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Localization, quantum resonances, and ratchet acceleration in a periodically
kicked PT -symmetric quantum rotator
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We consider wave transport phenomena in a PT -symmetric extension of the periodically kicked quantum
rotator model and reveal that dynamical localization assists the unbroken PT phase. In the delocalized (quantum
resonance) regime, PT symmetry is always in the broken phase and ratchet acceleration arises as a signature
of unidirectional non-Hermitian transport. An optical implementation of the periodically kicked PT -symmetric
Hamiltonian, based on transverse beam propagation in a passive optical resonator with combined phase and loss
gratings, is suggested to visualize acceleration modes in fractional Talbot cavities.
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I. INTRODUCTION

For more than three decades, periodically kicked quantum
systems and related models have attracted a continuous
interest as test beds to study quantum and wave chaos,
quantum resonances, and unusual wave transport phenomena
in different areas of physics [1–23]. A paradigmatic example
is provided by the celebrated kicked rotor (KR) model, which
exhibits the phenomenon of dynamical localization (DL), i.e.,
the quantum suppression of classical diffusion taking place
in momentum space as a result of wave interference similar
to Anderson localization of the electronic wave function in
disordered solids [3–5]. DL has been observed in a wide
variety of physical systems, such as cold atoms [9,10], optical
structures [13–16,18,22], and laser-driven molecules [23]. An
additional quantum behavior in the KR model is the existence
of accelerator modes, which arise in the presence of an external
constant force like the gravity field in periodically kicked cold
atoms [11,12,24–26]. In such systems, a fraction of the atoms
falling under the action of gravity are steadily accelerated
away from the bulk of the atomic cloud, with an acceleration
that can be externally controlled and may even be opposite in
direction to gravity. Quantum accelerator modes do not have
any counterpart in the classical dynamics and are a purely
quantal (interference) phenomenon.

Most previous works on quantum chaos and wave transport
in periodically kicked systems have focused on Hermitian
models. Recently, new classes of chaotic systems, showing
parity-time (PT ) symmetry, have been investigated [27,28].

PT symmetry, originally introduced in quantum physics
as a complex extension of quantum mechanics [29,30], has
provided in recent years a fruitful concept in different ares
of physics, ranging from optics [31–40] to atomic vapors
and ultracold atoms [41–47], acoustics [48–50], optomechan-
ics [28,51–53], and nonlinear physics [54–57]. A Hamiltonian
Ĥ is said to be PT symmetric if it commutes with the com-
bined operator PT , i.e., [Ĥ ,PT ] = 0, where P and T are the
parity and time-reversal operators, respectively. A noteworthy
property of aPT -symmetric Hamiltonian, originally disclosed
in a few seminal papers by Carl Bender [29,30], is that in
certain cases Ĥ can show an entirely real energy spectrum
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albeit being non-Hermitian. The PT symmetry is said to be
unbroken if every eigenstate of Ĥ is PT symmetric; then,
the entire spectrum is real even though Ĥ is not Hermitian.
The PT symmetry is said to be spontaneously broken if some
eigenstates of Ĥ are not the eigenstates of the PT operator
even though [Ĥ ,PT ] = 0; then, some pairs of eigenvalues of
Ĥ become complex conjugate to each other. The symmetry
breaking is usually accompanied by the coalescence of eigen-
states and the corresponding eigenvalues at an exceptional
point in the discrete spectrum or the spectral singularity in the
continuum spectrum. Since the pioneering works by Bender,
the concept of PT symmetry has entered nowadays into many
areas of physics, where effective Hamiltonians can be tailored
to possessPT symmetry in the broken or unbroken phases. An
interesting example is provided by a PT -symmetric extension
of the celebrated KR model, with an imaginary (gain and loss)
gradient added to the periodic kicked potential. Such a model
has been introduced in a recent paper (Ref. [27]), where it was
shown that chaos (i.e., absence of DL) assists the exact PT
phase.

In this work we consider a differentPT extension of the KR
model, in which the particle is periodically kicked by a complex
crystal [58]. Complex crystals are spatially periodic poten-
tials with a nonvanishing imaginary part, which have been
introduced and experimentally realized for matter [59–62] and
optical [36,37,39] waves. Transport properties in such crystals
have attracted great attention in recent years [32,33,36,37,60–
73]. As compared with ordinary crystals, wave transport in
complex crystals may exhibit some unusual properties, such as
violation of the Friedel’s law of Bragg scattering [60,61], uni-
directional scattering [33,37,64,67,68], giant Goos–Hänchen
shifts [66], Talbot revivals [69], and unidirectional robust
transport [74,75].

The PT extension of the KR model considered in the
present article concerns a quantum particle which is peri-
odically kicked by a complex crystal, notably by the PT -
symmetric sinusoidal optical potential [32,64,65]. The main
results of the analysis are that dynamical localization assists
the unbroken PT phase, whereas in the delocalized regime
(quantum resonances) we disclose a kind of accelerated modes,
non-Hermitian accelerator modes, which are a signature of
non-Hermitian unidirectional transport. We also suggest a
physical implementation in optics of the periodically kicked
PT -symmetric model, which is based on transverse beam
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dynamics in a passive optical resonator with combined phase
and loss gratings. In particular, we show that non-Hermitian
ratchet acceleration can be observed in the far-field pattern
of transient field decay when the cavity length is tuned to a
fractional Talbot distance.

II. PERIODICALLY KICKED PT QUANTUM
ROTATOR: MODEL

We consider an extension of the quantum KR model [3,7],
the PT KR, which is described by the time-periodic Hamilto-
nian

Ĥ (t) = − �
2

2I

∂2

∂x2
+ f (t)V (x), (1)

where

f (t) =
∑

n

δ(t − nT ) (2)

describes the periodic sequence of kicks at time intervals T ,
and V (x + a) = V (x) is a complex crystal, i.e., a complex
periodic potential with spatial period a. An important example
of a complex crystal is provided by the PT -symmetric
sinusoidal potential [32,64,65]

V (x) = V0[cos(2πx/a) + iλ sin(2πx/a)], (3)

where λ � 0 is the non-Hermitian parameter that measures
the strength of the imaginary part of the potential. While
our analysis will be mostly focused on the PT sinusoidal
potential, the main results are expected to be rather general to
other complex crystals. We note that the ordinary (Hermitian)
quantum KR model is obtained by assuming λ = 0 and a = 2π

in Eq. (3). On the other hand, for f (t) = 1 the Hamiltonian Ĥ is
time-independent and its energy spectrum and corresponding
Bloch eigenfunctions have been investigated in several previ-
ous papers [32,58,64,65]: the energy spectrum is entirely real
for λ < 1 (unbroken PT phase), whereas band merging and
complex energy spectrum arise for λ > 1 (broken PT phase).
Here we will only consider the λ < 1 region, corresponding
to the unbroken PT phase in the nonkicked [i.e., f (t) = 1]
limit. The dynamics of PT KR Hamiltonian can be at best
studied in momentum space. After expanding the vector state
|ψ(t)〉 of the particle as |ψ(t)〉 = ∑∞

l=−∞ ψl(t) exp(2πilx/a),
the evolution equations for the amplitude probabilities ψl read
explicitly

i
dψl

dt
= 2πβl2

T
ψl + f (t)

�

∞∑
n=−∞

Vl−nψn, (4)

where Vn are the Fourier coefficients of the potential V (x),
i.e., V (x) = ∑

n Vn exp(2πinx/a), and where we have set

β ≡ π�T

Ia2
. (5)

III. QUASIENERGY SPECTRUM AND PT -SYMMETRY
BREAKING

For the sinusoidal PT potential and f (t) = 1, the energy
spectrum of Ĥ is real for λ < 1, whereasPT -symmetry break-
ing arises at λ = 1 owing to the appearance of exceptional
points [64]. When the particle is periodically kicked by the

sinusoidal potential, the energy spectrum is replaced by the
quasienergy (Floquet) spectrum ε, which is defined from the
eigenvalue problem

Û |φ〉 = exp(−iεT )|φ〉, (6)

where

Û = exp

[
− iV (x)

�

]
exp

(
i
βa2

2π

∂2

∂x2

)
(7)

is the time-ordered propagator Û = exp[−(i/�)
∫ T

0 dtĤ (t)]
over one period T . The real part of the quasienergy ε is defined
apart from integer multiplies of ω = 2π/T . In momentum
space, |φ〉 = ∑

l φl exp(2πilx/a), the quasienergy ε can be
computed from the matrix eigenvalue problem

exp(−iεT )φl =
∞∑

n=−∞
Ul,nφn, (8)

where Ul,n is the matrix representation of Û in momentum
space

Ul,n = Wl−n exp(−2πiβn2), (9)

and Wn are the Fourier coefficients of exp[−iV (x)/�], i.e.,
exp[−iV (x)/�] = ∑

n Wn exp(2πinx/a). Owing to the peri-
odicity of the phase term in Eq. (9), one can limit to consider
β varying in the range (0,1). The eigenvalues exp(−iεT ) of
the matrix Ul,n can be numerically computed after matrix
truncation by assuming that the indices l and n vary in the
range l,n = −Ns, . . . 0,1,2, . . . ,Ns , with a given (and possibly
large) value of Ns . Localization (or delocalization) of the
Floquet eigenstates |φ〉 can be numerically checked by com-
putation of the participation ratio R = (

∑
l |φl|2)2/

∑
l |φl|4.

For localized states R ∼ 1, whereas for fully delocalized states
R ∼ 2Ns .

Let us first briefly recall some general properties of the
quantum KR model in the Hermitian λ = 0 limit, for which the
quasienergy spectrum ε is real. In this case, it is known that a
qualitatively different behavior is found depending on whether
β is a rational or an irrational number. The rational values
of β,β = N/M with N � M and N,M coprime integers,
correspond to so-called quantum resonances, at which the
quasienergy spectrum is absolutely continuous and composed
of M quasienergy bands with delocalized Floquet eigenstates
|φ〉. In such a case an initially localized state in momentum
space, i.e., ψl(0) = δl,0 in Eq. (4), will fully delocalize, i.e.,
the standard deviation of the momentum distribution

〈�l(t)〉 =
√∑

l l
2|ψl(t)|2∑

l |ψl(t)|2 (10)

secularly grows with time like ∼t . An exception occurs
at β = 1/2, corresponding to the so-called “antiresonance,”
where collapse (flattening) of the two quasienergy bands arises
and the particle state becomes trapped. On the other hand,
for generic irrational values β the phenomenon of DL is
found: the Floquet eigenstates |φ〉 are exponentially localized
in momentum space and a saturation of the growth of 〈l2(t)〉
is observed after some time, contrary to the classical diffusive
behavior. The localization length ξL of the Floquet eigenstates
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for irrational β, φl ∼ exp(−|l − l0|/ξL) is roughly estimated
to be given by [3–5,7,21]

ξL ∼ V 2
0

4�2
, (11)

which is fairly accurate as VoT � 1.
For λ > 0, owing to the non-Hermitian nature of Ĥ ,

the quasienergy spectrum is generally complex. Like in the
unmodulated case f (t) = 1, thePT KR will be said to be in the
unbrokenPT phase whenever the entire quasienergy spectrum
ε is real, whereas it is said to be in the broken PT phase if
complex conjugate quasienergies appear. As for the Hermitian
limit λ → 0, a different behavior is found for rational and
irrational values of β. For a rational value of β = N/M the
energy spectrum is absolutely continuous and composed by a
set of M quasienergy bands (see Appendix A for more details).
On the other hand, DL is still observed for a generic irrational
β. Rather generally, by increasing λ above λ = 0, a threshold
value λPT is found above which the KR enters into the broken
PT phase. Extended numerical simulations provide strong
evidence that, while for β = N/M rational λPT = 0, i.e., the
KR is always in the broken PT phase, DL for a generic
irrational value β assists the PT phase, i.e., λPT > 0 with
λPT increasing toward λPT = 1 as β → 0. Typical examples
of numerical results, for irrational and rational values of
β, are shown in Figs. 1 and 2, respectively. Figure 1(a)
shows the numerically computed behavior of the average
value of |Im(εT )| versus the non-Hermitian parameter λ for
the irrational value 2πβ = 0.7. The two insets in the figure
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sy
m

m
e

tr
y 

b
re

a
k

in
g

 λ

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

non Hermitian parameter λ 

av
e

ra
g

e
 o

f 
|I

m
(ε

T
)|

 

0 500 1000 1500 2000
−4

−2

0

2

4

0 500 1500 2000
−4

−2

0

2

4

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

P
T

λ=0.1

mode number 

Im(εT) 

Re(εT) 

λ=0.5

Re(εT) 
Im(εT) 

mode number 

(a)

(b)

FIG. 1. Quasienergy spectrum ε and PT -symmetry-breaking
threshold in the irrational β case. (a) Numerically computed behavior
of |Im(εT )|, averaged over the 2N0 + 1 = 2001 Floquet modes, ver-
sus λ for parameter values V0/� = 3 and 2πβ = 0.7. PT -symmetry
breaking is clearly observed at λPT 	 0.27. The insets show the
detailed behavior of the real and imaginary parts of the quasienergies
ε for λ = 0.1 (unbroken PT phase) and λ = 0.5 (broken PT phase).
(b) Numerically computed behavior of the PT -symmetry breaking
threshold λPT versus 2πβ for V0/� = 3.
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FIG. 2. Quasienergy spectrum ε in the rational β case. (a)
Numerically computed behavior of the average of |Im(εT )| versus
λ for parameter values V0/� = 3 and β = 1/12. PT -symmetry
breaking is clearly observed at λPT = 0. (b) Detailed behavior of
the M = 12 quasienergy bands (real and imaginary parts of εT ) for
V0/� = 3 and λ = 0.3.

depict the detailed behavior of the real and imaginary parts
of the quasienergies εT of the various Floquet eigenmodes.
A value N0 = 1000 has been typically used in the numerical
simulations, corresponding to 2N0 + 1 = 2001 Floquet modes
|φ〉. Unphysical Floquet states localized at the edges l = ±N0,
which arise from matrix truncation, have been disregarded in
the analysis. Figure 1(a) clearly indicates the existence of a
PT -symmetry-breaking threshold at λPT 	 0.27. Figure 1(b)
shows the numerically computed symmetry-breaking thresh-
old λPT for a few increasing irrational values of β. Note that,
as β increases, a lowering of the symmetry-breaking threshold
is observed, while λPT → 1− as β → 0. Figure 2 shows, for
comparison, a typical result obtained for a rational value of
β, namely β = 1/12. In this case, the average of |Im(εT )|
versus λ [Fig. 2(a)] is an increasing function of λ and does
not show any threshold, i.e., λPT = 0. A typical behavior of
the real and imaginary parts of the M = 12 quasienergy bands
εT at λ = 0.3 are shown in Fig. 2(b). Like in the Hermitian
KR model, an exception occurs at β = 1/2, corresponding to a
quantum antiresonance: in this case the two quasienergy bands
are flat and entirely real, i.e., the KR is always in the unbroken
PT phase (see Appendix A for more details).

The numerical results provide strong indication that DL
assists the PT unbroken phase of the quantum KR, while
diffusive behavior at quantum resonances shortly brings the
PT KR in the broken PT phase. The important result that DL
helps to preserve the unbroken PT phase can be qualitatively
explained as follows: For λ < 1, the complex sinusoidal
potential (3) can be written in the form

V (x) = K0 cos[2π (x − ix0)/a], (12)
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where K0 and x0 are defined by the relations

K0 ≡ V0

√
1 − λ2, tanh(2πx0/a) ≡ λ. (13)

Let us indicate by Ĥ0 the Hermitian KR Hamiltonian,

Ĥ0 = − �
2

2I

∂2

∂x2
+ K0 cos(2πx/a)

∑
n

δ(t − nT ), (14)

and let us assume that β, defined by Eq. (5), is irrational. Then
it is obvious that, if ψ0(x,t) is a solution to the Schrödinger
equation i∂tψ0 = Ĥ0ψ0, then the complex displaced function
ψ(x,t) = ψ0(x − ix0,t) is a solution to the Schrödinger equa-
tion i∂tψ = Ĥψ , with Ĥ defined by Eqs. (1)–(3). In particular,
this implies that, if |θ〉 = ∑

l θl exp(2πilx/a) is a localized
Floquet eigenstate of Ĥ0 with quasienergy ε and localization
length ξL, then |φ〉 = ∑

l φl exp(2πilx/a) is a Floquet eigen-
state of Ĥ with the same quasienergy ε once we formally take

φl = θl exp(2πlx0/a) (15)

and provided that the localization condition

|φl| = |θl| exp(2πlx0/a) → 0 (16)

as l → ±∞ is met. We note that, for a small non-Hermitian
parameter λ, from Eq. (13) one has K0 ∼ V0 and 2πx0/a ∼ λ.
Since |θl| ∼ exp(−|l − l0|/ξL) with ξL ∼ V 2

0 /(4�
2) [see

Eq. (11)], the localization condition (16) implies 2πx0/a <

1/ξL, i.e., λ <∼ 4�
2/V 2

0 . Therefore, for a sufficiently small
yet nonvanishig value of λ the localized Floquet eigenstates
of the Hermitian KR Hamiltonian Ĥ0 can be mapped into
localized Floquet eigenstates of the PT KR Hamiltonian Ĥ

with the same energy spectrum. Hence for sufficiently small
λ localized states of the Hermitian KR model can be mapped
onto localized states of the non-Hermitian KR model with
the same quasienergy spectrum, i.e., the perturbation λ in the
potential does not change the energy spectrum.

IV. QUANTUM RESONANCES AND NON-HERMITIAN
RATCHET ACCELERATION

The different behavior of the PT KR for rational (quantum
resonances) and irrational (dynamic localization) values of
β can be seen by considering the temporal evolution of
the particle wave function in momentum space for a zero-
momentum initial state. Figures 3 and 4 show typical examples
of the dynamics as obtained by numerical integration of
Eq. (4) with the initial condition ψl(0) = δl,0 in the dynamic
localization (β = 1/4π ) and quantum resonance (β = 1/12)
regimes. The figures show the evolution of the norm P (n) =∑

l |ψl(t = nT )|2, mean value 〈l(n)〉 = [
∑

l l|ψl(nT )|2]/P
and standard deviation 〈�l(n)〉 = [

∑
l(l − 〈l〉)2|ψl|2/P ]1/2 of

momentum distribution versus the kick number n, as well
as the entire distribution |ψl(nT )|2 for a few values of n.
In the simulations the complex sinusoidal potential (3) with
V0/� = 3 and λ = 1/30 has been assumed, corresponding to
the unbroken (broken) PT phase for irrational (rational) β.
In the DL regime with unbroken PT phase (Fig. 3), the
norm P (n) is bounded, the mean momentum shows small
deviations around the initial value l = 0, and the momentum
distribution clearly shows dynamical localization. Conversely,
in the quantum resonance regime (Fig. 4) the norm P (n)
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FIG. 3. Evolution of the momentum distribution |ψl(n)|2 versus
kick number n, for an initial state with zero momentum, in the PT
KR model for V0/� = 3, λ = 1/30, and β = 1/4π , corresponding
to dynamic localization and unbroken PT phase. (a) Behavior of
the norm P (n) = ∑

l |ψl(nT )|2. (b), (c) Behavior of the mean value
〈l(n)〉 and standard deviation 〈�l(n)〉 of the momentum distribution.
(d) Detailed behavior of the momentum distribution |ψl |2 at a few
kick numbers n.

shows a secular (unbounded) growth as a signature of the
broken PT phase and the momentum distribution spreads
(diffuses) as the number of kicks n increases. Remarkably,
the mean momentum 〈l(n)〉 shows a secular growth with n

[Fig. 4(b)], indicating the existence of a ratchet acceleration.
Such an acceleration is a signature of non-Hermitian transport
since it would vanish in the λ = 0 (Hermitian) limit. We can
gain physical insights into the appearance of non-Hermitian
ratchet acceleration by considering the simplest case of the
fundamental quantum resonance β = 1, corresponding to a
single quasienergy band; however, a similar argument holds
mutatis mutandis by considering other quantum resonances.
For β = 1, from Eq. (7) it readily follows that the operator
exp(i βa2

2π
∂2

∂x2 ) on the right-hand side of the equation, acting on
the space of periodic functions with spatial period a, reduces
to the identity operator, so that the propagator of the system
over the time interval T reads

Û = exp

[
− iV (x)

�

]
. (17)
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FIG. 4. Same as Fig. 3, but for β = 1/12, corresponding to
quantum resonance and broken PT phase.

In momentum space this means that, at the stroboscopic times
t = 0,T ,2T , . . . ,nT , . . . , the amplitude probabilities ψl(t)
can be obtained as the solutions of the equivalent set of coupled
equations [which replace Eq. (4)]

i�T
dψl

dt
=

∑
n

Vl−nψn. (18)

For the complex sinusoidal potential [Eqs. (3), (12), and (13)],
such equations read explicitly

i
dψl

dt
= K0

2�T
exp(−2πx0/a)ψl+1 + K0

2�T
exp(2πx0/a)ψl−1,

(19)

which formally describes the hopping dynamics of a quantum
particle on a one-dimensional tight-binding lattice in the
presence of an imaginary gauge field [76]. The quasienergy
spectrum ε(q) is readily found by setting ψl(t) ∼ exp(iql −
iεt) in Eq. (19), yielding

ε(q) = K0

�T
cos(q + 2πix0/a)

= K0 cosh(2πx0/a)

�T
cos q − i

K0 sinh(2πx0/a)

�T
sin q,

(20)

where q is the Bloch wave number which varies in the
range (−π/a, π/a). The imaginary gauge field introduces
asymmetry in left-right hopping, with preferred transport in
one direction [74,75,77]. For the initial condition ψl(0) = δl,0,
the solution to Eq. (19) is given by

ψl(t) = 1

2π

∫ π

−π

dq exp[iql − iε(q)t], (21)

which can be written in terms of Bessel function Jl with com-
plex argument. For our purposes, it is sufficient considering
the asymptotic behavior of |ψl(t)|2 as t → ∞. In such a limit,
the dominant term of the integral on the right-hand side of
Eq. (21) comes from q ∼ q0 = −π/2, since at q = q0 the
imaginary part of the quasienergy ε(q) shows its maximum,
i.e., Bloch waves with wave number q ∼ q0 show the largest
amplification rate. As shown in Appendix B, for t → ∞ one
has

|ψl(t)|2 ∼ 1

2π |ε′′|t exp{2Im[ε(q0)]t} exp

[
− (l − vgt)2

|ε′′|t
]
,

(22)

where we have set vg = (dε/dq)q0 (group velocity) and ε′′ =
(d2ε/dq2)q0 . Equation (22) clearly shows that, in momentum
space, the distribution |ψl(t)|2 is amplified while drifting
with a group velocity vg . Therefore, asymptotically one
has 〈l(t)〉 ∼ vgt , which explains the appearance of ratchet
acceleration according to the results of Fig. 4(b). Interestingly,
besides a drift, the distribution |ψl(t)|2 broadens with time
like �l(t) ∼ √

t , which differs than the ballistic broadening
law �l(t) ∼ t found in the Hermitian limit.

V. PT KICKED ROTOR MODEL IN A PASSIVE
OPTICAL RESONATOR

In this section we suggest a simple optical system which
can emulate wave dynamics in the PT -symmetric extension
of the KR Hamiltonian. In the Hermitian limit, it was shown
that paraxial light propagation along a periodic sequence of
free-space propagation and phase gratings emulate the KR
model [14,15], with the observation of DL near a quantum an-
tiresonance. The main limitations of the setup of Refs. [14,15]
is that is requires accurate alignment of the gratings and can be
used to observe the dynamical behavior over a relatively low
number of kicks. Here we consider a different setup; namely,
a passive Fabry–Perot optical resonator with intracavity phase
and loss gratings in the setting shown in Fig. 5(a). Transverse
light propagation back and forth between the two flat cavity
mirrors of the resonator is equivalent to propagation along
a periodic sequence of free diffraction and lumped phase
or loss gratings. As compared with the optical KR setup
of Refs. [14,15], it does not require precise alignment of
successive gratings in the sequence and enables us to study
the beam propagation over a larger number of kicks (round
trips in the resonator). The optical resonator is initially excited
by a short pulsed optical beam, with pulse duration comparable
or shorter than the photon transit time TR in the cavity, and the
successive field decay dynamics in the cavity is investigated in
the far field (Fourier plane), as shown in Fig. 5(b). Indicating
by ψn(x) the intracavity field at the reference plane γ and at
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FIG. 5. (a) Schematic of a Fabry–Perot resonator with flat end
mirrors, spaced by L, with combined thin index and loss gratings.
Beam propagation back and forth between the two end mirrors
emulates the PT -symmetric KR Hamiltonian. (b) Schematic setup
of excitation of the passive resonator by a pulsed Gaussian beam
and recording of far-field intensity images at successive round trips
(plane X). The far-field intensity images map the PT KR dynamics
in momentum space.

time t = nTR , propagating from the left to the right side, the
evolution of the cavity field at successive transits in the cavity
is governed by the following map:

ψn+1(x) = exp[−iθ1(x) − θ2(x)] exp

(
i
L

k0

∂2

∂x2

)
ψn(x),

(23)

where θ1(x) and θ2(x) are the spatial profiles of the phase and
loss gratings, respectively, L is the length of the resonator,
k0 = 2π/λ0, and λ0 is the wavelength of the circulating light
beam. For sinusoidal and quarter-wave-shifted gratings, one
can assume

θ1(x) = A cos(2πx/a), θ2(x) = Aλ[1 − sin(2πx/a)],

(24)

so that Eq. (23) can be written in the form

ψn+1(x) = exp[−iV (x)/� − γ ] exp

(
i
βa2

2π

∂2

∂x2

)
ψn(x),

(25)

where we have set

β = λ0L

a2
, (26)

V (x)/� = A[cos(2πx/a) + iλ sin(2πx/a)], (27)

γ = Aλ, (28)

A comparison of Eqs. (7) and (25) yields

ψn+1(x) = exp(−γ )Ûψn(x), (29)

where Û is defined by Eq. (7). This means that beam
propagation at successive transits in the resonator, back and
forth between the two mirrors, reproduces the dynamics of the

PT KR Hamiltonian after each successive kick, apart from an
exponential loss term exp(−γ ) that describes a global decay
of the field envelope in the passive resonator [78]. Note that
the distance L = LT between the two mirrors that realizes the
principal quantum resonance β = 1; namely,

LT = a2

λ0
, (30)

corresponds to the well-known Talbot distance [79–81]. Since
β = L/LT , a quantum resonance is thus obtained when the
mirror spacing L is set at a fractional Talbot distance.

To show the ability to observe the different dynamical
regimes for rational and irrational values of β, includ-
ing the appearance of non-Hermitian ratchet acceleration,
we numerically simulated the decay dynamics of a broad
Gaussian beam ψ0(x) = exp(−x2/w2

0), initially exciting the
passive optical cavity of Fig. 5, for parameter values A =
3, λ = 1/30, w0/a = 100/π , and for two different resonator
lengths, corresponding to β = L/LT = 1/(4π ) (Fig. 6) and
β = L/LT = 1/12 (Fig. 7). Recording the field intensity
distribution in the focal (far field) plane X of Fig. 5(b) at
successive round trips enables us to reproduce the evolution
in momentum space of the PT KR dynamics. The far-field
intensity distribution in plane X is made of a sequence of
peaks, spaced from one another by λ0f/a [see Fig. 5(b)],
which reproduces the momentum distribution |ψl|2 at suc-
cessive kicks. In an experiment, the instantaneous transverse
light distribution in the far field at successive transits in
the cavity can be detected by using a fast gated camera,
as demonstrated, e.g., in Refs. [82,83]. In physical units,
assuming for instance a probing wavelength λ0 = 780 nm
(Ti:Sapphire laser) and a grating period a = 300 μm, the
Talbot distance is LT 	 11.54 cm, the spot size of the broad
excitation Gaussian beam is w0 	 9.55 mm, and the mirror
spacing in the simulations of Figs. 6 and 7 is L 	 9.182 mm
and L 	 9.615 mm, respectively. For a focusing lens f = 5
cm, the intensity peaks in the far-field plane X are spaced by
λ0f/a 	 130 μm.

The simulation of Fig. 6 corresponds to the irrational case
β = 1/(4π ). Figure 6(a) shows the evolution of the far-field
intensity distribution (in arbitrary units) at successive round
trips n, whereas the evolution of the center of mass 〈X〉
and standard deviation 〈�X〉 of the distribution, in units
of λ0f/a, is shown in Figs. 6(b) and 6(c). Clearly DL is
observed, whereas ratchet acceleration is not present. The
inset in Fig. 6(b) shows the evolution of the optical beam
power (in arbitrary units) at successive transits, showing an
exponential decay that arises from the losses in the absorptive
grating. Finally, Fig. 6(d) shows the intensity field distribution
at plane x (near-field plane) of the excitation Gaussian beam
(left panel) and of the field after n = 20 round trips (right
panel). Figure 7 shows the numerical results for the rational
case β = 1/12, corresponding to a quantum resonance. In this
case there is not DL [Fig. 7(c)], while acceleration ratchet is
clearly observed [Fig. 7(b)].

VI. CONCLUSION

In this article a PT -symmetric extension of the celebrated
quantum KR model has been theoretically investigated, and
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FIG. 6. Numerical simulations of beam evolution in the resonator
of Fig. 5(b) for β = 1/(4π ), after initial excitation with a broad
Gaussian beam. Other parameter values are given in the text. (a)
Behavior of the intensity distribution (in arbitrary units) at the far-field
(focal) plane X at successive round trips (kicks). The peaks on the X

axis are spaced by λ0f/a. (b), (c) Behavior of the mean value 〈X〉 and
standard deviation 〈�X〉 of the far-field intensity distribution versus
round trip number, in units of λ0f/a. The inset in panel (b) shows the
evolution of the optical beam power, in arbitrary units, at successive
transits in the resonator. (d) Intensity beam distribution at plane x

(near-field plane) at n = 0 (excitation Gaussian beam, left panel) and
after n = 20 round trips (right panel).
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FIG. 7. Same as Fig. 6, but for β = 1/12.

the role of non-Hermitian dynamics on wave transport has
been highlighted. One of the main result of the analysis if that
the phenomenon of dynamical localization, i.e., suppression of
quantum diffusion in momentum space, assists the unbroken
PT phase. On the other hand, in the delocalization (quantum
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resonance) regime the PT symmetry is always in the broken
phase. Remarkably, in the latter case a ratchet acceleration
arises as a signature of unidirectional non-Hermitian transport,
and quantum diffusion is slower as compared with the
ordinary (Hermitian) KR model (spreading law ∼√

t versus
∼t for the main quantum resonance). Such results provide
important physical insights into the fundamental phenomenon
of dynamical localization in non-Hermitian systems with im-
portant applications to PT -symmetric control, non-Hermitian
transport, and Anderson localization. For example, by varying
the kick parameter β in the dynamic localization regime
(β irrational) one can control and continuously tune the
PT -symmetry-breaking phase transition of the system as
well as the degree of localization. On the other hand, in the
quantum resonance regime (β rational) our results suggest a
method to realize ratchet acceleration in quantum or classical
wave transport with limited wave-packet spreading, i.e., a
directed motion with sub-ballistic broadening arising from
periodic kicks via a PT -symmetric complex potential. In
view of the rapidly growing progress in the realization of PT
symmetry in different physical systems, we envisage that the
observation and applications of dynamic localization, quantum
resonances, and ratchet acceleration based on aPT -symmetric
extension of the quantum rotator model are within the current
technological possibilities. In this work a rather simple
implementation of the periodically kicked PT -symmetric
Hamiltonian in classical wave optics has been suggested and
described in detail, which is based on transverse light dynamics
in a passive optical resonator with intracavity phase and loss
(absorptive) gratings. However, other physical implementa-
tions could be envisaged based, e.g., on atomic vapor systems
and ultracold atoms where PT -symmetry concepts have
been demonstrated in recent experiments [45–47]. Another
interesting physical platform to investigate PT -symmetric
extensions of dynamical localization effects is provided by
cavity optomechanics, which offers the possibility to realize
quantum squeezing of mechanical modes [84] and strong non-
linear optical phenomena, such as the appearance of the photon
blockade and the generation of nonclassical states [85]. Recent
theoretical works have investigated dynamical localization
effects of dilute condensates in cavity optomechanics [86,87]
and suggested that a nanomechanical membrane subject to an
optical driving field in a cavity can act like a periodically kicked
quantum harmonic oscillator [88]. Owing to the possibility
to introduce balanced gain and loss terms in optomechanic
dynamics [28,51–53], our results might therefore be of rele-
vance to the emerging field of PT -symmetric optomechanics
as well.

APPENDIX A: QUANTUM RESONANCES AND
QUASIENERGY BANDS

Like for the Hermitian KR Hamiltonian, a quantum res-
onance for the PT -symmetric KR model arises when β is
a rational number, i.e., β = N/M with N � M and N,M

coprime integers. In this case the quasienergy spectrum of
Ĥ is absolutely continuous with M quasienergy bands and
delocalized Floquet eigenstates. In fact, when β = N/M the
Floquet eigenstates ψl , satisfying the linear system (8), can be

searched in the form

φl = cl exp(iql), (A1)

where q is an integer number that varies in the range −π/M �
q < π/M and

cl+M = cl. (A2)

Substitution of Eq. (A.1) into Eq. (8) and using the prop-
erty that Un+M,l+M = Un,l [see Eq. (9)], it readily fol-
lows that Eq. (8) is satisfied provided that the M ampli-
tudes c0,c1, . . . ,cM−1 satisfy the linear homogeneous set of
equations

exp(−iεT )cl =
M−1∑
n=0

Sl,ncn, (A3)

where the M × M matrix coefficients Sl,n = Sl,n(q) are de-
fined by

Sl,n(q) =
∞∑

α=−∞
Wl−αM−n exp[iq(αM + n − l) − 2πiβn2].

(A4)

Hence the quasienergies ε, corresponding to delocalized
Floquet eigenstates (A1) and (A2), are found from the eigen-
values exp(−iεT ) of the M × M matrix Sl,n(q) according to
Eq. (A3). Since q varies in the range −π/M � q < π/M , the
quasienergies ε = ε(q) are composed by M bands.

Since the quasienergy spectrum is continuous and the
corresponding Floquet eigenstates are delocalized, delocaliza-
tion and rated acceleration in momentum space is generally
observed for a particle with zero initial momentum. The
special case corresponding to the main quantum resonance
β = 1 is discussed in detail in Appendix B. Moreover, in the
non-Hermitian case, the imaginary parts of the quasienergies
are generally nonvanishing, indicating that the PT symmetry
is always broken in the rational-β case. An exception occurs
at β = 1/2, the so-called quantum antiresonance, where the
M = 2 quasienergy bands are flat: localization is found and
the PT symmetry is unbroken. One can readily prove such a
property by considering the form of the propagator Û , given by
Eq. (7) in the text, in the special case β = 1/2. Since Û acts on
the space of functions which are periodic in space with spatial
period a, the operator exp(i βa2

2π
∂2

∂x2 ) for β = 1/2 is equivalent
to the translation operator T̂a/2, with T̂a/2ψ(x) = ψ(x + a/2).
Hence

Û 2 = exp

[
− iV (x)

�

]
T̂a/2 exp

[
− iV (x)

�

]
T̂a/2

= exp

[
− i

V (x) + V

(
x + a/2

)
�

]
T̂a = 1, (A5)

since T̂a = 1 and V (x) + V (x + a/2) = 0. This means that,
after two kicks, the system returns to its initial state. Since
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Û 2|φ〉 = exp(−2iεT )|φ〉, two values of quasienergies, εT =
0, π , are thus allowed, corresponding to two flat bands with
real spectrum.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF MOMENTUM
DISTRIBUTION AT THE MAIN QUANTUM

RESONANCE β = 1

In this appendix we calculate the asymptotic behavior of
ψl(t) for the main quantum resonance β = 1, Eq. (21) given
in the text, for long times t . To this aim, let us note that, as
t → ∞, the main contribution to the integral on the right-hand
side of Eq. (21) comes from the wave numbers q close to
q0 = −π/2, where the imaginary part of the dispersion curve
ε(q) [Eq. (20)] has its maximum. We can therefore expand
ε(q) around q = q0 up to second order by letting

ε(q) 	 ε(q0) + vg(q − q0) + 1
2ε′′(q − q0)2, (B1)

where we have set vg ≡ (dε/dq)q0 and ε′′ ≡ (d2ε/dq2)q0 .
Note that vg is real, while ε′′ is imaginary with Im(ε′′) < 0.
Substitution of Eq. (B1) into Eq. (21) yields

ψl(t) ∼ 1

2π
exp[iq0l − iε(q0)t]

×
∫

dδ exp

[
iδ(l − vgt) − 1

2
|ε′′|δ2t

]
, (B2)

where δ = q − q0. For large t , the Gaussian function under
the sign of the integral on the right-hand side of Eq. (B2) gets
narrower around δ = 0, so that the integral can be extended
from −∞ to ∞ and calculated in a closed form (generalized
Gaussian integral). This yields

ψl(t) ∼ 1√
2π |ε′′|t exp[iq0l − iε(q0)t] exp

[
− (l − vgt)2

2|ε′′|t
]
.

(B3)

After taking |ψl(t)|2, one finally obtains Eq. (22) given in the
text.
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[28] X.-Y. Lü, H. Jing, J.-Y. Ma, and Y. Wu, PT -Symmetric-
Breaking Chaos in Optomechanics, Phys. Rev. Lett. 114, 253601
(2015).

[29] C. M. Bender, Making sense of non-Hermitian Hamiltonians,
Rep. Prog. Phys. 70, 947 (2007).

[30] C. M. Bender, Introduction to PT -symmetric quantum theory,
Contemp. Phys. 46, 277 (2005).

[31] A. Ruschhaupt, F. Delgado, and J. G. Muga, Physical realization
of PT -symmetric potential scattering in a planar slab waveg-
uide, J. Phys. A: Math. Gen. 38, L171 (2005).

[32] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and
Z. H. Musslimani, Beam Dynamics in PT -Symmetric Optical
Lattices, Phys. Rev. Lett. 100, 103904 (2008).

[33] S. Longhi, Bloch Oscillations in Complex Crystals with PT
Symmetry, Phys. Rev. Lett. 103, 123601 (2009).
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