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The out-of-time-ordered correlator (OTOC) diagnoses quantum chaos and the scrambling of quantum
information via the spread of entanglement. The OTOC encodes forward and reverse evolutions and has
deep connections with the flow of time. So do fluctuation relations such as Jarzynski’s equality, derived in
nonequilibrium statistical mechanics. I unite these two powerful, seemingly disparate tools by deriving a
Jarzynski-like equality for the OTOC. The equality’s left-hand side equals the OTOC. The right-hand side suggests
a protocol for measuring the OTOC indirectly. The protocol is platform-nonspecific and can be performed with
weak measurement or with interference. Time evolution need not be reversed in any interference trial. The equality
enables fluctuation relations to provide insights into holography, condensed matter, and quantum information
and vice versa.
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The out-of-time-ordered correlator (OTOC) F (t) diagnoses
the scrambling of quantum information [1–6]: Entanglement
can grow rapidly in a many-body quantum system, dispersing
information throughout many degrees of freedom. F (t) quan-
tifies the hopelessness of attempting to recover the information
via local operations.

Originally applied to superconductors [7], F (t) has un-
dergone a revival recently. F (t) characterizes quantum chaos,
holography, black holes, and condensed matter. The conjecture
that black holes scramble quantum information at the greatest
possible rate has been framed in terms of F (t) [6,8]. The
slowest scramblers include disordered systems [9–13]. In the
context of quantum channels, F (t) is related to the tripartite
information [14]. Experiments have been proposed [15–17]
and performed [18,19] to measure F (t) with cold atoms
and ions, with cavity quantum electrodynamics, and with
nuclear-magnetic-resonance quantum simulators.

F (t) quantifies sensitivity to initial conditions, a signature
of chaos. Consider a quantum system S governed by a
Hamiltonian H . Suppose that S is initialized to a pure
state |ψ〉 and perturbed with a local unitary operator V . S

then evolves forward in time under the unitary U = e−iH t

for a duration t , is perturbed with a local unitary operator
W , and evolves backward under U †. The state |ψ ′〉 :=
U †WUV |ψ〉 = W(t)V |ψ〉 results. Suppose, instead, that S

is perturbed with V not at the sequence’s beginning, but at
the end: |ψ〉 evolves forward under U , is perturbed with W ,
evolves backward under U †, and is perturbed with V . The
state |ψ ′′〉 := V U †WU |ψ〉 = VW(t)|ψ〉 results. The overlap
between the two possible final states equals the correlator:
F (t) := 〈W†(t) V † W(t) V 〉 = 〈ψ ′′|ψ ′〉. The decay of F (t)
reflects the growth of [W(t), V ] [20,21].

Forward and reverse time evolutions, as well as information
theory and diverse applications, characterize not only the
OTOC but also fluctuation relations. Fluctuation relations
have been derived in quantum and classical nonequilibrium
statistical mechanics [22–25]. Consider a Hamiltonian H (t)
tuned from Hi to Hf at a finite speed. For example, a laser may
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push an ion-trap potential along some direction in space [26].
Let �F := F (Hf ) − F (Hi) denote the difference between
the equilibrium free energies at the inverse temperature
β:1F (H�) = − 1

β
ln Zβ,�, wherein the partition function is

Zβ,� := Tr(e−βH� ) and � = i or f . The free-energy difference
has applications in chemistry, biology, and pharmacology [27].
One could measure �F , in principle, by measuring the work
required to tune H (t) from Hi to Hf while the system remains
in equilibrium. But such quasistatic tuning would require an
infinitely long time.

�F has been inferred in a finite amount of time from
Jarzynski’s fluctuation relation, 〈e−βW 〉 = e−β�F . The left-
hand side can be inferred from data about experiments in
which H (t) is tuned from Hi to Hf arbitrarily quickly. The
work required to tune H (t) during some particular trial (e.g., to
push the ion trap) is denoted by W . W varies from trial to trial
because the tuning can eject the system arbitrarily far from
equilibrium. The expectation value 〈 . 〉 is with respect to the
probability distribution P (W ) associated with any particular
trial’s requiring an amount W of work. Nonequilibrium
experiments have been combined with fluctuation relations
to estimate �F [26,28–35]:

�F = − 1

β
ln〈e−βW 〉. (1)

Jarzynski’s equality, with the exponential’s convexity,
implies 〈W 〉 � �F . The average work 〈W 〉 required to tune
H (t) according to any fixed schedule equals at least the work
�F required to tune H (t) quasistatically. This inequality
has been regarded as a manifestation of the second law of
thermodynamics. The second law governs information loss
[36], similarly to the OTOC’s evolution.

I derive a Jarzynski-like equality, analogous to Eq. (1),
for F (t) (Theorem 1). The equality unites two powerful
tools that have diverse applications in quantum information,
high-energy physics, statistical mechanics, and condensed
matter. The union sheds new light on both fluctuation relations

1F (H�) denotes the free energy in statistical mechanics, while F (t)
denotes the OTOC in high-energy physics and condensed matter.
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and the OTOC, similar to the light shed when fluctuation
relations were introduced into “one-shot” statistical mechanics
[37–42]. The union also relates the OTOC, known to signal
quantum behavior in high energy and condensed matter, to a
quasiprobability, known to signal quantum behavior in optics.
The Jarzynski-like equality suggests a platform-nonspecific
protocol for measuring F (t) indirectly. The protocol can be
implemented with weak measurements or with interference.
The time evolution need not be reversed in any interference
trial. First, I present the setup and definitions. I then introduce
and prove the Jarzynski-like equality for F (t).

I. SETUP

Let S denote a quantum system associated with a Hilbert
space H of dimensionality d. The simple example of a spin
chain [16–19] informs this paper: Quantities will be summed
over, as spin operators have discrete spectra. Integrals replace
the sums if operators have continuous spectra.

Let W = ∑
w�,αw�

w�|w�,αw�
〉〈w�,αw�

| and V =∑
v�,λv�

v�|v�,λv�
〉〈v�,λv�

| denote local unitary operators.
The eigenvalues are denoted by w� and v�; the degeneracy
parameters are denoted by αw�

and λv�
. W and V may

commute. They need not be Hermitian. Examples include
single-qubit Pauli operators localized at opposite ends of a
spin chain.

We consider measurements of eigenvalue-and-degeneracy-
parameter tuples (w�,αw�

) and (v�,λv�
). Such tuples

can be measured as follows. A Hermitian operator
GW = ∑

w�,αw�
g(w�)|w�,αw�

〉〈w�,αw�
| generates the unitary

W . The generator’s eigenvalues are labeled by the unitary’s
eigenvalues: w = eig(w�). Additionally, there exists a Hermitian
operator that shares its eigenbasis with W but whose spectrum
is nondegenerate: G̃W = ∑

w�,αw�
g̃(αw�

)|w�,αw�
〉〈w�,αw�

|,
wherein g̃(αw�

) denotes a real one-to-one function. I refer to a
collective measurement of GW and G̃W as a W̃ measurement.
Analogous statements concern V . If d is large, measuring
W̃ and Ṽ may be challenging but is possible in principle.
Such measurements may be reasonable if S is small. Schemes
for avoiding measurements of the αw�

’s and λv�
’s are under

investigation [43].
Let H denote a time-independent Hamiltonian. The unitary

U = e−iH t evolves S forward in time for an interval t .
Heisenberg-picture operators are defined as W(t) := U †WU

and W†(t) = [W(t)]† = U †W†U .
The OTOC is conventionally evaluated on a Gibbs

state e−H/T /Z, wherein T denotes a temperature: F (t) =
Tr( e−H/T

Z
W†(t)V †W(t)V ). Theorem 1 generalizes beyond

e−H/T /Z to arbitrary density operators ρ = ∑
j pj |j 〉〈j | ∈

D(H). [D(H) denotes the set of density operators defined on
H.]

II. DEFINITIONS

Jarzynski’s equality concerns thermodynamic work, W . W

is a random variable calculated from measurement outcomes.
The out-of-time-ordering in F (t) requires two such random
variables. I label these variables W and W ′.

Two stepping stones connect W and V to W and W ′.
First, I define a complex probability amplitude, Aρ(w2,αw2 ;
v1,λv1 ; w1,αw1 ; j ), associated with a quantum protocol. I com-
bine amplitudes Aρ into an Ãρ inferable from weak measure-
ments and from interference. Ãρ resembles a quasiprobability,
a quantum generalization of a probability. In terms of the w�’s
and v�’s in Ãρ , I define the measurable random variables W

and W ′.
Jarzynski’s equality involves a probability distribution

P (W ) over possible values of the work. I define a complex
analog, P (W,W ′). These definitions are designed to parallel
expressions in Ref. [44]. In Ref. [44], Talkner, Lutz, and
Hänggi cast Jarzynski’s equality in terms of a time-ordered
correlation function. Modifying their derivation will lead to
the OTOC Jarzynski-like equality.

A. Quantum probability amplitude Aρ

The probability amplitude Aρ is defined in terms of the
following protocol, P .

(1) Prepare ρ.
(2) Measure the eigenbasis of ρ, {|j 〉〈j |}.
(3) Evolve S forward in time under U .
(4) Measure W̃ .
(5) Evolve S backward in time under U †.
(6) Measure Ṽ .
(7) Evolve S forward under U .
(8) Measure W̃ .
An illustration appears in Fig. 1(a). Consider implementing

P in one trial. The complex probability amplitude associated
with the measurements’ yielding j , then (w1,αw1 ), then
(v1,λv1 ), then (w2,αw2 ) is

Aρ(w2,αw2 ; v1,λv1 ; w1,αw1 ; j ) := 〈
w2,αw2

∣∣U ∣∣v1,λv1

〉
× 〈

v1,λv1

∣∣U †∣∣w1,αw1

〉〈
w1,αw1

∣∣U |j 〉√pj . (2)

The square modulus |Aρ(.)|2 equals the joint probability that
these measurements yield these outcomes.

Suppose that [ρ,H ] = 0. For example, suppose that S

occupies the thermal state ρ = e−H/T /Z. (I set Boltzmann’s
constant to 1: kB = 1.) Protocol P and Eq. (2) can be
simplified: The first U can be eliminated, because [ρ,U ] = 0.
Why [ρ,U ] = 0 obviates the unitary will become apparent
when we combine Aρ’s into Ãρ .

The protocol P defines Aρ ; P is not a prescription
measuring Aρ . Consider implementing P many times and
gathering statistics about the measurements’ outcomes. From
the statistics, one can infer the probability |Aρ |2, not the proba-
bility amplitude Aρ .P merely is the process whose probability
amplitude equals Aρ . One must calculate combinations of Aρ’s
to calculate the correlator. These combinations, labeled Ãρ , can
be inferred from weak measurements and from interference.

B. Combined quantum amplitude Ãρ

Combining quantum amplitudes Aρ yields a quantity Ãρ

that is nearly a probability but that differs due to the OTOC’s
out-of-time ordering. I first define Ãρ , which resembles the
Kirkwood-Dirac quasiprobability [43,45–47]. We gain insight
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FIG. 1. Quantum processes described by the complex amplitudes
in the Jarzynski-like equality for the out-oftime-ordered correlator
(OTOC): Theorem 1 shows that the OTOC depends on a complex
distribution P (W,W ′). This P (W,W ′) parallels the probability dis-
tribution over possible values of thermodynamic work in Jarzynski’s
equality. P (W,W ′) results from summing products A∗

ρ(.)Aρ(.). Each
Aρ(.) denotes a probability amplitude [Eq. (2)], so each product
resembles a probability. However, the amplitudes’ arguments differ,
due to the OTOC’s out-of-time ordering: The amplitudes correspond
to different quantum processes. Panel (a) illustrates the process
associated with A∗

ρ(.); and panel (b) illustrates the process associated
with Aρ(.). Time runs from left to right. Each process begins with the
preparation of the state ρ = ∑

j pj |j〉〈j | and a measurement of the
state’s eigenbasis. Three evolutions (U , U †, U ) then alternate with
three measurements of observables (W̃ , Ṽ , W̃). If the initial state
commutes with the Hamiltonian H (e.g., if ρ = e−H/T /Z), the first
U can be omitted. Panels (a) and (b) are used to define P (W,W ′),
rather than illustrating protocols for measuring P (W,W ′). P (W,W ′)
can be inferred from weak measurements and from interference.

into Ãρ by supposing that [ρ,W] = 0, e.g., that ρ is the
infinite-temperature Gibbs state 1/d. Ãρ can be reduced
to a probability in this case, and protocols for measuring
Ãρ simplify. I introduce weak-measurement and interference
schemes for inferring Ãρ experimentally.

1. Definition of the combined quantum amplitude Ãρ

Consider measuring the probability amplitudes Aρ associ-
ated with all the possible measurement outcomes. Consider
fixing an outcome septuple (w2,αw2 ; v1,λv1 ; w1,αw1 ; j ). The
amplitude Aρ(w2,αw2 ; v1,λv1 ; w1,αw1 ; j ) describes one real-
ization, illustrated in Fig. 1(a), of the protocol P . Call this
realization a.

This realization is illustrated in Fig. 1(b). The initial
and final measurements yield the same outcomes as in a

[outcomes j and (w2,αw2 )]. Let (w3,αw3 ) and (v2,λv2 ) denote
the outcomes of the second and third measurements in
b. Realization b corresponds to the probability amplitude
Aρ(w2,αw2 ; v2,λv2 ; w3,αw3 ; j ).

Let us complex-conjugate the b amplitude and multiply by
the a amplitude. We marginalize over j and over (w1,αw1 ),
forgetting about the corresponding measurement outcomes:

Ãρ(w,v,αw,λv) :=
∑

j,(w1,αw1 )

A∗
ρ

(
w2,αw2 ; v2,λv2 ; w3,αw3 ; j

)

× Aρ

(
w2,αw2 ; v1,λv1 ; w1,αw1 ; j

)
. (3)

The shorthand w encapsulates the list (w1,w2). The shorthands
v, αw, and λv are defined analogously.

Let us substitute in from Eq. (2) and invoke 〈A|B〉∗ =
〈B|A〉. The sum over (w1,αw1 ) evaluates to a resolution of
unity. The sum over j evaluates to ρ:

Ãρ(w,v,αw,λv)

= 〈
w3,αw3

∣∣U ∣∣v2,λv2

〉〈
v2,λv2

∣∣U †∣∣w2,αw2

〉
× 〈

w2,αw2

∣∣U ∣∣v1,λv1

〉〈
v1,λv1

∣∣ρU †∣∣w3,αw3

〉
. (4)

This Ãρ resembles the Kirkwood-Dirac quasiprobability
[43,47]. Quasiprobabilities surface in quantum optics and in
the foundations of quantum theory [48,49]. Quasiprobabil-
ities generalize probabilities to quantum settings. Whereas
probabilities remain between 0 and 1, quasiprobabilities can
assume negative and nonreal values. Nonclassical values signal
quantum phenomena such as entanglement. The best-known
quasiprobabilities include the Wigner function, the Glauber-
Sudarshan P representation, and the Husimi Q representation.
Kirkwood and Dirac defined another quasiprobability in
1933 and in 1945 [45,46]. Interest in the Kirkwood-Dirac
quasiprobability has revived recently. The distribution can
assume nonreal values, obeys Bayesian updating, and has been
measured experimentally [50–53].

The Kirkwood-Dirac distribution for a state σ ∈ D(H)
has the form 〈f |a〉〈a|σ |f 〉, wherein {|f 〉〈f |} and {|a〉〈a|}
denote bases for H [47]. Equation (4) has the same form,
except it contains more outer products. Marginalizing Ãρ

over every variable except one w� [or one v�, one (w�, αw�
),

or one (v�, λv�
)] yields a probability, as does marginalizing

the Kirkwood-Dirac distribution over every variable except
one. The precise nature of the relationship between Ãρ and
the Kirkwood-Dirac quasiprobability is under investigation
[43]. For now, I harness the similarity to formulate a weak-
measurement scheme for Ãρ in Sec. II B 3.

Ãρ is nearly a probability: Ãρ results from multiplying a
complex-conjugated probability amplitude A∗

ρ by a probability
amplitude Aρ . So does the quantum mechanical probability
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density p(x) = ψ∗(x)ψ(x). Hence the quasiprobability re-
sembles a probability. Yet the argument of ψ∗ equals the
argument of ψ . The argument of A∗

ρ does not equal the
argument of Aρ . This discrepancy stems from the OTOC’s
out-of-time ordering. Ãρ can be regarded as like a probability,
differing due to the out-of-time ordering. Ãρ is reduced to
a probability under conditions discussed in Sec. II B 2. The
reduction reinforces the parallel between Theorem 1 and the

fluctuation-relation work [44], which involves a probability
distribution that resembles Ãρ .

2. Simple case: Reduction of Ãρ to a probability

Suppose that ρ shares the W̃(t) eigenbasis: ρ = ρW(t) :=∑
w�,αw�

pw�,αw�
U †|w�,αw�

〉〈w�,αw�
|U . For example, ρ may be

the infinite-temperature Gibbs state 1/d. Equation (4) becomes

ÃρW(t) (w,v,αw,λv) = 〈
w3,αw3

∣∣U ∣∣v2,λv2

〉〈
v2,λv2

∣∣U †∣∣w2,αw2

〉〈
w2,αw2

∣∣U ∣∣v1,λv1

〉〈
v1,λv1

∣∣U †∣∣w3,αw3

〉
pw3,αw3

. (5)

The weak-measurement protocol is simplified, as discussed in Sec. II B 3.
Equation (5) is reduced to a probability if (w3,αw3 ) = (w2,αw2 ) or if (v2,λv2 ) = (v1,λv1 ). For example, suppose that (w3,αw3 ) =

(w2,αw2 ):

ÃρW(t)

(
(w2,w2),v,

(
αw2 ,αw2

)
,λv

) = ∣∣〈v2,λv2

∣∣U †∣∣w2,αw2

〉∣∣2∣∣〈v1,λv1

∣∣U †∣∣w2,αw2

〉∣∣2
pw2,αw2

(6)

= p
(
v2,λv2

∣∣w2,αw2

)
p
(
v1,λv1 |w2,αw2

)
pw2,αw2

. (7)

Here pw2,αw2
denotes the probability that preparing ρ and

measuring W̃ will yield (w2,αw2 ). Each p(v�,λv�
|w2,αw2 )

denotes the conditional probability that preparing |w2,αw2〉,
backward-evolving under U †, and measuring Ṽ will yield
(v�,λv�

). Hence the combination Ãρ of probability amplitudes
is nearly a probability: Ãρ is reduced to a probability under
simplifying conditions.

Equation (7) strengthens the analogy between Theorem
1 and the fluctuation relation in Ref. [44]. Equation (10)
in Ref. [44] contains the conditional probability p(m,tf |n)
multiplied by the probability pn. These probabilities parallel
p(v1,λv1 |w1,αw1 ) and pw1,αw1

in Eq. (7). Equation (7) contains
another conditional probability, p(v2,λv2 |w1,αw1 ), due to the
OTOC’s out-of-time ordering.

3. Weak-measurement scheme for the combined quantum
amplitude Ãρ

Ãρ is related to the Kirkwood-Dirac quasiprobability, which
has been inferred from weak measurements [50–55]. I sketch
a weak-measurement scheme for inferring Ãρ . Details appear
in Appendix A.

Let Pweak denote the following protocol.
(1) Prepare ρ.
(2) Couple the system’s Ṽ weakly to an ancilla Aa .

Measure Aa strongly.
(3) Evolve S forward under U .
(4) Couple the system’s W̃ weakly to an ancilla Ab.

Measure Ab strongly.
(5) Evolve S backward under U †.
(6) Couple the system’s Ṽ weakly to an ancilla Ac.

Measure Ac strongly.
(7) Evolve S forward under U .
(8) Measure W̃ strongly (e.g., projectively).
Consider performing Pweak many times. From the measure-

ment statistics, one can infer the form of Ãρ(w,v,αw,λv).
Pweak offers an experimental challenge: Concatenating

weak measurements raises the number of trials required to
infer a quasiprobability. The challenge might be realizable
with modifications to existing setups (e.g., Refs. [56,57]).

Additionally, Pweak is simplified in the case discussed in
Sec. II B 2—if ρ shares the W̃(t) eigenbasis, e.g., if ρ = 1/d.
The number of weak measurements reduces from three to two.
Appendix A contains details.

4. Interference-based measurement of Ãρ

Ãρ can be inferred not only from weak measurement but
also from interference. In certain cases—if ρ shares neither
the W nor the W(t) nor the V eigenbasis—also quantum
state tomography is needed. From interference, one infers
the inner products 〈a|U |b〉 in Ãρ . Eigenstates of W̃ and
Ṽ are labeled by a and b; and U = U,U †. The matrix
element 〈v1,λv1 |ρU †|w3,αw3〉 is inferred from quantum state
tomography in certain cases.

The interference scheme proceeds as follows. An ancilla
A is prepared in a superposition 1√

2
(|0〉 + |1〉). The system

S is prepared in a fiducial state |f 〉. The ancilla controls a
conditional unitary on S: If A is in state |0〉, S is rotated to
U |b〉. If A is in |1〉, S is rotated to |a〉. The ancilla’s state is
rotated about the x axis [if the imaginary part Im(〈a|U |b〉) is
being inferred] or about the y axis [if the real part Re(〈a|U |b〉)
is being inferred]. The ancilla’s σz and the system’s {|a〉}
are measured. The outcome probabilities imply the value of
〈a|U |b〉. Details appear in Appendix B.

The time parameter t need not be negated in any imple-
mentation of the protocol. The absence of time reversal has
been regarded as beneficial in OTOC-measurement schemes
[16,17], as time reversal can be difficult to implement.

Interference and weak measurement have been performed
with cold atoms [58], which have been proposed as platforms
for realizing scrambling and quantum chaos [15,16,59].
Yet cold atoms are not necessary for measuring Ãρ . The
measurement schemes in this paper are platform-nonspecific.

C. Measurable random variables W and W ′

The combined quantum amplitude Ãρ is defined in terms
of two realizations of the protocol P . The realizations yield
measurement outcomes w2, w3, v1, and v2. Consider complex-
conjugating two outcomes: w3 �→ w∗

3 and v2 �→ v∗
2 . The four
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values are combined into

W := w∗
3v

∗
2 and W ′ := w2v1. (8)

Suppose, for example, that W and V denote single-qubit
Paulis. (W,W ′) can equal (1,1),(1,−1),(−1,1), or (−1, − 1).
W and W ′ function analogously to the thermodynamic work
in Jarzynski’s equality: W , W ′, and work are random variables
calculable from measurement outcomes.

D. Complex distribution function P(W,W ′)

Jarzynski’s equality depends on the probability distribution
P (W ). I define an analog P (W,W ′) in terms of the combined
quantum amplitude Ãρ .

Consider fixing W and W ′. For example, let (W,W ′) =
(1,−1). Consider the set of all possible outcome octuples
(w2,αw2 ; w3,αw3 ; v1,λv1 ; v2,λv2 ) that satisfy the constraints
W = w∗

3v
∗
2 and W ′ = w2v1. Each octuple corresponds to a

set of combined quantum amplitudes Ãρ(w,v,αw,λv). These
Ãρ’s are summed, subject to the constraints:

P (W,W ′) :=
∑

w,v,αw,λv

Ãρ(w,v,αw,λv)δW (w∗
3v∗

2 )δW ′(w2v1).

(9)
The Kronecker δ is denoted by δab.

The form of Eq. (9) is analogous to the form of the P (W )
in Ref. [44] [Eq. (10)], as Ãρ is nearly a probability. Equation
(9), however, encodes interference of quantum probability
amplitudes.

P (W,W ′) resembles a joint probability distribution. Sum-
ming any function f (W,W ′) with weights P (W,W ′) yields the
averagelike quantity

〈f (W,W ′)〉 :=
∑
W,W ′

f (W,W ′)P (W,W ′). (10)

III. RESULTS

The above definitions feature in the Jarzynski-like equality
for the OTOC.

Theorem 1. The out-of-time-ordered correlator obeys the
Jarzynski-like equality

F (t) = ∂2

∂β ∂β ′ 〈e−(βW+β ′W ′)〉|β,β ′=0, (11)

wherein β,β ′ ∈ R.
Proof. The derivation of Eq. (11) is inspired by Ref. [44],

in which Talkner et al. cast Jarzynski’s equality in terms of
a time-ordered correlator of two exponentiated Hamiltonians.
Those authors invoke the characteristic function

G(s) :=
∫

dWeisWP (W ), (12)

the Fourier transform of the probability distribution P (W ).
The integration variable s is regarded as an imaginary inverse
temperature: is = −β. We analogously invoke the (discrete)
Fourier transform of P (W,W ′):

G(s,s ′) :=
∑
W

eisW
∑
W ′

eis ′W ′
P (W,W ′), (13)

wherein is = −β and is ′ = −β ′.

P (W,W ′) is substituted in from Eqs. (9) and (4). The δ

functions are summed over:

G(s,s ′) =
∑

w,v,αw,λv

eisw∗
3v∗

2 eis ′w2v1
〈
w3,αw3

∣∣U ∣∣v2,λv2

〉

× 〈
v2,λv2

∣∣U †∣∣w2,αw2

〉〈
w2,αw2

∣∣U ∣∣v1,λv1

〉
× 〈

v1,λv1

∣∣U †ρ(t)
∣∣w3,αw3

〉
. (14)

The ρU † in Eq. (4) has been replaced with U †ρ(t), wherein
ρ(t) := UρU †.

The sum over (w3,αw3 ) is recast as a trace. Under the trace’s
protection, ρ(t) is shifted to the argument’s left-hand side. The
other sums and the exponentials are distributed across the
product:

G(s,s ′) =Tr

⎡
⎣ρ(t)

⎛
⎝ ∑

w3,αw3

∣∣w3,αw3

〉〈
w3,αw3

∣∣

×U
∑
v2,λv2

eisw3
∗v∗

2
∣∣v2,λv2

〉〈
v2,λv2

∣∣U †

⎞
⎠

×
⎛
⎝ ∑

w2,αw2

∣∣w2,αw2

〉〈
w2,αw2

∣∣

×U
∑
v1,λv1

eis ′w2v1
∣∣v1,λv1

〉〈
v1,λv1

∣∣U †

⎞
⎠

⎤
⎦. (15)

The v� and λv�
sums are eigendecompositions of exponen-

tials of unitaries:

G(s,s ′) =Tr

⎡
⎣ρ(t)

⎛
⎝ ∑

w3,αw3

∣∣w3,αw3

〉〈
w3,αw3

∣∣Ueisw∗
3V †

U †

⎞
⎠

×
⎛
⎝ ∑

w2,αw2

∣∣w2,αw2

〉〈
w2,αw2

∣∣Ueis ′w2V U †

⎞
⎠

⎤
⎦. (16)

The unitaries time-evolve the V ’s:

G(s,s ′) =Tr

⎡
⎣ρ(t)

⎛
⎝ ∑

w3,αw3

∣∣w3,αw3

〉〈
w3,αw3

∣∣eisw∗
2V †(−t)

⎞
⎠

×
⎛
⎝ ∑

w2,αw2

∣∣w2,αw2

〉〈
w2,αw2

∣∣eis ′w2V (−t)

⎞
⎠

⎤
⎦. (17)

We differentiate with respect to is ′ = −β ′ and with respect
to is = −β. Then, we take the limit as β,β ′ → 0:

∂2

∂β ∂β ′G(iβ,iβ ′)
∣∣∣
β,β ′=0

(18)

= Tr

⎡
⎣ρ(t)

⎛
⎝ ∑

w3,αw3

w∗
3

∣∣w3,αw3

〉〈
w3,αw3

∣∣V †(−t)

⎞
⎠ (19)

×
⎛
⎝ ∑

w2,αw2

w2

∣∣w2,αw2

〉〈
w2,αw2

∣∣V (−t)

⎞
⎠

⎤
⎦

= Tr[ρ(t)W†V †(−t)WV (−t)]. (20)
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Recall that ρ(t) := UρU †. Time dependence is transferred
from ρ(t), V (−t) = UV †U †, and V †(t) = UV U † to W† and
W , under the trace’s cyclicality:

∂2

∂β ∂β ′G(iβ,iβ ′)
∣∣∣
β,β ′=0

= Tr[ρW†(t)V †W(t)V ] (21)

= 〈W†(t)V †W(t)V 〉 = F (t). (22)

By Eqs. (10) and (13), the left-hand side equals

∂2

∂β ∂β ′ 〈e−(βW+β ′W ′)〉
∣∣∣
β,β ′=0

. (23)

�
Theorem 1 resembles Jarzynski’s fluctuation relation in

several ways. Jarzynski’s equality encodes a scheme for mea-
suring the difficult-to-calculate �F from realizable nonequi-
librium trials. Theorem 1 encodes a scheme for measuring
the difficult-to-calculate F (t) from realizable nonequilibrium
trials. �F depends on just a temperature and two Hamiltoni-
ans. Similarly, the conventional F (t) (defined with respect to
ρ = e−H/T /Z) depends on just a temperature, a Hamiltonian,
and two unitaries. Jarzynski’s equality relates �F to the
characteristic function of a probability distribution. Theorem
1 relates F (t) to (a moment of) the characteristic function of a
(complex) distribution.

The complex distribution, P (W,W ′), is a combination of
probability amplitudes Ãρ related to quasiprobabilities. The
distribution in Jarzynski’s equality is a combination of proba-
bilities. The quasiprobability-vs-probability contrast fittingly
arises from the OTOC’s out-of-time ordering. F (t) signals
quantum behavior (noncommutation), as quasiprobabilities
signal quantum behaviors (e.g., entanglement). Time-ordered
correlators similar to F (t) track only classical behaviors [6]
and are moments of (summed) classical probabilities [43].
OTOCs that encode more time reversals than F (t) are moments
of combined quasiprobabilitylike distributions lengthier than
Ãρ [43].

IV. CONCLUSIONS

The Jarzynski-like equality for the out-of-time correlator
combines an important tool from nonequilibrium statistical
mechanics with an important tool from quantum information,
high-energy physics, and condensed matter. The union opens
all these fields to new modes of analysis.

For example, Theorem 1 relates the OTOC to a com-
bined quantum amplitude Ãρ . This Ãρ is closely related
to a quasiprobability. The OTOC and quasiprobabilities
have signaled nonclassical behaviors in distinct settings—in
high-energy physics and condensed matter and in quantum
optics, respectively. The relationship between OTOCs and
quasiprobabilities merits study: What is the relationship’s
precise nature? How does Ãρ behave over time scales during
which F (t) exhibits known behaviors (e.g., until the dissipation
time or from the dissipation time to the scrambling time [15])?
Under what conditions does Ãρ behave nonclassically (assume
negative or nonreal values)? How does a chaotic system’s Ãρ

look? These questions are under investigation [43].
As another example, fluctuation relations have been used

to estimate the free-energy difference �F from experimental

data. Experimental measurements of F (t) are possible for
certain platforms in certain regimes [15–19]. Theorem 1
expands the set of platforms and regimes. Measuring quantum
amplitudes, as via weak measurements [50–53], now offers
access to F (t). Inferring small systems’ Ãρ’s with existing
platforms [56] might offer a challenge for the near future.

Finally, Theorem 1 can provide a route to bounding F (t). A
Lyapunov exponent λL governs the chaotic decay of F (t). The
exponent has been bounded, including with Lieb-Robinson
bounds and complex analysis [6,60,61]. The right-hand side
of Eq. (11) can provide an independent bounding method that
offers new insights.
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APPENDIX A: WEAK MEASUREMENT OF THE
COMBINED QUANTUM AMPLITUDE Ãρ

Ãρ [Eq. (4)] resembles the Kirkwood-Dirac quasiprobabil-
ity for a quantum state [45–47]. This quasiprobability has been
inferred from weak-measurement experiments [50–54]. Weak
measurements have been performed on cold atoms [58], which
have been proposed as platforms for realizing scrambling and
quantum chaos [15,16,59].

Ãρ can be inferred from many instances of the protocol
Pweak. Pweak consists of a state preparation, three evolutions
interleaved with three weak measurements, and a strong
measurement. The steps appear in Sec. II B 3.

I here flesh out the protocol, assuming that the system, S,
begins in the infinite-temperature Gibbs state: ρ = 1/d. Ãρ is
simplified as in Eq. (5). The final factor becomes pw3,αw3

=
1/d. The number of weak measurements in Pweak reduces
to two. Generalizing to arbitrary ρ’s is straightforward but
requires lengthier calculations and more “background” terms.

Each trial in the simplified Pweak consists of a state
preparation, three evolutions interleaved with two weak
measurements, and a strong measurement. Loosely, one
performs the following protocol: Prepare |w3,αw3〉. Evolve S

backward under U †. Measure |v1,λv1〉〈v1,λv1 | weakly. Evolve
S forward under U . Measure |w2,αw2〉〈w2,αw2 | weakly. Evolve
S backward under U †. Measure |v2,λv2〉〈v2,λv2 | strongly.

Let us analyze the protocol in greater detail. The |w3,αw3〉
preparation and backward evolution yield |ψ〉 = U †|w3,αw3〉.
The weak measurement of |v1,λv1〉〈v1,λv1 | is implemented as
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follows: S is coupled weakly to an ancilla Aa . The observable
Ṽ of S comes to be correlated with an observable of Aa .
Example Aa observables include a pointer’s position on a dial
and a component σ� of a qubit’s spin (wherein � = x,y, or z).
The Aa observable is measured projectively. Let x denote the
measurement’s outcome. x encodes partial information about
the system’s state. We label by (v1,λv1 ) the Ṽ eigenvalue most
reasonably attributable to S if the Aa measurement yields x.

The coupling and the Aa measurement evolve |ψ〉 under
the Kraus operator [62]

Mx =
√

pa(x) 1 + ga(x) |v1,λv1〉〈v1,λv1 | . (A1)

Equation (A1) can be derived, e.g., from the Gaussian-meter
model [47,63] or the qubit-meter model [56]. The projector
can be generalized to a projector �v1 onto a degenerate
eigensubspace. The generalization may decrease exponentially
the number of trials required [43]. By the probabilistic
interpretation of quantum channels, the baseline probability
pa(x) denotes the likelihood that, in any given trial, S fails to
couple to Aa but the Aa measurement yields x nonetheless.
The detector is assumed, for convenience, to be calibrated such
that ∫

dx xpa(x) = 0. (A2)

The small tunable parameter ga(x) quantifies the coupling
strength.

The system’s state becomes |ψ ′〉 = MxU
†|w3,αw3〉, to

within a normalization factor. S evolves under U as
|ψ ′〉 �→ |ψ ′′〉 = UMxU

†|w3,αw3〉, (A3)

to within normalization. |w2,αw2〉〈w2,αw2 | is measured
weakly: S is coupled weakly to an ancilla Ab. W̃ comes to be
correlated with a pointerlike variable of Ab. The pointerlike
variable is measured projectively. Let y denote the outcome.
The coupling and measurement evolve |ψ ′′〉 under the Kraus
operator

My =
√

pb(y) 1 + gb(y) |w2,αw2〉〈w2,αw2 |. (A4)

The system’s state becomes |ψ ′′′〉 = MyUMxU
†|w3,αw3〉, to

within normalization. The state evolves backward under U †.
Finally, Ṽ is measured projectively.

Each trial involves two weak measurements and one strong
measurement. The probability that the measurements yield the
outcomes x, y, and (v2,λv2 ) is

Pweak(x,y,(v2,λv2 )) = ∣∣〈v2,λv2

∣∣U †MyUMxU
†∣∣w3,αw3

〉∣∣2
.

(A5)

Integrating over x and y yields

I :=
∫

dx dy xyPweak(x,y,(v2,λv2 )) . (A6)

We substitute in for Mx and My from Eqs. (A1) and (A4)
and then multiply out. We approximate to second order in
the weak-coupling parameters. The calibration condition (A2)
causes terms to vanish:

I =
∫

dx dy xy
√

pa(x) pb(y)[ga(x) gb(y)d

× Ã1/d (w,v,αw,λv) + c.c.] +
∫

dx dy xy
√

pa(x)pb(y)

× [
g∗

a (x) gb(y)
〈
v2,λv2

∣∣U †∣∣w2,αw2

〉〈w2,αw2

∣∣w3,αw3

〉
× [〈

v2,λv2

∣∣v1,λv1

〉〈
v1,λv1

∣∣U †∣∣w3,αw3

〉]∗ + c.c.
]

+ O(ga(x)2gb(y)) + O(ga(x)gb(y)2). (A7)

The baseline probabilities pa(x) and pb(x) are mea-
sured during calibration. Let us focus on the second in-
tegral. By orthonormality, 〈w2,αw2 |w3,αw3〉 = δw2w3 δαw2 αw3

,
and 〈v2,λv2 |v1,λv1〉 = δv2v1 δλv2 λv1

. The integral vanishes if
(w3,αw3 ) 
= (w2,αw2 ) or if (v2,λv2 ) 
= (v1,λv1 ). Suppose that
(w3,αw3 ) = (w2,αw2 ) and (v2,λv2 ) = (v1,λv1 ). The second
integral becomes∫

dx dy xy
√

pa(x) pb(y)
[
g∗

a (x) gb(y)

× ∣∣〈v2,λv2

∣∣U †∣∣w3,αw3

〉∣∣2 + c.c.
]
. (A8)

The square modulus, a probability, can be measured via Born’s
rule. The experimenter controls ga(x) and gb(y). The second
integral in Eq. (A7) is therefore known.

From the first integral, we infer about Ã1/d . Consider trials
in which the couplings are chosen such that

α :=
∫

dx dy xy
√

pa(x)pb(y)ga(x)gb(y) ∈ R. (A9)

The first integral becomes 2αdRe[Ã1/d (w,v,αw,λv)]. From
these trials, one infers the real part of Ã1/d . Now, consider
trials in which iα ∈ R. The first bracketed term becomes
2|α|dIm[Ã1/d (w,v,αw,λv)]. From these trials, one infers the
imaginary part of Ã1/d .

α can be tuned between real and imaginary in practice
[50]. Consider a weak measurement in which the ancillas are
qubits. An ancilla’s σy can be coupled to a system observable.
Whether the ancilla’s σx or σy is measured dictates whether α

is real or imaginary.
The combined quantum amplitude Ãρ can therefore be

inferred from weak measurements. Ãρ can be measured
alternatively via interference.

APPENDIX B: INTERFERENCE-BASED MEASUREMENT
OF THE COMBINED QUANTUM AMPLITUDE Ãρ

I detail an interference-based scheme for measuring
Ãρ(w,v,αw,λv) [Eq. (4)]. The scheme requires no reversal
of the time evolution in any trial. As implementing time
reversal can be difficult, the absence of time reversal can benefit
OTOC-measurement schemes [16,17].

I specify how to measure an inner product z := 〈a|U |b〉,
wherein a,b ∈ {(w�,αw�

),(vm,λvm
)} and U ∈ {U,U †}. Then, I

discuss measurements of the state-dependent factor in Eq. (4).
The inner product z is measured as follows. The system S

is initialized to some fiducial state |f 〉. An ancilla qubit A is
prepared in the state 1√

2
(|0〉 + |1〉). The +1 and −1 eigenstates

of σz are denoted by |0〉 and |1〉. The composite system AS

begins in the state |ψ〉 = 1√
2
(|0〉|f 〉 + |1〉|f 〉).

A unitary is performed on S, conditioned on A: If A
is in state |0〉, then S is brought to state |b〉, and U is
applied to S. If A is in state |1〉, S is brought to state |a〉.
The global state becomes |ψ ′〉 = 1√

2
[|0〉(U |b〉) + |1〉|a〉)]. A

unitary e−iθσx rotates the ancilla’s state through an angle θ
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about the x axis. The global state becomes

|ψ ′′〉 = 1√
2

[(
cos

θ

2
|0〉 − i sin

θ

2
|1〉

)
(U |b〉)

+
(

−i sin
θ

2
|0〉 + cos

θ

2
|1〉

)
|a〉

]
. (B1)

The ancilla’s σz is measured, and the system’s {|a〉} is
measured. The probability that the measurements yield +1
and a is

P(+1,a) = 1

4
(1− sin θ )

(
cos2 θ

2
|z|2− sin θ Im(z) + sin2 θ

2

)
.

(B2)

The imaginary part of z is denoted by Im(z). P(+1,a) can
be inferred from the outcomes of multiple trials. The |z|2,
representing a probability, can be measured independently.
From the |z|2 and P(+1,a) measurements, Im(z) can be
inferred.

Re(z) can be inferred from another set of interference
experiments. The rotation about x̂ is replaced with a rotation
about ŷ. The unitary e−iφσy implements this rotation, through

an angle φ. Equation (B1) becomes

|ψ̃ ′′〉 = 1√
2

[(
cos

φ

2
|0〉 + sin

φ

2
|1〉

)
(U |b〉)

+
(

− sin
φ

2
|0〉 + cos

φ

2
|1〉

)
|a〉

]
. (B3)

The ancilla’s σz and the system’s {|a〉} are measured. The
probability that the measurements yield +1 and a is

P̃(+1,a)

= 1

4
(1− sin φ)

(
cos2 φ

2
|z|2− sin φRe(z)+ sin2 φ

2

)
. (B4)

One measures P̃(+1,a) and |z|2 and then infers Re(z).
The real and imaginary parts of z are thereby gleaned from
interferometry.

Equation (4) contains the state-dependent factor
M := 〈v1,λv1 |ρU †|w3,αw3〉. This factor is measured easily if
ρ shares its eigenbasis with W̃(t) or with Ṽ . In these cases, M
assumes the form 〈a|U †|b〉p. The inner product is measured
as above. The probability p is measured via Born’s rule. In
an important subcase, ρ is the infinite-temperature Gibbs
state 1/d. The system’s size sets p = 1/d. Outside of these
cases, M can be inferred from quantum tomography [64].
Tomography requires many trials but is possible in principle
and can be realized with small systems.
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