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We theoretically investigate the critical properties of a single driven-dissipative nonlinear photon mode. In a
well-defined thermodynamical limit of large excitation numbers, the exact quantum solution describes a first-order
phase transition in the regime where semiclassical theory predicts optical bistability. We study the behavior of
the complex spectral gap associated with the Liouvillian superoperator of the corresponding master equation. We
show that in this limit the Liouvillian gap vanishes exponentially and that the bimodality of the photon Wigner
function disappears. The connection between the considered thermodynamical limit of large photon numbers for
the single-mode cavity and the thermodynamical limit of many cavities for a driven-dissipative Bose-Hubbard
system is discussed.
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I. INTRODUCTION

In recent years the many-body physics of driven-dissipative
optical systems has become a rapidly expanding research field
(see, for example, Refs. [1–5]). This has led to an increasing
interest in dissipative quantum phase transitions which have
been studied theoretically for various systems, such as coupled
spins [6–9] and dissipative Bose gases [10–13]. Currently the
field is being lifted to the experimental realm. Examples are the
spontaneous mirror-symmetry breaking in coupled photonic-
crystal nanolasers [14], the observation [15] of the predicted
photon-blockade breakdown phase transition [16], the report
of bistability in one-dimensional circuit QED lattices [17], and
the probing of the dynamic optical hysteresis in the quantum
regime [18,19].

As in the case of quantum critical phenomena signatures
of dissipative phase transitions should appear in the dynam-
ical properties. The density-matrix ρ̂ of an open quantum
system is described by a linear master equation ∂t ρ̂ = L̂ρ̂

where L̂ is the so-called Liouvillian superoperator, having a
spectrum of complex eigenvalues. The steady-state solution
L̂ρ̂ = 0 corresponds to the zero eigenvalue of the Liouvillian.
Dissipative phase transitions are expected to occur when the
Liouvillian spectral gap [6] closes in some thermodynamical
limit. However, very little is known about the physical behavior
of such a gap. To explore such uncharted territory, the study
of paradigmatic and controlled model systems is of paramount
importance for the fundamental understanding of dissipative
phase transitions. A particular interesting class of systems
to explore is the one represented by the driven-dissipative
Kerr model, which describes a nonlinear optical resonator
exhibiting optical bistability [20–22].

In this paper, we explore the critical properties of the Liou-
villian gap for a driven-dissipative (Kerr) nonlinear resonator.
We show that, by considering a well-defined thermodynamical
limit of large excitation numbers, such a model describes
a first-order phase transition. The thermodynamic limit is
obtained by letting the nonlinearity go to 0 and the driving
intensity go to +∞ while keeping constant their product.
We determine the exponential vanishing of the complex

Liouvillian gap and characterize its finite-size behavior. In this
paper we show that a finite-size scaling is crucial to determine
the critical properties, such as the critical driving strength
in the thermodynamic limit. As a perspective, we show that
such a thermodynamical limit of large excitation numbers for
one single-mode resonator has a direct connection with the
more standard limit of many sites in the driven-dissipative
Bose-Hubbard model.

The paper is structured as follows: In Sec. II the driven-
dissipative Kerr model is introduced. A thermodynamical limit
of large excitation numbers is precisely defined. The steady-
state properties are discussed in such a thermodynamical limit.
The critical power-law behavior of the Liouvillian gap is then
examined in Sec. III. In Sec. IV as a perspective the link
with the driven-dissipative Bose-Hubbard model is presented.
Finally, in Sec. V, the conclusions are drawn.

II. DRIVEN-DISSIPATIVE KERR MODEL AND ITS
THERMODYNAMIC LIMIT

We consider the following Hamiltonian for the driven Kerr
model (with � = 1):

Ĥ = ωcâ
†â + U

2
â†â†ââ + (Fe−iωpt â† + H.c.), (1)

where â† (â) creates (annihilates) an excitation in the
resonator. The system parameters are ωc for the cavity
frequency, U is the photon-photon interaction strength, and
F is the amplitude of the coherent drive with frequency ωp.
Without loss of generality the drive amplitude F will always
be considered real. The cavity losses can be described within
the Born-Markov approximation resulting in the following
Lindblad master equation for the density matrix ρ̂,

∂ρ̂

∂t
= i[ρ̂,Ĥ ] + γ

2
(2âρ̂â† − â†âρ̂ − ρ̂â†â), (2)

with γ as the dissipation rate. From now on we will consider
the frame rotating at the drive frequency ωp which removes the
time dependence of the Hamiltonian. The relevant parameter is
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FIG. 1. (a) The rescaled photon density n/N , (a) and (b) the
second-order correlation function g(2), and (b) as a function of the
rescaled drive amplitude F̃ for � = 3γ and Ũ = γ . The semiclassical
prediction also is presented in (a) (SC, dashed line). Different curves
correspond to N = 1–3, 5, 10, 25, and 50.

then the frequency detuning � = ωp − ωc between the drive
and the cavity.

We introduce the dimensionless parameter N such that U =
Ũ/N and F = √

NF̃ and we will consider the limit N → ∞.
In such a limit UF 2 is constant, and the number of excitations
diverges (see later). This will be the thermodynamic limit we
consider. In this limit quantum fluctuations become negligible,
and the system behaves (semi)classically. The Lindblad master
equation (2) then reduces to an equation of motion for the
coherent field amplitude α = 〈â〉 [1],

i ∂t α̃ =
(

−� − i
γ

2
+ Ũ |α̃|2

)
α̃ + F̃ , (3)

with α̃ = α/
√

N as the rescaled field amplitude. Equation
(3) is independent of N , and the photon number scales as
n = |α|2 ∝ N . This confirms that N → ∞ corresponds to a
well-defined thermodynamic limit with an infinite number of
photons. For a detuning � >

√
3/2γ there is a finite range

of values for the drive amplitude for which the semiclassical
Eq. (3) predicts three steady-state solutions with only two
dynamically stable, typically denoted as optical bistability [23]
[see Fig. 1(a)].

We now use the analytical expressions derived in
Refs. [23,24] for the steady-state properties corresponding
to the master equation (2) and examine the dependence on
N . In Figs. 1(a) and 1(b) the rescaled photon density n/N

with n = 〈â†â〉 and the normalized second-order correlation
function g(2) = 〈â†â†ââ〉/n2 are presented as a function of the
rescaled drive amplitude F̃ for � = 3γ, Ũ = γ , and different
values of N . In the limit N → ∞ the density converges to
one of the two stable semiclassical branches. Moreover, the
transition between the two branches becomes increasingly
sharp as N is increased, which suggests a discontinuous jump
in the thermodynamic limit, as expected for a first-order
phase transition [20,21]. The g(2) function in Fig. 1(b) is
strongly peaked around the transition, which is due to the
high fluctuations resulting from the switching between the
two semiclassical branches. The width of the peak decreases
as N increases whereas the height is practically independent
of N .

In Fig. 2 the corresponding Wigner functions are presented
for different values of N and for two values of the rescaled
drive amplitude F̃ , one just above and one just below the
transition. Below the transition a single peak is observed for
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FIG. 2. The photon Wigner function as a function of the real and
imaginary parts of the rescaled field α/

√
N for a drive amplitude

F̃ = 1.65γ (upper row) and F̃ = 1.4γ (lower row) for N = 1–3 and
10. Red corresponds to high values, and green corresponds to zero (a
different scale is used for the different panels). The other parameters
are the same as in Fig. 1.

all values of N . Above the transition and for N sufficiently
small the well-known bimodal shape typically attributed to
optical bistability is observed [25]. The system then explores
two separate regions in phase space corresponding to the
two semiclassical branches. This results in large fluctuations
leading to the peak in g(2) in Fig. 1(b). However, as N is
increased the relative weight of one of the peaks increases,
and for large N only a single peak remains. This suggests that
in the thermodynamic limit the Wigner function consists of a
single peak for all values of F . This is in agreement with the
behavior of the density in Fig. 1(a) which around the transition
is an average of the two semiclassical results for small N but for
increasing N converges to one of the semiclassical branches.
We thus conclude that the size of the critical region where
the Wigner function is bimodal reduces as the thermodynamic
limit is approached and finally shrinks to a single point, the
critical point. This is also consistent with the presence of a
first-order phase transition in the thermodynamic limit.

III. CRITICAL BEHAVIOR OF THE LIOUVILLIAN GAP

The previous observations raise the question about the fate
of the second stable semiclassical solution in the quantum
formalism. To gain further insight we now consider the
Liouvillian gap λ of the Liouvillian superoperator L̂ associated
with the master equation (2). This is the generalization to
a dissipative context of the energy gap for a closed system.
For a closed system at equilibrium the energy gap closes at a
phase transition [26], and recently it was realized that similarly
for a dissipative phase transition the complex Liouvillian gap
λ closes [6]. In the following we examine the behavior of λ

which is obtained by numerically diagonalizing the Liouvillian
superoperator L̂ in the Fock basis. The Liouvillian gap is the
complex nonzero eigenvalue of L̂ whose real part is closest
to zero. The quantity −1/Re[λ] is the largest relaxation time
scale of the system. Convergence of the results has carefully
been checked by varying the cutoff number of photons.

In Figs. 3(a) and 3(b) the real and the imaginary parts of
the Liouvilian gap are presented as a function of the rescaled
drive amplitude F̃ for different values of N with Ũ = γ

and a detuning � = 0.8γ which is below the semiclassical
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FIG. 3. (a) and (c) The real and (b) and (d) the imaginary parts of
the Liouvillian gap λ (units of γ ) as a function of the rescaled drive
amplitude F̃ (units of γ ) for Ũ = γ and two values of the detuning:
(a) and (b) � = 0.8γ and (c) and (d) � = 2γ . The different curves
correspond to different values of N = 1,5,10,25,50,100 for � =
0.8γ and N = 1–5,10,20,30,40 for � = 2γ (as the curves approach
the dashed lines N increases). For the imaginary parts in (b) and
(d) all curves drop to zero in a range whose size decreases with
increasing N (denoted by the dotted lines). In (a) and (b) the dashed
lines correspond to the semiclassical linear-response spectrum λLR.
In (c) and (d) the dashed lines indicate the edge of the regime where
the semiclassical approach predicts bistability.

threshold for bistability. We also present the real and imaginary
parts of the linearized spectrum λLR around the steady-
state semiclassical solution [1,23]. The imaginary part of λ

corresponds to an excitation frequency whereas −Re[λ] is
the corresponding damping rate. In Figs. 3(a) and 3(b) we
observe a region where the real part of λ becomes suppressed
and the imaginary part is equal to zero. The size of this
region reduces as N is increased, and in the thermodynamic
limit the results show that the Liouvillian gap λ converges to
the linear-response spectrum λLR. From now on we will use
the notation F̃c for the drive amplitude corresponding to the
smallest value of |Re[λ]|. In Figs. 3(c) and 3(d) the real part
and the imaginary part of the Liouvillian gap are presented
as a function of the drive amplitude for different values of
N , a rescaled nonlinearity Ũ = γ , and a detuning � = 2γ

for which the semiclassical approach predicts bistability. As
before we find that around the transition there is a region where
the imaginary part is zero and the absolute value of the real
part is strongly suppressed. The size of this region reduces as
N is increased. In the same region the absolute value of the
real part continues to decrease as N is increased, suggesting
that the Liouvillian gap closes in the thermodynamic limit.

In Fig. 4(a) the relaxation time-scale −1/Re[λ] is presented
as a function of F̃ − F̃c for Ũ = γ, � = 2γ , and different
values of N . In Fig. 4(b) we examine the dependence of the
transition point Fc on N . In the thermodynamic limit and
for the considered parameters, limN→∞ F̃c � 0.93γ . At the
transition point, i.e., for F̃ = F̃c, the relaxation time −1/Re[λ]
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FIG. 4. (a) The relaxation time-scale −1/Re[λ] (units of γ −1) as
a function of the distance from the transition point F̃ − F̃c (units of
γ ) for Ũ = γ and � = 2γ . The different curves correspond from
top to bottom to N = 40–10, and 5. For the same parameters and
as a function of N : (b) the drive amplitude F̃c at the transition
point (units of γ ), (c) the tunneling time τ (units of γ −1), (d) the
dimensionless fitting parameter b, and (e) the fitting parameter f

(units of γ ). The dashed-dotted lines in (a) are the power-law fits (4).
The dashed lines in (a) and (e) indicate the drive amplitude where the
semiclassical approach predicts the edge of the bistable region. The
inset in (e) demonstrates the finite-size scaling analysis that is used
for the extrapolation to the thermodynamic limit.

is typically denoted as the tunneling time τ in the context of
optical bistability [27]. In Fig. 4(c) the dependence of τ on
N is presented together with a fit to an exponential decay.
Note that for a first-order phase transition at equilibrium
the energy gap closes exponentially as a function of the
size of the system. We conclude that in the thermodynamic
limit the tunneling time diverges corresponding to a clos-
ing of the Liouvilian gap, i.e., limN→∞ λ(F̃ = F̃c) → 0. If
λ = 0 there are two eigenvectors of the Liouvillian with
eigenvalue zero corresponding to two steady-state density
matrices. This agrees with the semiclassical prediction of
bistability.

As F̃ − F̃c is decreased for finite N the relaxation time
−1/Re[λ] exhibits a power-law behavior and eventually
converges to the tunneling time [see Fig. 4(a)]. This behavior
is similar to a phase transition for a system at equilibrium
whose energy gap typically closes according to a power law
with a critical exponent [26]. However, in stark contrast we
find that in the present case the power-law exponent depends
on the parameter N and diverges in the thermodynamic limit.
In order to quantify this we have fitted the power laws observed
in Fig. 4(a) as

−1/Re[λ] = [(F̃ − F̃c)/f ]−bN/γ, (4)

with b and f as two fitting parameters [see the dashed-dotted
lines in Fig. 4(a)]. This parametrization of the fitting curve (4)
shows that for N → ∞ the power law becomes a vertical curve
at F̃ − F̃c = f . The obtained fitting parameters are plotted in
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Figs. 4(d) and 4(e) as a function of N . In the thermodynamic
limit they converge to limN→∞ b � 0.35 and limN→∞ f �
0.214γ [these values are determined from a finite-size scaling
as demonstrated in the inset of Fig 4(e) for f ]. This value
for f is in good agreement with F̃+ − limN→∞ F̃c � 0.24γ

[indicated by the dashed lines in Figs. 4(a) and 4(e)] with F̃+ =
1.16, the value where the semiclassical edge of bistability
occurs [23]. The difference between the fitted values of
0.214 and 0.24 is due to statistical error propagation in the
two sequential fitting procedures [28]. In the thermodynamic
limit there is a finite region where the Liouvillian gap
closes, corresponding to two degenerate steady-state density
matrices and resulting in optical bistability. Note that the
same exponential vanishing of the Liouvillian gap is found by
changing the nonlinearity and the detuning within the optical
bistability regime, but the values of the coefficients b and f

do depend on the parameters U and �.

IV. ZERO-DIMENSIONAL THERMODYNAMIC LIMIT
AND LINK WITH THE DRIVEN-DISSIPATIVE

BOSE-HUBBARD MODEL

Let us now make a link with some other works where a
similar thermodynamic limit in zero dimensions was consid-
ered. In the context of Carmichael’s discussion in Ref. [16] we
have considered a “weak-coupling thermodynamic limit” since
the interaction strength U = Ũ/N goes to zero. In qualitative
agreement with our results the numerical study of Carmichael
in Ref. [16] for the steady state suggests a convergence to the
semiclassical prediction in the regime with many photons.
Recently the thermodynamic limit also was introduced to
examine a second-order phase transition and the associated
entanglement of the driven-dissipative Bose-Hubbard dimer
[29]. Such a thermodynamic limit has also been explored
for the study of the cavity-QED laser threshold [30] and for
the conservative (no dissipation) Rabi and Jaynes-Cummings
models [31,32].

The considered thermodynamic limit of large photon
numbers for one single-mode nonlinear resonator has been
obtained while keeping constant the nonlinearity-intensity
product UF 2: This might seem artificial at first sight. Here
we show that there is an intriguing connection with the
traditional thermodynamical limit of many resonators in the
driven-dissipative Bose-Hubbard model. Let us consider the
Bose-Hubbard Hamiltonian with a homogeneous coherent
drive given by

ĤBH = −J
∑
〈i,j〉

(â†
i âj + H.c.) +

∑
i

(F̃ e−iωpt â
†
i + H.c.)

+
∑

i

(
ωcâ

†
i âi + Ũ

2
â
†
i â

†
i âi âi

)
, (5)

with J as the hopping parameter, Ũ is the photon-photon
interaction strength, F̃ is the amplitude of the coherent
drive with frequency ωp, and ωc is the mode frequency of
the resonators. An alternative and equivalent description is
obtained by Fourier transforming from the real space to the
dual reciprocal k space. The annihilation operator for an
excitation in mode k is âk = 1/

√
V

∑
i e

−ik·r âi with V as the
total volume and âi as the annihilation operator in the position

space r . Since the drive is homogeneous only the k = 0
mode is externally driven, and the other k 	= 0 modes can
get populated only through nonlinear scattering. Neglecting
these nonhomogeneous k 	= 0 modes results in the following
Hamiltonian for the k = 0 mode:

Ĥ0 = ω0â
†
0â0 + Ũ

2N
â
†
0â

†
0â0â0 +

√
N (F̃ e−iωpt â

†
0 + H.c.),

(6)

with ω0 as the k = 0 mode frequency and N as the number
of cavities. The dissipation does not couple the different
k modes and has the same form in k space as in real
space. By neglecting the k 	= 0 modes the homogeneous
driven-dissipative Bose-Hubbard model can thus be mapped
exactly onto the driven-dissipative Kerr model considered in
this paper. The k = 0 mode frequency ω0 depends on the
lattice geometry and the hopping parameter J . The effective
nonlinearity Ũ/N and drive amplitude

√
NF̃ exhibit the

previously considered scaling behavior with the parameter N

which now has a clear physical role as the number of cavities.
This establishes a clear link between the thermodynamic
limit we consider for a single mode and the more commonly
considered thermodynamic limit of an infinite system size.
The validity of neglecting the nonhomogeneous k 	= 0 modes
is however not obvious, especially for a critical system and
opens an intriguing perspective. In particular, as it happens for
some equilibrium phase transitions, in one-dimensional arrays
where correlations are more important the behavior could be
significantly different from two-dimensional lattices and the
vanishing of the Liouvillian gap in the thermodynamical limit
is not guaranteed.

V. CONCLUSIONS

We have theoretically explored the closing of the Liou-
villian spectral gap in a well-defined thermodynamical limit
of large excitation numbers for a driven-dissipative Kerr
nonlinear resonator. Our paper provides a model of critical
dynamical behavior for a dissipative first-order phase transition
that we hope will stimulate further systematic studies of the
Liouvillian gap and its finite-size scaling for other critical
dissipative model systems. We hope it will help to stimulate
experimental investigations in a broad class of platforms where
Kerr optical nonlinearities can be implemented in single-mode
resonators and in more complex systems, such as lattices of
coupled resonators.
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