with the number of copies, N , as 1/

√
N for

pure and nearly pure states [7,8]. By choosing some special
measurement basis, such as a mutually unbiased basis (MUB)
or cubelike basis [9–11], the prefactor of the scaling rule can be
improved, but the power-law index of N is scarcely changed.
In fact, it has been shown that the estimation error scaling
rule is bounded by 1/N , and theoretically it can be achieved
by employing a collective measurement strategy, i.e., by
measuring in the huge Hilbert space of ρ⊗N [12,13]. However,
it is impossible to experimentally implement collective mea-
surements with current technology. An alternative solution is to
employ an adaptive strategy: rather than using the fixed basis,
this scheme changes the next measurement setting based on
previous measurement settings and outcomes. As a result, the
performance of quantum-state tomography can be improved
remarkably and can even approach the estimation limit [14,15].

In adaptive quantum-state tomography, the measurement
basis is continuously updated with the collected data based
on some criterion, such as maximizing the mean expected
fidelity or Fisher information [14,16], or according to the
Bayesian inference [17,18]. However, all these proposals
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are highly computationally intensive and the involved opti-
mization problem becomes intractable after dozens of trials,
which makes them infeasible for realistic experimental im-
plementations. Recently, several efficient adaptive schemes
have been proposed [19–22], which took different strategies
for quantum-state tomography and achieved better perfor-
mance in numerical simulations or experiments. Here we
report an experimental realization of adaptive quantum-state
tomography proposed by Sugiyama et al. [19]. This scheme,
based on average-variance optimality [23], has an analytic
solution to the optimal measurement basis for the one-qubit
case, which requires much less computational cost so that
we can implement fast and real-time adaptive tomography
experiments for very large N . The estimation accuracy, if
infidelity is taken as the metric of the error, almost scales
as 1/N , approximating the theoretical limit.

II. ALGORITHM REVISED

In this section, we briefly review the main idea of this
proposal [19]. A quantum measurement can be described by
a positive operator-valued measure (POVM), � = {�m}Mm=1,
with the probability of outcome m being observed given by
Born’s rule p(m; �|ρ) = Tr(�mρ). In quantum-state tomog-
raphy, different sets of POVMs are required to fully recon-
struct an unknown quantum state. Let �n = {�1,�2, . . . ,�n}
denote the sequence of chosen POVMs up to the nth trial
in the adaptive procedure and Dn = {�1,m1 , . . . ,�n,mn

} ∈ Dn

denote the corresponding outcome sequence obtained, where
Dn represents the space of all possible outcome sequences.
Here, we simplify the state in d-dimensional space as a
vector s ∈ Rd2−1 [24], i.e., ρ = ρ(s). For instance, ρ(s) =
1
2 (1 + s · σ ) in the one-qubit case, where σ = (σx,σy,σz) are
the Pauli matrices. Then we obtain the following inequality
for any estimator sest with N measurement trials:

∑
DN∈DN

p(DN |s)[sest(DN ) − s]T H (s)[sest(DN ) − s]

� Tr[H (s)G(DN,sest,s)T F (DN,s)−1G(DN,sest,s)], (1)
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where

G(DN,sest,s) = ∇s

∑
DN∈DN

p(DN |s)sestT (DN ), (2)

F (DN,s) =
∑

DN∈DN

∇sp(DN |s)∇T
s p(DN |s)

p(DN |s)
, (3)

H (s) is a positive semidefinite matrix related to some error
metric, and F (DN,s) is called the Fisher matrix. In fact, Eq. (1)
is a generalization of the well-known Cramér-Rao inequality
for quantum systems [19,25].

From now on, we need three approximations to derive the
update criterion of the optimal measurement basis. As we
can see, the right-hand side of Eq. (1) is the lower bound
on variance of the estimator. When N → ∞, the estimator
converges to the true state and G(DN,sest,s) converges to the
identity matrix I ; it ends up with

K(DN,s) := Tr[H (s)F (DN,s)−1]. (4)

To simplify the inequality, now we consider this function
K(DN,s) as the lower bound of the error. This is the
first approximation, which has little effect on the accuracy
especially when N is large. Then a natural thought is to
choose a measurement update rule that minimizes the value
of K(DN,s) so that we can possibly promote the estimation
precision, which is exactly the guiding principle of the average
variance optimality [23]. This can be formulated as the
following optimization procedure after the nth trial has been
finished:

�
opt
n+1 = arg min

�n+1∈M
Tr[H (s)F (Dn+1,s)−1], (5)

where M is the set of possible measurement bases. Usually
the calculation of a Fisher matrix requires summing over
all possible measurement outcome sequences of all possible
measurement basis sequences according to Eq. (3), which is
an exponential amount of data and formidable to compute. To
avoid this problem, here comes the second approximation: we
only consider those measurement outcome sequences of the
measurement basis sequence being performed in the current
experiment instead of considering other possible measurement
basis sequences:

F (Dn+1,s) ≈ F̃ (Dn+1,s|�n+1) =
n+1∑
i=1

F (�i ,s), (6)

where

F (�i ,s) =
M∑

mi=1

∇sp(mi ; �i |s)∇T
s p(mi ; �i |s)

p(mi ; �i |s)
. (7)

Since the minimizing function depends on the unknown
parameter s which is to be estimated, we adopt the last
approximation to replace s with a randomly chosen initial
value and then update it with the estimated sest(Dn) after every
step. Finally, the update criterion is defined as

�
opt
n+1 = arg min

�n+1∈M
Tr

[
H

(
sest
n

)
F

(
Dn+1,sest

n

)−1]
. (8)

This is in general a nonlinear minimization problem with
high computational cost. In the one-qubit case, fortunately, an

analytic solution can be derived. Let us denote the projective
measurement basis of one qubit by

�±(a) = 1
2 (1 ± a · σ ), (9)

where a is a vector on the Bloch sphere. Then the optimal
basis given by Eq. (8) is

aopt
n+1 = Bnemin(Cn)

‖Bnemin(Cn)‖ , (10)

where

Bn =
√

F̃
(
an,sest

n

)
H

(
sest
n

)−1
F̃n

(
an,sest

n

)
, (11)

Cn = Bn

[
I − ŝest

n sestT
n + F̃n

(
an,sest

n

)−1]
Bn, (12)

and emin(Cn) is the eigenvector corresponding to the minimal
eigenvalue of matrix Cn [19]. Thanks to the analytic solution,
the computational cost of this proposal is extremely reduced,
which makes it possible to implement adaptive quantum-state
tomography for large N in experiments.

III. SIMULATIONS

In the one-qubit case, the traditional tomograph such as
the MUB usually achieves different estimation precision for
different states even with the same purity, i.e., the same
length of the state vector in the Bloch sphere. For example,
the expected infidelity scales as 1/

√
N for most of nearly

pure states, whereas it scales as 1/N for the few states that
are aligned with the measurement basis [21]. It is due to the
asymmetry of information extraction when we apply a fixed
measurement basis for different states. On the contrary, in
adaptive schemes, we know from Eq. (8) that the measurement
basis changes every step and is decided by the results achieved
before, which are related to the target state (except for the
first few ones which are chosen intentionally by researchers,
here we fix σx,σy,σz to be our first three measurements, which
hardly affects the final estimate). So given the same update
criterion for every state and the symmetry of the Bloch sphere,
we claim when the measurement number is large enough,
every state with the same purity will be reconstructed to the
same precision with adaptive schemes in terms of average
performance. Thus, instead of randomly choosing among all
states, here we numerically simulate the performance of this
adaptive tomography scheme for states with different r in the
Bloch sphere, while (θ,φ) was fixed at (π/4,π/4).

In Eq. (1), the matrix H (s) is determined by which error
metric is used to value the variance of the estimator, for
instance, H HS(s) = 1

4I for Hilbert-Schmidt (HS) distance and

H IF(s) = 1
4 (I + ssT

1−‖s‖2 ) for infidelity (IF). Different expres-
sions of H (s) may lead to different results, so we would
like to apply these two expressions in the update criterion
to observe and compare the performance of the two slightly
different adaptive tomography schemes. As depicted in Fig. 1,
the average infidelity of both IF- and HS-based tomography
decreases remarkably as N increases, except when N is too
small (N < 50), because the first and third approximations we
made above are not quite suitable until N becomes sufficiently
large. Then we fit a power law of the form 1 − F ∝ Nα to
these simulated data and found α = −0.99 ± 0.04, −1.12 ±
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FIG. 1. Simulated average infidelity 1 − F (ρ̂,ρ) against number
of measurements, N , for both adaptive tomography schemes: (a)
IF-based tomography and (b) HS-based tomography. The true state is
chosen with different r = 0.2, 0.8, 0.998, 0.999, and 1, while (θ,φ) is
fixed at (π/4,π/4). All the results presented here are the average of 20
independent runs. The cyan (upper) line of 1 − F = 1/

√
N and black

(lower) line of function 1 − F = 1/N are shown for comparison.

0.05, −1.08 ± 0.04, −1.02 ± 0.04, and −1.07 ± 0.05 for
IF-based tomography and α = −1.08 ± 0.04, −1.11 ± 0.04,
−0.87 ± 0.05, −0.80 ± 0.06, and −0.76 ± 0.07 for HS-based
tomography in the sequence of r = 0.2, 0.8, 0.998, 0.999, 1.
There is a small difference between the two schemes. The
performance of IF-based tomography is almost the same for
all states, while that of HS-based tomography becomes a little
worse when r approaches 1, which is analyzed later. It should
be noted that even the worst case of HS-based tomography,
i.e., reconstructing the pure state, still outperforms the 1/

√
N

scaling rule of nonadaptive schemes [9–11].
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FIG. 2. Spontaneous parametric down-conversion is performed
by pumping a nonlinear beta barium borate crystal with a 404-nm
diode laser. One photon is sent directly to a detector as a trigger. The
second photon is sent through a polarizer beam splitter to prepare it
in a state of very pure horizonal polarization. The measurement basis
is performed by a zero-order quarter-wave plate and a half-wave
plate followed by a beam displacer, with two detectors collecting
the photons. The wave plates are controlled by a computer to enable
adaptation and driven by two step-motor stages.

IV. EXPERIMENTAL REALIZATION

Considering the pure state is the worst case for quantum-
state estimation, without loss of generality, we have only
experimentally implemented this adaptive tomography for a
one-qubit pure state. In Fig. 2, by using type-I spontaneous
parametric down-conversion in a nonlinear crystal, photon
pairs are created. One of the photons is sent immediately to
a single-photon counting module (SPCM) to act as a trigger.
The second photon is sent through a polarizer beam splitter to
prepare it in a state of very pure horizonal polarization. A zero-
order quarter-wave plate and a half-wave plate followed by a
beam displacer with high extinction ratio (more than 10 000:1)
are used to project the photons onto any measurement basis
on the Bloch sphere. The wave plates are controlled by a
computer to enable adaptation and driven by two step-motor
stages. In order to show the best performance of this adaptive
scheme, we take several strategies to reduce the system error
as much as possible. To alleviate the drift of the collective
efficiency of two photon detectors, multimode fibers fully
covered by black plastic bags instead of single-mode fibers
are used to collect the coupled photons, which is observed in
our laboratory within 0.002 in 16 h. Because of the introduction
of multimode fibers we have to set the coincidence window
to 1 ns to minimize the random coincidence count so that its
error can be ignored, which also helps make sure one photon
is detected at a time. More technical details can be found in
Refs. [22,26].

First, the true state is reconstructed with a very large number
of copies (N > 1 × 107) by the traditional maximum likeli-
hood estimation (MLE) method on the σx,σy,σz basis. The
reconstructed state is (r,θ,φ) = (0.999,0.0261,2.554) in the
Bloch sphere. Since the true state we prepared is nearly aligned
with one of the three measurement bases, the reconstruction
precision of MLE should be high enough for the following
experiments. Then we implement our adaptive tomography
schemes in the experiments. The angle of wave plates before
the beam displacer in the setup is tuned according to the
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FIG. 3. Experimental results: (a) average infidelity against the number of measurements reconstructed by IF-based (red bold dots) and
HS-based (blue tiny dots) adaptive tomography. The red dash-dotted line and blue dashed lines are their fitting results, respectively. The cyan
(upper) line of 1 − F = 1/

√
N and black (lower) line of function 1 − F = 1/N are shown for comparison. Data points are averaged over 20

experimental runs. (b, c) Distribution of the measurement basis on the Bloch sphere of one of the experimental runs for IF and HS, respectively.
These blue dots are one-fifth of the basis sequence chosen with equal interval, and the red plus is the true state.

adaptive program, which computes the next measurement
basis each time after the coincidence is observed. As pointed
out above, the analytical solution for the one-qubit case is
computationally efficient, so our adaptive process is conducted
in real time. In fact, the next basis is achieved almost instantly
after the measurement feedback in our program even for
large N . However, the most time-consuming procedure is to
switch the angles of the wave plates, which are controlled
by two step-motor stages with high precision but slow speed,
resulting in about 4 h for one experimental run of N = 1 × 104

measurements.
The estimation infidelity is averaged over 20 experimental

runs, and the results are presented in Fig. 3. As expected, we
can see from Fig. 3(a) that the decreasing gradients of both IF-
and HS-based adaptive tomography are much larger than that
of the 1/

√
N scaling rule, while approaching that of the 1/N

scaling rule. Also IF outperforms HS a bit, as in simulations.
The power law of 1 − F ∝ 1/Nα has been fit for all data; we
get α = −0.97 ± 0.05 and −0.80 ± 0.05 for IF- and HS-based
tomography, respectively, which agrees with the simulation
results within error bars. Then we try to discover some details
of the measurement basis performed in our experiments.
Figures 3(b) and 3(c) show the distribution of the measurement
basis of one of the experimental runs on the Bloch sphere for
IF- and HS-based tomography, respectively. On the one hand,
the measurement basis can be chosen anywhere on the Bloch
sphere with certain probability; on the other hand, these bases
have a tendency to gather around the true state, which makes it
seem that the adaptive schemes guide the basis to the true state.
This is kind of similar to the self-guided tomography theme
proposed in Ref. [27]. We notice the points of measurement
basis of IF-based tomography are much more concentrated
around the true state than that of HS-based tomography.
Besides, the points in Fig. 3(b) almost cluster along the lines
connecting the real state and some early chosen measurement
bases. The reason for this feature can be revealed from the
update rule. We know from Eq. (4) the next measurement
basis is dependent on the previous ones and the true state;

usually the early part of measurement bases would be chosen
rather randomly due to the little information, then after certain
steps the next measurement basis is chosen to minimize the
variance. According to Ref. [21], the closer the measurement
basis is to the true state, the more accurate the estimation is,
so it is reasonable that the measurement basis approaches the
true state, and the faster it approaches, the better accuracy
you get. Second, the update rule is based on the calculation
of the Fisher information, which is summed over the previous
measurement basis. We believe that, due to the two above
reasons, choosing the measurement basis clustering along the
lines is the fast way to improve the accuracy and approximate
the quantum Cramér-Rao inequality, which also explains
why IF-based adaptive tomography achieves better perfor-
mance than HS, whose distribution of measurement basis is
dispersive.

V. CONCLUSIONS

We have experimentally realized the adaptive quantum-
state tomography based on an average-variance optimality
criterion in optical system. Both IF- and HS-based tomography
outperform traditional nonadaptive methods, achieving almost
the 1/N scaling rule in terms of average infidelity, which
is believed to be the theoretical limit for any tomography
scheme [12,13]. And the reason why HS-based tomography
behaves a little worse than IF-based tomography has been
analyzed through the distribution of its measurement basis
on the Bloch sphere in an intuitive way. We notice that the
more and the faster the measurement bases cluster around the
true state, the better tomography performance is, which agrees
with the result of Ref. [21]. With an analytic solution for
the one-qubit case, this adaptive scheme overcomes the high-
computational-cost problem and enables real-time feedback
measurement, so that the number of measurement copies can
be much improved with respect to other schemes [16–18],
which makes it feasible to implement the adaptive strategy
in practical quantum-state tomography experiments. Though
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controlling the motion of the wave plates in our experiments
is time consuming, that will not be a problem if it is
applied in other quantum systems such as ion traps and
superconductor circuits, which are measured by laser or
microwave [28,29].
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Tapia, Phys. Rev. A 73, 032301 (2006).
[14] D. G. Fischer, S. H. Kienle, and M. Freyberger, Phys. Rev. A

61, 032306 (2000).
[15] Th. Hannemann, D. Reiss, Ch. Balzer, W. Neuhauser, P. E.

Toschek, and Ch. Wunderlich, Phys. Rev. A 65, 050303(R)
(2002).

[16] A. Fujiwara, J. Phys. A 39, 12489 (2006).
[17] C. J. Happ and M. Freyberger, Phys. Rev. A 78, 064303

(2008).
[18] D. G. Fischer and M. Freyberger, Phys. Lett. A 273, 293

(2000).
[19] T. Sugiyama, P. S. Turner, and M. Murao, Phys. Rev. A 85,

052107 (2012).
[20] K. S. Kravtsov, S. S. Straupe, I. V. Radchenko, N. M. T. Houlsby,

F. Huszár, and S. P. Kulik, Phys. Rev. A 87, 062122 (2013).
[21] D. H. Mahler, L. A. Rozema, A. Darabi, C. Ferrie, R. Blume-

Kohout, and A. M. Steinberg, Phys. Rev. Lett. 111, 183601
(2013).

[22] Z. B. Hou, H. J. Zhu, G. Y. Xiang, C. F. Li, and G. C. Guo, npj
Quantum Inf. 2, 16001 (2016).

[23] F. Pukelsheim, Optimal Design of Experiments, Classics in
Applied Mathematics (SIAM, Philadelphia, 2006).

[24] B. Qi, Z. B. Hou, L. Li, D. Y. Dong, G. Y. Xiang, and G. C. Guo,
Sci. Rep. 3, 3496 (2013).

[25] C. R. Rao, Linear Statistical Inference and Its Applications,
Wiley Series in Probability and Statistics, 2nd ed. (Wiley, New
York, 2002).

[26] Z. B. Hou, H. J. Zhu, G. Y. Xiang, C. F. Li, and G. C. Guo,
J. Opt. Soc. Am. B 33, 1256 (2016).

[27] C. Ferrie, Phys. Rev. Lett. 113, 190404 (2014).
[28] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod.

Phys. 75, 281 (2003); D. B. Hume, T. Rosenband, and D. J.
Wineland, Phys. Rev. Lett. 99, 120502 (2007).

[29] Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73,
357 (2001); I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans,
and J. E. Mooij, Science 299, 1869 (2003).

012129-5

https://doi.org/10.1038/nature04279
https://doi.org/10.1038/nature04279
https://doi.org/10.1038/nature04279
https://doi.org/10.1038/nature04279
https://doi.org/10.1038/nature02054
https://doi.org/10.1038/nature02054
https://doi.org/10.1038/nature02054
https://doi.org/10.1038/nature02054
https://doi.org/10.1103/PhysRevLett.70.1244
https://doi.org/10.1103/PhysRevLett.70.1244
https://doi.org/10.1103/PhysRevLett.70.1244
https://doi.org/10.1103/PhysRevLett.70.1244
https://doi.org/10.1103/PhysRevA.55.R1561
https://doi.org/10.1103/PhysRevA.55.R1561
https://doi.org/10.1103/PhysRevA.55.R1561
https://doi.org/10.1103/PhysRevA.55.R1561
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.69.010304
https://doi.org/10.1103/PhysRevA.69.010304
https://doi.org/10.1103/PhysRevA.69.010304
https://doi.org/10.1103/PhysRevA.69.010304
https://doi.org/10.1103/PhysRevLett.97.130501
https://doi.org/10.1103/PhysRevLett.97.130501
https://doi.org/10.1103/PhysRevLett.97.130501
https://doi.org/10.1103/PhysRevLett.97.130501
https://doi.org/10.1103/PhysRevLett.105.030406
https://doi.org/10.1103/PhysRevLett.105.030406
https://doi.org/10.1103/PhysRevLett.105.030406
https://doi.org/10.1103/PhysRevLett.105.030406
https://doi.org/10.1103/PhysRevA.78.052122
https://doi.org/10.1103/PhysRevA.78.052122
https://doi.org/10.1103/PhysRevA.78.052122
https://doi.org/10.1103/PhysRevA.78.052122
https://doi.org/10.1103/PhysRevA.84.042108
https://doi.org/10.1103/PhysRevA.84.042108
https://doi.org/10.1103/PhysRevA.84.042108
https://doi.org/10.1103/PhysRevA.84.042108
https://doi.org/10.1103/PhysRevLett.74.1259
https://doi.org/10.1103/PhysRevLett.74.1259
https://doi.org/10.1103/PhysRevLett.74.1259
https://doi.org/10.1103/PhysRevLett.74.1259
https://doi.org/10.1103/PhysRevA.73.032301
https://doi.org/10.1103/PhysRevA.73.032301
https://doi.org/10.1103/PhysRevA.73.032301
https://doi.org/10.1103/PhysRevA.73.032301
https://doi.org/10.1103/PhysRevA.61.032306
https://doi.org/10.1103/PhysRevA.61.032306
https://doi.org/10.1103/PhysRevA.61.032306
https://doi.org/10.1103/PhysRevA.61.032306
https://doi.org/10.1103/PhysRevA.65.050303
https://doi.org/10.1103/PhysRevA.65.050303
https://doi.org/10.1103/PhysRevA.65.050303
https://doi.org/10.1103/PhysRevA.65.050303
https://doi.org/10.1088/0305-4470/39/40/014
https://doi.org/10.1088/0305-4470/39/40/014
https://doi.org/10.1088/0305-4470/39/40/014
https://doi.org/10.1088/0305-4470/39/40/014
https://doi.org/10.1103/PhysRevA.78.064303
https://doi.org/10.1103/PhysRevA.78.064303
https://doi.org/10.1103/PhysRevA.78.064303
https://doi.org/10.1103/PhysRevA.78.064303
https://doi.org/10.1016/S0375-9601(00)00513-2
https://doi.org/10.1016/S0375-9601(00)00513-2
https://doi.org/10.1016/S0375-9601(00)00513-2
https://doi.org/10.1016/S0375-9601(00)00513-2
https://doi.org/10.1103/PhysRevA.85.052107
https://doi.org/10.1103/PhysRevA.85.052107
https://doi.org/10.1103/PhysRevA.85.052107
https://doi.org/10.1103/PhysRevA.85.052107
https://doi.org/10.1103/PhysRevA.87.062122
https://doi.org/10.1103/PhysRevA.87.062122
https://doi.org/10.1103/PhysRevA.87.062122
https://doi.org/10.1103/PhysRevA.87.062122
https://doi.org/10.1103/PhysRevLett.111.183601
https://doi.org/10.1103/PhysRevLett.111.183601
https://doi.org/10.1103/PhysRevLett.111.183601
https://doi.org/10.1103/PhysRevLett.111.183601
https://doi.org/10.1038/npjqi.2016.1
https://doi.org/10.1038/npjqi.2016.1
https://doi.org/10.1038/npjqi.2016.1
https://doi.org/10.1038/npjqi.2016.1
https://doi.org/10.1038/srep03496
https://doi.org/10.1038/srep03496
https://doi.org/10.1038/srep03496
https://doi.org/10.1038/srep03496
https://doi.org/10.1364/JOSAB.33.001256
https://doi.org/10.1364/JOSAB.33.001256
https://doi.org/10.1364/JOSAB.33.001256
https://doi.org/10.1364/JOSAB.33.001256
https://doi.org/10.1103/PhysRevLett.113.190404
https://doi.org/10.1103/PhysRevLett.113.190404
https://doi.org/10.1103/PhysRevLett.113.190404
https://doi.org/10.1103/PhysRevLett.113.190404
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1103/PhysRevLett.99.120502
https://doi.org/10.1103/PhysRevLett.99.120502
https://doi.org/10.1103/PhysRevLett.99.120502
https://doi.org/10.1103/PhysRevLett.99.120502
https://doi.org/10.1103/RevModPhys.73.357
https://doi.org/10.1103/RevModPhys.73.357
https://doi.org/10.1103/RevModPhys.73.357
https://doi.org/10.1103/RevModPhys.73.357
https://doi.org/10.1126/science.1081045
https://doi.org/10.1126/science.1081045
https://doi.org/10.1126/science.1081045
https://doi.org/10.1126/science.1081045



