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Exact master equation for a spin interacting with a spin bath: Non-Markovianity and negative
entropy production rate
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An exact canonical master equation of the Lindblad form is derived for a central spin interacting uniformly
with a sea of completely unpolarized spins. The Kraus operators for the dynamical map are also derived. The
non-Markovianity of the dynamics in terms of the divisibility breaking of the dynamical map and the increase of
the trace distance fidelity between quantum states is shown. Moreover, it is observed that the irreversible entropy
production rate is always negative (for a fixed initial state) whenever the dynamics exhibits non-Markovian
behavior. In continuation with the study of witnessing non-Markovianity, it is shown that the positive rate of
change of the purity of the central qubit is a faithful indicator of the non-Markovian information backflow.
Given the experimental feasibility of measuring the purity of a quantum state, a possibility of experimental
demonstration of non-Markovianity and the negative irreversible entropy production rate is addressed. This
gives the present work considerable practical importance for detecting the non-Markovianity and the negative
irreversible entropy production rate.
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I. INTRODUCTION

In many-body problems the dynamics of microscopic
(e.g., spin systems) or mesoscopic [e.g., Superconducting
Quantum Interference Devices (SQUIDs)] systems always
gets complicated owing to its interaction with a background
environment. To obtain the reduced dynamics of the quantum
system that we are interested in, it is a general custom to
model the environment as a collection of oscillators or spin- 1

2
particles [1] which is often abbreviated as bath. They constitute
two different universal classes of quantum environment [2].
In the oscillator bath model, the environment is described
as a set of uncoupled harmonic oscillators. Paradigmatic
examples of this kind of bath are the spin-boson model
[3,4] and the Caldeira-Leggett model [4,5] originating from a
scheme proposed by Feynman and Vernon [6]. These oscillator
models have been widely studied in the context of various
physical phenomena under Markovian approximation [1,7,8].
On the other hand, the spin bath models remain relatively less
explored. However, the spin bath models play a pivotal role in
the quantum theory of magnetism [9], in quantum spin glasses
[10], and in the theory of conductors and superconductors [3].
To get the exact dynamics of a quantum system under this spin
bath model is of paramount importance yet is a difficult task.
Indeed, in most of the cases the dynamics cannot be described
exactly and several approximation techniques, both local and
nonlocal in time, have been employed [1,11–16].

In this work, we focus on the dynamical behavior of a
central spin interacting uniformly with a spin bath and derive
an exact time-local master equation of the Lindblad type.
Moreover, the Kraus representation of the dynamical map is
also derived. Reduced dynamics of this particular spin bath
model has been considered before [15,16] where a correlated
projection operator technique has been used to approximate the

*samyadebbhattacharya@hri.res.in
†akpati@hri.res.in

master equation of the central spin. However, the given master
equation is time nonlocal and not of the standard canonical
form. In contrast, we start from the exact reduced state of the
central spin at an arbitrary given time [15] to derive the canon-
ical master equation without considering any approximations.
The thrust of our result is not only that the master equation is
exact but also that the method used here allows us to unravel
the less explored but far-reaching consequences of the strong
coupling regimes which can be instrumental in performing
information theoretic tasks, quantum thermodynamic tasks,
and several other quantum technological tasks. Moreover, the
relaxation rates in the canonical master equation are insightful
to understand several physical processes, such as dissipation,
absorption, and dephasing, and thus the nature of decohrence.

One of the characteristics of the spin bath models is
to exhibit the non-Markovian features [17,18]. The non-
Markovianity has been identified as a key resource in informa-
tion theoretic [19–21], thermodynamic [22–24], and precision
measurement protocols [25–27]. We study the non-Markovian
features of the reduced dynamics and it is shown that the
non-Markovianity increases with the interaction strength.

An irreversible increase of entropy due to dissipation
of energy and work into the environment is inevitable for
systems out of equilibrium. The analysis of irreversible or
nonequilibrium entropy production and its rate have been
instrumental to understanding nonequilibrium phenomena in
different branches of physics [28–33]. According to Spohn’s
theorem [34], the irreversible entropy production rate is always
non-negative under the Markovian dynamics. Whereas non-
Markovianity of the dynamics allows a negative irreversible
entropy production rate and thereby this partial reversibility
of the work and entropy influences the performance of
quantum heat engines, refrigerators, and memory devices. As
our study enables us to probe the strong coupling regime,
it can be far reaching to unravel the hitherto unexplored
consequences of the non-Markovian dynamics in the strong
coupling regime for more efficient thermodynamic protocols.
Here, we investigate the entropy production rate and show that
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the non-Markovianity of the dynamics is always associated
with a negative entropy production rate of the central spin for
a certain initial state. We also investigate the non-Markovianity
in terms of the rate of change of the purity of the central qubit
and it is observed that the rate of change of the purity of the
qubit is positive for the same aforesaid initial state, whenever
the dynamics is non-Markovian. Experimental detection of
the non-Markovianity and the entropy production rates for
quantum systems is of paramount interest in current research.
As purity can be measured in the laboratory, the study of this
article can pave novel avenues to experimentally demonstrate
non-Markovian features and negative entropy production rate
in spin bath models.

The organization of the paper is as follows. In Sec. II, we
derive the proposed canonical master equation of Lindblad
type. The non-Markovian features of the dynamics of the
central qubit are demonstrated, explaining the indivisibility
of the dynamical map and non-monotonicity of the trace
distance fidelity. In this section, we also derive the Kraus
operators for the dynamical evolution. The nonequilibrium
entropy production rate and the dynamics of purity of the
qubit are studied in Sec. III. Finally we conclude in Sec. IV.

II. CENTRAL SPIN MODEL AND ITS REDUCED
DYNAMICS

In this section we first describe the central spin bath model.
Then we derive the exact canonical master equation of the
Lindblad type. From the master equation of the Lindblad form
we show that the reduced dynamics of the central spin exhibits
non-Markovian features throughout. We also derive the Kraus
operators for the dynamical map.

A. The model

Let us first describe the central spin bath model. We consider
a spin- 1

2 particle that interacts uniformly with N other spin- 1
2

particles constituting the bath. The spins of the bath do not
interact with each other. The Hamiltonian for this spin bath
model is given by

H = HS + HSB

= �

2
ω0σ

0
z + �

2

N∑
i=1

α
(
σ 0

x σ i
x + σ 0

y σ i
y + σ 0

z σ i
z

)
, (1)

where σ i
k (k = x,y,z) are the Pauli matrices of the ith spin

of the bath, σ 0
k (k = x,y,z) are the Pauli matrices for the

central spin, and α is the interaction strength. Here HS and
HSB are the system and interaction Hamiltonian, respectively.
Initially the system and reservoir are uncorrelated and the
reservoir is in a thermal state at infinite temperature, i.e.,
a completely unpolarized state [15]. The composite state
of the system and bath evolves unitarily under the total
Hamiltonian H + HB , starting from the factorized initial
state, ρSB (0) = ρS(0) ⊗ 1

2N IB , where IB is an N -qubit identity
matrix and HB is the bath Hamiltonian. Note that as we are
only concerned with the reduced dynamics of the central spin
and the bath is completely unpolarized at t = 0, there is no
loss of generality to drop the bath Hamiltonian HB from the
effective Hamiltonian H to get the reduced dynamics of the

spin. Therefore, the reduced quantum state ρS(t) of the central
spin at time t can be obtained by tracing out the bath degrees
of freedom as

ρS(t) = TrB

[
e−i(H+HB )t/�

{
ρS(0) ⊗ 1

2N
IB

}
ei(H+HB )t/�

]
.

(2)

Hereafter, we drop the subscript “S” for brevity to denote
central spin as we will only deal with it. The total angular
momentum of the bath is given by J = 1

2

∑
i σ

i . The basis
|j,m〉 is defined as the simultaneous eigenbases of both J2 and
Jz. For even N , j takes the values j = 0,1,2, . . . ,N/2, and
for odd N , we have j = 1/2,3/2, . . . ,N/2. m goes from −j

to j . It can be shown that [15] the z component of the total
angular momentum 1

2σ 0
z + 1

2

∑
i σ i

z and J2 are conserved
quantities. There are now two-dimensional subspaces spanned
by |+〉 ⊗ |j,m〉 and |−〉 ⊗ |j,m + 1〉 which are invariant under
time evolution. Now the task of finding the analytical solution
to the reduced dynamics of the central spin is broken down into
solving the equations of motion in each subspace. Solving the
equation of motion exactly [15], the initial reduced state of the
central spin, ρ = (

ρ11 ρ12
ρ21 ρ22

), can be shown to evolve as

ρ11(t) = A(t)ρ11(0) + B(t)ρ22(0),
(3)

ρ12(t) = C(t)ρ12(0),

where

A(t) =
∑
j,m

Nj

2N

{
cos2[μ+(j,m)t] + �2

+(m)

4μ2+(j,m)

× sin2[μ+(j,m)t]

}
,

B(t) =
∑
j,m

Nj

2N

α2b2(j,m)

4μ2+(j,m)
sin2[μ+(j,m)t],

C(t) = eiω0t
∑
j,m

Nj

2N

{
cos[μ+(j,m)t] − i�+(m)

2μ+(j,m)

× sin[μ+(j,m)t]

}

×
{

cos[μ−(j,m)t] + i�−(m)

2μ−(j,m)
sin[μ−(j,m)t]

}
,

and

Nj =
(

N
N
2 + j

)
−

(
N

N
2 + j + 1

)
,

�± = ±ω0 + α(±m + 1/2),

μ± = 1

2

√
�2± + α2b2±,

b± =
√

j (j + 1) − m(m ± 1).

It follows from the above expressions that A(t) + B(t) = 1,
which implies the dynamical map is unital. The unitality of
the dynamics has to be satisfied as the environment and the
system start from a product state while the environment is in
the maximally mixed state. We are now in position to derive
the canonical master equation.
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B. Canonical master equation

Derivation of the master equation is basically finding the
generator of the evolution, which is one of the fundamental
problems in the theory of open quantum systems. Moreover,
the Lindblad-type master equation can lead to understanding
of various physical processes like dissipation, absorption, and
dephasing and hence to the nature of decoherence, in a much
more convincing way. Considering the importance of the
spin bath to model the environmental interactions in various
domains, such as magnetism, superconductors, spin glasses,
etc., it is important and illustrative to have the master equation
for spin bath models. Additionally, theoretical as well as
experimental study of quantum thermodynamic devices
(QTDs) has attracted a great deal of interest in recent times.
Establishing master equations for open quantum systems is
of paramount significance in the context of QTDs [24], where
a single or few quantum systems are coupled with their heat
baths in general. For example, in recently proposed quantum
absorption refrigerators [35], three qubits interact among
themselves while they are coupled to their respective baths.
The Lindblad operators for the qubits under the corresponding
heat baths become crucial to the study of the performance of
the refrigerators in both steady and transient regimes [36–41].
Recently introduced quantum thermal transistors [42] are also
worth mentioning in this context. Therefore, the canonical
Lindblad-type master equation in the spin bath models can
provide a way to study the QTDs in hithertho less explored
strong coupling and non-Markovian regimes which might have
far-reaching impacts to enhance the performance of QTDs.

In what follows, we derive the exact canonical master
equation of the Lindblad type for the central spin starting
from the dynamical map given in Eq. (3). The dynamical map
described in Eq. (3) can be notationally represented as

ρ(t) = �[ρ(0)]. (4)

The equation of motion of the reduced density matrix of the
form

ρ̇(t) = �[ρ(t)] (5)

can be obtained from Eq. (3), which is characterized by the
time-dependent generator �[.]. By following the method [43]
given below, we find the master equation and thus the generator
of the specific reduced dynamics. Consider a convenient
orthonormal basis set {Ga} with the properties G

†
a = Ga

and Tr[GaGb] = δab. The map given in Eq. (4) can now be
represented as

�[ρ(0)] =
∑
k,l

Tr[Gk�[Gl]]Tr[Glρ(0)]Gk = [F (t)r(0)]GT ,

(6)

where Fkl = Tr[Gk�[Gl]] and rl = Tr[Glρ(0)]. Differentiat-
ing Eq. (6), we get

ρ̇(t) = [Ḟ (t)r(0)]GT . (7)

Let us consider a matrix L, with elements Lkl = Tr[Gk�[Gl]].
We can now represent Eq. (5) as

ρ̇(t) =
∑
k,l

Tr[Gk�[Gl]]Tr[Glρ(t)]Gk = [L(t)r(t)]GT . (8)

By comparing Eq. (7) and (8), we find

Ḟ (t) = L(t)F (t) ⇒ L(t) = Ḟ (t)F (t)−1. (9)

We can arrive at Eq. (9) given the inverse of F (t) does exist
and F (0) = I. Considering the specific map of the central
spin in Eq. (3), and taking the orthonormal basis set {Ga} as
{ I2√

2
, σx√

2
,

σy√
2
,

σz√
2
}, we find the L(t) matrix to be

L(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 CR(t)ĊR(t)+CI (t)ĊI (t)
CR(t)2+CI (t)2 −CI (t)ĊR(t)−CR (t)ĊI (t)

CR(t)2+CI (t)2 0

0 CI (t)ĊR(t)−CR (t)ĊI (t)
CR(t)2+CI (t)2

CR(t)ĊR (t)+CI (t)ĊI (t)
CR(t)2+CI (t)2 0

[Ȧ(t) + Ḃ(t)] + (
Ȧ(t)−Ḃ(t)
A(t)−B(t)

){1 − [A(t) + B(t)]} 0 0
(

Ȧ(t)−Ḃ(t)
A(t)−B(t)

)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (10)

where CR(t) and CI (t) are the real and imaginary part of C(t),
respectively. Now from Eq. (8), we get the equation of motion
as given by

ρ̇11(t) = Lz0 + Lzz

2
ρ11(t) + Lz0 − Lzz

2
ρ22(t),

ρ̇12(t) = (Lxx + iLxy)ρ12(t). (11)

Equation (11) gives the time rate of change of the density
matrix. However, one needs to have the Lindblad-type master
equation to understand various processes like dissipation, ab-
sorption, and dephasing in a more convincing way. Moreover,
it is of prime importance to have the master equation to
study the non-Markovian behavior of the reduced dynamics
as we will see later. Therefore, our immediate aim is to derive

the Lindblad-type master equation starting from Eq. (11).
Equation (5) can be written in the form [44]

ρ̇(t) = �[ρ(t)] =
∑

k

Xk(t)ρ(t)Yk(t)†, (12)

where Xk(t) = ∑
i Gixik(t), Yk(t) = ∑

i Giyik(t), and {Ga}
are the basis operators as defined before. Using this decompo-
sition of X(t) and Y (t), Eq. (12) can be rewritten as

ρ̇(t) =
∑

i,j={0,x,y,z}
zij (t)Giρ(t)Gj, (13)

where zij (t) = ∑
k xik(t)yjk(t)∗ are the elements of a Her-

mitian matrix. Using a new set of operators [44], F(t) =
(z00(t)/8)I2 + ∑

i(zi0/2)Gi and H (t) = i
2 �[F(t) − F†(t)],
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after some algebra, Eq. (13) can be written as

ρ̇(t) = i

�
[ρ(t),H (t)]

+
∑

i,j={x,y,z}
zij (t)

[
GiρGj − 1

2

{
GjGi,ρ(t)

}]
, (14)

where the curly braces stand for anticommutator. Hence, the
canonical master equation of the Lindblad form reads as

ρ̇(t) = i

�
U (t)[ρ(t),σz] + 
deph(t)[σzρ(t)σz − ρ(t)]

+
dis(t)

[
σ−ρ(t)σ+ − 1

2
{σ+σ−,ρ(t)}

]

+
abs(t)

[
σ+ρ(t)σ− − 1

2
{σ−σ+,ρ(t)}

]
, (15)

where σ± = σx±iσy

2 , and 
dis(t),
abs(t),
deph(t) are the rates of
dissipation, absorption, and dephasing processes, respectively,
and U (t) corresponds to the unitary evolution. A(t)+B(t) = 1,
for this specific system, is used to derive the master equation.
The rates of dissipation, absorption, and dephasing and the
unitary evolution are, respectively, given as


dis(t) = −Lz0 + Lzz

2
= d

dt

[
ln

(
1√

A(t) − B(t)

)]
,


abs(t) = −Lzz − Lz0

2
= d

dt

[
ln

(
1√

A(t) − B(t)

)]
,


deph(t) = −2Lxx − Lzz

4
= 1

4

d

dt

[
ln

(
A(t) − B(t)

|C(t)|2
)]

,

U (t) = −Lxy

2
= −1

2

d

dt

[
ln

(
1 +

(
CR(t)

CI (t)

)2)]
. (16)

Note that the system environment interaction generates a time-
dependent driving Hamiltonian evolution in the form of U (t).
Since the coefficients of dissipation and absorption are equal,
the master equation (15) can also be rewritten as

ρ̇(t) = i

�
U (t)[ρ(t),σz] + 
dis(t)

2
[σxρ(t)σx − ρ(t)]

+ 
dis(t)

2
[σyρ(t)σy−ρ(t)]+
deph(t)[σzρ(t)σz−ρ(t)].

(17)

The above equation implies that I2
2 is a fixed point of the

reduced dynamics and, hence, it confirms the unitality of the
dynamical map. As the bath is in a thermal state at infinite
temperature, the probabilities of losing energy to the bath
modes and absorbing from it become equal which causes
the dissipation and absorption rates to be the same. This is
quite similar to the bosonic thermal baths, as it follows from
the Kubo-Martin-Schwinger condition [1] that given the baths
having canonical equilibrium distribution the rates of the ab-
sorption and dissipation processes are balanced by the equation

(−ω) = 
(ω) exp(−βω). Here β is the inverse temperature
of the bath and it implies that 
(−ω) = 
(ω), iff β = 0.

One of the important properties of a quantum dynamical
map is complete positivity [17,18,45–52]. The notion “com-
plete” comes with the argument that, for any valid quantum

dynamical map, the positivity must be preserved if the map
is acting on a system which is correlated to an ancilla of
any possible dimension. For a Lindblad-type canonical master
equation with time-dependent coefficients, as in Eq. (15), the
complete positivity is guaranteed by the following condition∫ t

0 
i(s)ds � 0 [53], which can be easily verified for the
specific decay rates given in Eq. (16). It is worth mentioning
that, since the dynamical map for this specific spin bath
model is derived starting from an initial product system plus
environment state, it is always guaranteed to be completely
positive [54,55]. However, the complete positivity of the
dynamical map for the reduced system can break down in
the presence of a system-environment initial correlation [55].

C. Operator sum representation

Another important aspect of general quantum evolution
is the Kraus operator sum representation, given as ρ(t) =∑

i Ki(t)ρ(0)K†
i (t). The Kraus operators can be constructed

[56] from the eigenvalues and eigenvectors of the correspond-
ing Choi-Jamiolkowski state [57]. The Choi-Jamiolkowski
state for a dynamical map �[ρ] acting on a d-dimensional
system is given by (Id ⊗ �)[�+], with �+ = |�+〉〈�+| being
the maximally entangled state in d × d dimension. For the
particular evolution considered here, we find the Choi state to
be ⎛

⎜⎝
A(t)/2 0 0 C(t)/2

0 B(t)/2 0 0
0 0 B(t)/2 0

C∗(t)/2 0 0 A(t)/2

⎞
⎟⎠. (18)

The positive semidefiniteness of the above density matrix
demands B(t) � 0; A(t) � |C(t)|. From the eigensystem of
the Choi state given in Eq. (18), we derive the Kraus operators
as

K1(t) =
√

B(t)

(
0 1
0 0

)
,

K2(t) =
√

B(t)

(
0 0
1 0

)
,

(19)

K3(t) =
√

A(t) − |C(t)|
2

(−eiθ(t) 0
0 1

)
,

K4(t) =
√

A(t) + |C(t)|
2

(
eiθ(t) 0

0 1

)
,

where θ (t) = arctan[CI (t)/CR(t)]. It is straight forward to
verify that the Kraus operators satisfy the unitality property∑

i Ki(t)K
†
i (t) = I.

D. Non-Markovianity

The characterization and quantification of the non-
Markovianity is a fundamental aspect of open quantum
dynamics. There are several proposed measures based on divis-
ibility [50,58] and non-Markovianity witness [48,49,59–64].
A well-accepted characterization and quantification of non-
Markovianity based on the composition law of the dynam-
ical map has been introduced by Rivas-Huelga-Plenio [50],
commonly known as the RHP measure of non-Markovianity.
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In this approach, the non-Markovian behavior is attributed to
the deviation from divisibility and the quantification of non-
Markovianity is done based on the amount of the deviation.
A complete positive and trace-preserving (CPTP) dynamical
map �(t,0) is divisible, when for all intermediate time τ , it
follows that

�(t + τ,0) = �(t + τ,t)�(t,0). (20)

In Ref. [50], it has been shown that the dynamical map � is
divisible or indivisible if the (right) time derivative,

q(t) = lim
ε→0+

||[Id ⊗ �(t + ε,t)]�+|| − 1

ε
, (21)

is zero or greater than zero, respectively. Here, d is the
dimension of the Hilbert space and ||.|| denotes the trace
norm, and �+ = |�+〉〈�+| is the maximally entangled state
in d × d dimension. To illustrate this measure, we consider
the dynamical equation (5). In the limit ε → 0+, the solution
formally reads �(t + ε,t) → eε�. To the first-order expansion,
the parameter q(t) is given as

q(t) = lim
ε→0+

||[Id×d + Id ⊗ �(t + ε,t)]�+|| − 1

ε
. (22)

It is strightforward to calculate q(t) from Eq. (22) [50]. Hence,
the RHP measure of non-Markovianity can be defined [50,58]
based on the strict positivity of q(t) as follows:

G = η

η + 1
, (23)

where η = ∫ ∞
0 q(t)dt . Note that for the Markovian evolution

G is zero and the maximum non-Markovianity corresponds to
G = 1, i.e., when η → ∞. The positivity of the function q(t)
or the indivisibility of the map appears when the relaxation
rates ({
i(t)}) take negative values. We show in the following
that, for the specific dynamical evolution considered in the
present work, the decay rates periodically get negative and
hence break the divisibility of the map, although they always
maintain the complete positivity condition. For this particular
evolution, we get

q(t) = [|
dis(t)| − 
dis(t)] + [|
deph(t)| − 
deph(t)]

= qdis(t) + qdeph(t), (24)

where qdeph(t) = |
deph(t)| − 
deph(t) is the non-Markovianity
for the dephasing channel and qdis(t) = |
dis(t)| − 
dis(t) is
that for the thermal part of the channel including the dissipation
and absorption processes.

In Figs. 1 and 2, we plot the total non-Markovianity q(t)
and the contribution due to the thermal channel qdis(t) with
different values of α to show the non-Markovian behavior of
the dynamics. We see that the revival of qdis(t) increases with
the increasing interaction strength α. In Figs. 3 and 4, we plot
q(t) and total non-Markovianity qdis(t), respectively, but for
different numbers of bath spins N with a fixed interaction
strength.

Let us now investigate the aspect of non-Markovianity from
another well-known perspective, namely the distinguishability
of two quantum states [48,49]. Consider any distance measure
D(.) between two quantum states, following the contraction

FIG. 1. Variation of q(t) with time t for various interaction
strengths α. The number of bath spins is kept fixed at N = 20. Positive
q(t) implies the non-Markovian nature of the dynamics according to
the RHP measure.

property

D(�[ρ1],�[ρ2]) � D(ρ1,ρ2), (25)

where �[.] represents any CPTP map. Under any Markovian
evolution, the time derivative of D(.) will always be negative,
owing to this contraction property. Therefore, nonmonotonic-
ity of these distances can be understood as a witness of the
non-Markovian information feedback into the system. One
such distance measure is the trace distance between quantum
states [65]. Taking the trace distance between two states

FIG. 2. Variation of qdis(t) with time t for various interaction
strengths α. The number of bath spins is kept fixed at N = 20. To
distinguish the effect on the thermal part of the quantum channel,
we separately plot qdis(t). It can be seen from the plot that the non-
Markovian revival for the thermal part of the channel increases with
the increase of the interaction strength α for fixed N .
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FIG. 3. Variation of q(t) with time t for different numbers of bath
spins N . Interaction strength α = 0.03 is taken.

DT (ρ1,ρ2) = 1
2 ||ρ1 − ρ2||, a quantity can be defined as

p(t) = d

dt
DT (�[ρ1],�[ρ2]). (26)

Breuer-Laine-Piilo (BLP) proposed a measure of non-
Markovianity [48,49] by summing over all the positive
contributions of p(t) and maximizing over the input states,
which is given by

ς = max
ρ1,2

∫
p(t)>0

p(t)dt. (27)

It can readily be taken as a witness of non-Markovian infor-
mation feedback into the system under any local decoherence

FIG. 4. Variation of qdis(t) with time t for different numbers of
bath spins N . Interaction strength α = 0.03 is taken. A magnified
view of the rectangular region is shown in the inset. The plot depicts
that the revival of qdis(t) increases with the increase of bath spins N .

FIG. 5. Variation of p(t) with time t for the two states |±〉 =
1√
2
|0 ± 1〉, for different interaction strengths α (where N = 20).

Positive p(t) implies non-Markovianity according to the BLP
measure.

channel. We find that for our specific quantum channel, the
trace distance fidelity between two quantum states ρ1(t) and
ρ2(t), at any arbitrary time after the action of the mentioned
channel, can be expressed as

D(�[ρ1],�[ρ2]) =
√

a2[A(t) − B(t)]2 + |b|2|C(t)|2, (28)

with a = ρ1
11(0) − ρ2

11(0) and b = ρ1
12(0) − ρ2

12(0). In Fig. 5,
we plot the function p(t) for the two states |±〉 = 1√

2
(|0〉 ±

|1〉). The time evolution of the function is plotted in Fig. 6, but
for the case of increasing numbers of bath particles N . Note

FIG. 6. Variation of p(t) with time t for two density matrices
|±〉 = 1√

2
|0 ± 1〉, for different numbers of bath spins N and interac-

tion strength α = 0.03. A magnified view of the rectangular region is
shown in the inset.
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that calculating the maximized measure defined in Eq. (27)
requires optimization over a and b, which is difficult in general.
However, consideration of two specific states can demonstrate
the non-Markovianity providing a lower bound of the measure.
The two measures of non-Markovianity based on divisibility
of the map (RHP measure, η) and distinguishability of two
states under the action of the map (BLP measure, ς ) that we
discuss here may not agree in general [58,66]. If a map is
divisible, the evolution is Markovian and so the RHP measure
of non-Markovianty η is zero. Consequently the BLP measure
ς is also zero. But the converse is generally not true; i.e.,
there exist some non-Markovian domains that are “bound” in
terms of the BLP measure and hence not captured by it. The
reason behind this is that the notion of complete positivity
does not enter into the BLP measure and hence the divisibility
breaking cannot be fully captured by it [58]. In this work we
also consider the BLP measure of non-Markovianity to study
whether the non-Markovian feature of our proposed master
equation can be captured by the BLP measure also.

III. NEGATIVE ENTROPY PRODUCTION RATE

The irreversible or nonequilibrium entropy production and
its rate are two fundamental concepts in the analysis of the
nonequilibrium processes and the performance of thermody-
namic devices [28–33]. The reduction of the nonequilibrium
entropy production can significantly alter the performance of
thermodynamic devices and thereby it is of utmost interest in
various technological domains. The nonequilibrium entropy
production rate is defined as

σ (t) = dS

dt
+J, (29)

where S is the von Neumann entropy of the system and J =
1

KT

dQ

dt
= 1

KT
Tr[H (t)�[ρ(t)]] is the entropy flux of the system.

It can also be expressed as the time derivative of the relative
entropy of the state ρ with respect to the thermal equilibrium
state ρeq [34,54]:

σ (t) = − d

dt
S(ρ||ρeq), (30)

where S(ρ||τ ) = −S(ρ) − Tr(ρ ln τ ). According to Spohn’s
theorem [34] the nonequilibrium entropy production rate σ

is always non-negative. Spohn’s theorem is another statement
of the second law of thermodynamics dictating the arrow of
time. However, its validity essentially depends on the Markov
approximation [48]. Under the non-Markovian dynamics σ

can be negative [67,68]. Therefore, the non-Markovianity of
the dynamics is a thermodynamic resource providing partial
reversibility of work and entropy. In addition, negative σ (t) is a
prominent signature of the non-Markovianity and hence it can
be used to detect and quantify the non-Markovianity. Since,
for the specific system considered here, the absorption and the
dissipation rates are equal due to the infinite temperature of
the bath, the net heat flow dQ

dt
is always zero. Therefore, for

this specific model, we have

σ (t) = dS

dt
. (31)

It is worth mentioning that under the action of the unital
channel the von Neumann entropy of a system always increases

in Markovian dynamics, as it is also a doubly stochastic map.
Since the given channel is unital, the negative dS

dt
also ensures

the deviation from Markovianity. Note that the rate of change
of entropy is given as

dS

dt
= − d

dt
{Tr[ρ(t) ln ρ(t)]} = −Tr[ln ρ(t)�[ρ(t)]]. (32)

Here �[.] represents a general quantum evolution of the form

�[ρ(t)] = − i

�
[ρ(t),HS(t)]

+
∑

j


j (t)

[
Vjρ(t)V †

j − 1

2
{V †

j Vj ,ρ(t)}
]
. (33)

If the Lindblad operators {Vj } are Hermitian, then Eq. (32)
reads as

dS

dt
= 1

2

∑
jkl


j (t)[λk(t) − λl(t)]

× [ln λk(t) − ln λl(t)]|〈λk(t)|Vj |λl(t)〉)|2, (34)

where we take the spectral decomposition of the density
matrix as ρ(t) = ∑

i λi(t)|λi(t)〉〈λi(t)|. The above equation
also implies that dS

dt
is non-negative if the relaxation rates

{
j (t)} are non-negative. However, dS
dt

can be negative if one
or more of the relaxation rates {
j (t)} are negative, i.e., in the
non-Markovian domain. For the dynamics considered here,
σ (t) can be expressed as

σ (t) = 1

2
ln

(
1 − x

1 + x

)
dx

dt
, (35)

where x =
√

[ρ11(t) − ρ22(t)]2 + 4|ρ12(t)|2. We plot the
nonequilibrium entropy production rate σ (t) starting from the
pure initial state |1〉 in Fig. 7, which clearly shows that σ (t)
becomes negative whenever 
dis(t) becomes negative. It has
been shown in Ref. [67] that, for a diagonal qubit state, σ can
be negative only when the non-Markovian dynamics drives
the system away from its thermal equilibrium. The example
considered here completely agrees with this fact.

From Eq. (34) it is quite evident that the time rate of change
of the entropy can be negative, only when the divisibility of
the dynamical map breaks down. Therefore, a witness of non-
Markovianity can be constructed from the negative entropy
production rate for unital channels as follows:

ϕ = max
ρin

∫
κ(t)>0

κ(t)dt, (36)

where κ(t) = − dS
dt

. The measure of non-Markovianity based
on the entropy production rate has been considered before for
unital dynamical maps [64].

A. Rate of change of purity: Detection of non-Markovianity

Let us investigate the non-Markovian behavior by the rate
of change of the purity of the central qubit. If the Lindblad
operators {Vj } in Eq. (33) are Hermitian then the rate of change
of the purity P (= Trρ2) of the central qubit can be given as

dP

dt
= 2Tr[ρ(t)�[ρ(t)]] = −

∑
i


i(t)Qi(t), (37)
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FIG. 7. Variation of the rate of change of the irreversible entropy
production σ (t), the rate of change of the purity dP

dt
, and 
dis with

time t for the initial state |1〉 with the interaction strength α = 0.03
and the number of bath spins N = 20. It is evident that σ (t) and
dP

dt
are negative and positive, respectively, whenever 
dis is negative.

This implies that the non-Markovian information backflow revives
the purity of the state and causes a negative irreversible entropy
production rate.

where Qi(t) = ||[Vi,ρ(t)]||2HS. The abbreviation in the sub-
script stands for the Hilbert-Schmidt norm [||X||HS =√

Tr(X†X)]. As {Qi(t)} values are always positive, the positive
rate of change of purity can only occur for the negativity of
one or more of {
i(t)} which corresponds to the divisibility
breaking of the dynamical map. Note that the dynamics consid-
ered here can be expressed as a master equation with the Pauli
matrices being the Lindblad operators [see Eq. (17)] and the
relaxation rates given as 
x(t) = 
y(t) = 
dis(t)/2,
z(t) =

deph(t). Since the Pauli matrices are Harmitian operators,
thereby the positive rate of change of purity of the central
spin clearly signifies the non-Markovianity of the dynamical
map. It is also worth mentioning that when the Lindblad
operators {Vj } are Hermitian or in other words when they
represent observables, then Qi(t) = ||[Vi,ρ(t)]||2HS, measures
the quantumness [69,70] of the state ρ(t). Therefore, Eq. (37)
implies that the greater the quantumness of the state the more
it is sensitive to the environment. After a little algebra, we find
that the rate of change of purity for the initial central qubit
state |1〉 is given as

dP

dt
= [A(t) − B(t)]

d

dt
[A(t) − B(t)]. (38)

We plot the rate change of the purity with time in Fig. 7.
From Fig. 7 it can be seen that the positive rate of change of
purity occurs periodically, whenever the relaxation rate 
dis(t)
is negative. Since we are taking an initial diagonal state in the

computational basis, there is no effect of the dephasing channel
on the central qubit. For a qubit system, its eigenvalues have
the form λ = (1±z)

2 , where 0 � z � 1, and hence, the entropy
of a qubit system is a monotonically decreasing function of the
purity of the qubit. Therefore, the signs of the rates of change
of purity and entropy (see Fig. 7) are opposite.

Nowadays with advanced experimental techniques, the
purity of a quantum system can be directly measured [71–73].
Hence, the non-Markovian revival of purity can be experi-
mentally verified to demonstrate the non-Markovianity and
the negative nonequilibrium entropy production rate in the
laboratory.

IV. CONCLUSION

To summarize, we have considered the dynamics of a
central spin- 1

2 particle which is interacting with a bath
consisting of completely unpolarized, noninteracting spin- 1

2
particles. An exact canonical Lindblad-type master equation
has been derived for the central spin system. The dynamics
of the system exhibits non-Markovian features which have
been characterized and quantified by divisibility breaking (the
RHP measure of non-Markovianity) as well as monotonicity
breaking of the trace distance fidelity (the BLP measure of
non-Markovianity) conditions. The Kraus operators for the
dynamical evolution are also derived.

The nonequilibrium entropy production rate has been
investigated. A negative entropy production rate implies the
non-Markovianity of the dynamics, though the reverse does
not hold true. The dynamics of the central spin considered
here shows that for a specific initial state the non-Markovianity
of the dynamics is always associated with a negative entropy
production rate. Moreover, it has also been shown that, in this
dynamics, the non-Markovianity is always accompanied by the
increase of the purity of the central spin when the same initial
state has been chosen. As purity is a measurable quantity, the
exact canonical Lindblad-type master equation of the central
spin, derived in this article, could be of paramount importance
to investigate the non-Markovian features and the negative
entropy production rate in the laboratory. The scheme used
here to derive the canonical master equation has been proven
to be fruitful to explore the strong coupling regime where
the system-bath separability breaks down, which gives the
present study a practical importance to unravel the far-reaching
impacts of the non-Markovian dynamics in the strong coupling
regime in various information theoretic and thermodynamic
protocols and devices.
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