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Quantum metrology in coarsened measurement reference
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We investigate the role of coarsened measurement reference, which originates from the coarsened reference
time and basis, in quantum metrology. When the measurement is based on one common reference basis, the
disadvantage of coarsened measurement can be removed by symmetry. Owing to the coarsened reference basis,
the entangled state cannot perform better than the product state for a large number of probe particles in estimating
the phase. Given a finite uncertainty of the coarsened reference basis, the optimal number of probe particles
is obtained. Finally, we prove that the maximally entangled state always achieves better frequency precision in
the case of non-Markovian dephasing than that in the case of Markovian dephasing. The product state is more
resistant to the interference of the coarsened reference time than the entangled state.
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I. INTRODUCTION

With the development of quantum technology, the topic
of quantum metrology, which mainly involves the estimation
of physical parameters and the improvement of measurement
precision by employing quantum mechanics, has attracted
considerable attention [1–6].

Most studies have considered parameter measurement
with a perfect measurement setup [7]. However, the primary
disadvantages of this approach include the factors of noise and
lossy probe particles. On the other hand, very few works have
explored the estimation of physical parameters under imperfect
measurement conditions. In a recent study [8], Fröwis et al.
investigated the quantum Fisher information [9] with finite
measurement precision, where the quantum Fisher information
is inversely proportional to the measurement precision of the
parameters. Here, we remark that coarsened measurement
includes not only the coarsened measurement precision but
also the coarsened reference [10]. A complete measurement
can be divided into two steps: the first step involves setting
up a measurement reference and controlling it, and the second
step involves utilizing the corresponding projector to perform
the final measurement (we note here that many studies address
coarsened measurement in this step). Therefore, the authors in
the above-mentioned study [8] only considered the question
about the investigation of quantum Fisher information in the
second step. However, the coarsened reference can have a more
negative function than the coarsened measurement precision,
particularly in a quantum-to-classical transition [10]. In other
words, the coarsened measurement reference also plays a main
role in quantum metrology.

Recently, Šafránek et al. [11] explored the ultimate pre-
cision limits within imperfect reference frames. However,
the authors only considered a fixed definite rotation of
a measurement basis. In most cases, the rotation of the
measurement basis has a Gaussian distribution. Namely, the
coarsened reference frames [10] are more physically realistic
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than the imperfect reference frames defined in the previous
study [11]. In this article, we investigate the role of coarsened
measurement reference in quantum metrology and propose a
method to reduce its adverse impact. The coarsened measure-
ment reference originates from the coarsened measurement
time and the chosen basis. For one common reference basis,
the disadvantage of coarsened measurement can be offset by
employing an even number of identical probe particles. Given
a finite uncertainty of the coarsened measurement reference
basis, the optimal number of probe particles is obtained in
the estimating phase. For the coarsened reference time, we
find that contrary to the result in a previous study [12,13], the
maximally entangled state does not achieve better precision
in the non-Markovian case than the product state when the
uncertainty δ is larger than a certain value. A previous study
[9] showed that the effect of coarsened measurement precision
can be suppressed by a unitary back-squeezing operator before
the final measurement. However, no unitary operator can
suppress the disadvantage arising from the general coarsened
measurement reference. Therefore, it is more important to
control the reference accurately at first.

The rest of this article is organized as follows. In Sec. II,
we briefly introduce the measurement setup and model.
In Sec. III, the role of the coarsened reference basis in
estimating phase is considered. In Sec. IV, we discuss the
coarsened measurement reference time in measuring the
frequency. A concise conclusion and an outlook are included
in Sec. V.

II. THE MODEL OF COARSENED MEASUREMENT
REFERENCE

We consider a probe system composed of n two-level
particles. The Hamiltonian of each particle is given by �ωσZ ,
where σZ denotes the Pauli operator with the eigenvector
(|0〉,|1〉).

In general, we use linear operators to perform the mea-
surement. The form of the projective measurement opera-
tor for each particle is described with the reference basis

2469-9926/2017/95(1)/012117(5) 012117-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.012117


DONG XIE, CHUNLING XU, AND AN MIN WANG PHYSICAL REVIEW A 95, 012117 (2017)

(|0〉,|1〉):

P̂1 = (a|0〉 + b|1〉)(a∗〈0| + b∗〈1|), (1)

P̂2 = (b∗|0〉 − a∗|1〉)(b〈0| − a〈1|), (2)

where |a|2 + |b|2 = 1. When the measurement reference basis
is coarsened, the reference basis (|0〉,|1〉) becomes fuzzy. The
above projective operator changes as follows [10]:

P̂1 =
∫ ∞

−∞
dθλ�(θ )U †(θ )(a|0〉 + b|1〉)(a∗〈0| + b∗〈1|)U (θ ),

(3)

P̂2 =
∫ ∞

−∞
dθλ�(θ )U †(θ )(b∗|0〉 − a∗|1〉)(b〈0| − a〈1|)U (θ ),

(4)

where the unitary operator U (θ ) satisfies [10]:

U (θ )(a|0〉 + b|1〉) = cos(θ )(a|0〉 + b|1〉)
+ sin(θ )(b∗|0〉 − a∗|1〉), (5)

U (θ )(b∗|0〉 − a∗|1〉) = cos(θ )(b∗|0〉 − a∗|1〉)
+ sin(θ )(a|0〉 + b|1〉). (6)

λ�(θ ) denotes the normalized Gaussian kernel

λ�(θ ) = 1√
2π�

exp

(
− θ2

2�2

)
, (7)

where � represents the coarsened degree of the reference basis.
The coarsened measurement reference also includes the

reference time. When measuring certain parameters such as
frequency, one must choose an interrogation time. If the
reference time is uncertain, the corresponding interrogation
time is fuzzy. The interrogation time t will deviate from the
expectation value t0, with the probability

p = exp
[− (t−t0)2

2δ2

]
∫ ∞
t=0 dt exp

[− (t−t0)2

2δ2

] , (8)

where the range of time is 0 � t < ∞.
The famous Cramér-Rao bound [14] offers a very good

parameter estimation:

(δx)2 � 1

NF[x]
, (9)

where N = T/t represents total number of experiments given
by the fixed total time T , and t the interrogation time. F(x)
denotes the Fisher information, which is defined as

F(x) =
∑

k

Pk(x)

[
d ln[Pk(x)]

dx

]2

, (10)

where Pk(x) denotes the probability of obtaining the set of
experimental results k for the parameter value x. The coarsened
measurement reference will reduce the amount of the Fisher
information, leading to a reduction in the precision of the
parameter.

III. MEASURING PHASE IN THE COARSENED
REFERENCE BASIS

Here, we consider the measurement of the phase of the
probe system. The final measurement precision depends on
the initial state. In a perfect reference basis, the initial
maximally entangled state |0〉⊗n + |1〉⊗n can aid in enhancing
the resolution of phase φ to the Heisenberg limit: δφ ∝ 1

n
.

However, the product state (|0〉 + |1〉)⊗n only achieves the
quantum limit.

A. Common coarsened reference

In the coarsened reference basis, the final precision is
influenced by the uncertain reference basis. When the initial
state of the probe system is the maximally entangled state, a
phase φ is encoded after a certain time: |0〉⊗n + exp(inφ)|1〉⊗n.
When the local generator of the phase change is σZ , then the
optimal measurement operator is σX. Therefore, the optimal
linear projector for each particle in the coarsened reference
basis can be written as

P̂1 = 1

2

∫ ∞

−∞
dθλ�(θ )U †(θ )(|0〉 + |1〉)(〈0| + 〈1|)U (θ ),

(11)

P̂2 = 1

2

∫ ∞

−∞
dθλ�(θ )U †(θ )(|0〉 − |1〉)(〈0| − 〈1|)U (θ ),

(12)

where the unitary operator can be chosen as U (θ ) =
exp(−iθσZ).

We need to determine whether there is a common origin
leading to the n coarsened reference bases, for example, when
we choose the measurement operator to be σX, i.e., when
we measure the system along the X direction. We consider n
measurements along the X direction based on the common
coordinate system. When the common coordinate system
is coarsened, the n measurement operators are coarsened
synchronously. In other words, the n linear measurement
operators in the common coordinate system are correlated.
Thus, with synchronously coarsened reference bases, the
corresponding projector becomes

P̂(η1,η2, . . . ,ηn) =
∫ ∞

−∞
dθλ�(θ )

[
1

2
U †(θ )[|0〉 + (−1)η1 |1〉]

× [〈0| + (−1)η1〈1|]U (θ )

]

⊗
[

1

2
U †(θ )[|0〉 + (−1)η2 |1〉]

× [〈0| + (−1)η2〈1|]U (θ )

]

· · ·
[

1

2
U †(θ )[|0〉 + (−1)ηn |1〉]

× [〈0| + (−1)ηn〈1|]U (θ )

]
, (13)
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with η1,η2, . . . ,ηn = 0,1. We can subsequently obtain the
probabilities:

P1(η1,η2, . . . ,ηn) = 1 + exp(−n2�2)

n
cos2(nφ/2)

+ 1 − exp(−n2�2)

n
sin2(nφ/2)

for (−1)(η1+η2+···+ηn) = 1, (14)

P2(η1,η2, . . . ,ηn) = 1 + exp(−n2�2)

n
sin2(nφ/2)

+ 1 − exp(−n2�2)

n
cos2(nφ/2)

for (−1)(η1+η2+···+ηn) = −1. (15)

Substituting the above probabilities into Eq. (10), the Fisher
information is obtained as

F(φ) = n2 sin2(nφ) exp(−2n2�2)

1 − cos2(nφ) exp(−2n2�2)
. (16)

When nφ = kπ/2 with odd k, the resolution of the phase is
given by

δφ|e = 1√
Nn2 exp(−2n2�2)

. (17)

Subsequently, we can obtain the optimal resolution for
n = 1√

2�
,

δφ|e =
√

2�2e√
N

. (18)

It is easy to obtain the optimal resolution of the phase in the
coarsened reference basis with the initial probe in the product
state:

δφ|p = 1√
Nn exp(−2�2)

. (19)

For n 	 1, δφ|e ∝
√

en2 	
√

1
n

. Obviously, when n measure-
ment operators are coarsened synchronously, the entangled

state will not perform better than the product state for large
values of n.

In order to reduce the influence of the coarsened ref-
erence basis, we use a unitary operator to transform
the encoded state |0〉⊗n + exp(inφ)|1〉⊗n into |0101, . . .〉 +
exp(inφ)|1010, . . .〉. When the number of particles is even,
the effect of the coarsened measurement reference is com-
pletely eliminated, and the disadvantageous factor is negated
completely. This can be verified by utilizing the projection op-
erators Eq. (13) to measure |0101, . . .〉 + exp(inφ)|1010, . . .〉.
The corresponding probability is given by

P1(η1,η2, . . . ,ηn) = 2

n
cos2(nφ/2) for (−1)(η1+η2+···+ηn) = 1,

(20)

P2(η1,η2, . . . ,ηn) = 2

n
sin2(nφ/2) for (−1)(η1+η2+···+ηn) = − 1.

(21)

Substituting the above equations into Eq. (10), we recover the
Heisenberg limit,

δφ = 1√
Nn2

. (22)

For odd particles, the final resolution of the phase is δφ =
1√

Nn2 exp(−2�2)
. Obviously, the use of a unitary transformation

before the measurement to obtain an appropriate state can im-
prove the measurement precision in the common measurement
reference.

B. Independent coarsened references

In general, the n linear measurement operators are coars-
ened independently. Without loss of generality, we suppose
that the coarsened degrees of n coarsened reference bases are
the same. Thus, the corresponding measurement projectors for
n particles are given by

P̂(η1,η2, . . . ,ηn) =
∫ ∞

−∞
dθ1λ�(θ1)

[
1

2
U †(θ )[|0〉 + (−1)η1 |1〉][〈0| + (−1)η1〈1|]U (θ1)

]

⊗
∫ ∞

−∞
dθ2λ�(θ2)

[
1

2
U †(θ2)[|0〉 + (−1)η2 |1〉][〈0| + (−1)η2〈1|]U (θ2)

]

· · ·
∫ ∞

−∞
dθnλ�(θn)

[
1

2
U †(θn)[|0〉 + (−1)ηn |1〉][〈0| + (−1)ηn〈1|]U (θn)

]
, (23)

with η1,η2, . . . ,ηn = 0,1.

For the initial probe particles in the maximally entangled state |0〉⊗n + exp(inφ)|1〉⊗n, we can obtain the probability
distribution:

P1(η1,η2, . . . ,ηn) = 1 + exp(−n�2)

n
cos2(nφ/2) + 1 − exp(−n�2)

n
sin2(nφ/2) for (−1)(η1+η2+···+ηn) = 1, (24)

P2(η1,η2, . . . ,ηn) = 1 + exp(−n�2)

n
sin2(nφ/2) + 1 − exp(−n�2)

n
cos2(nφ/2) for (−1)(η1+η2+···+ηn) = −1. (25)
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Using the same method described in the previous subsec-
tion, we can obtain the optimal resolution of phase,

δφ = 1√
Nn2 exp(−2n�2)

. (26)

In comparison with the resolution in Eq. (17), the resolution
in the independent coarsened reference is better than that
in the common coarsened reference. However, the influence
of the independent coarsened reference cannot be offset by
the method described in the previous subsection because the
coarsened references are not synchronous. The maximally
entangled state does not always perform better than the product
state for large n. The optimal resolution for the entangled
state in the independent coarsened references is obtained with
n = 1

�2 .

IV. MEASURING FREQUENCY IN THE COARSENED
MEASUREMENT TIME REFERENCE

In this section, we consider measurement of the frequency ω

of the probe system. Further, each probe particle is subjected to
a system-environment interaction that induces pure dephasing.
The interaction Hamiltonian is of the form σZ ⊗ B, where B

represents some operator of the environment. The reduced
density matrix of each probe particle satisfies [13]

ρjj (t) = ρjj (0), (27)

ρ01(t) = ρ01(0)e−2γ (t), (28)

with j = 0,1.
When the initial state of the probe system is the product state

(|0〉 + |1〉)⊗n, we can use the Ramsey spectroscopy setup [15]
to measure the frequency in the coarsened reference time. That
is, substituting the projection operators Eqs. (3) and (4) and
the probability Eq. (8) into Eq. (10) according to the method
reported in [13], we can obtain the resulting single particle
signal

P0 = 1∫ ∞
t=0 dt exp[− (t−t0)2

2δ2 ]

∫ ∞

t=0
dt exp

[
− (t − t0)2

2δ2

]

× 1 + cos(φt) exp[−γ (t)]

2
, (29)

where t0 denotes the optimal interrogation time without the
coarsened reference, and φ the detuning between the frequency
of the external oscillator and that of the probe particle ω [12].

Subsequently, via calculation of the Fisher information,
the uncertainty of the frequency is obtained in the coarsened
reference time as

δω2 = {1 − 〈cos(φt) exp[−γ (t)]〉2}〈t〉
nT 〈t sin(φt) exp[−γ (t)]〉2

, (30)

where 〈f (t)〉= ∫ ∞
t=0 dt exp[− (t−t0)2

2δ2 ]f (t)/
∫ ∞
t=0 dt exp[− (t−t0)2

2δ2 ].
The value of t0 is given by

2t
dγ (t)

dt

∣∣∣∣
t=t0

= 1. (31)

The value of φ is given by φt0 = kπ/2 with odd k. For reducing
the influence of the coarsened reference time, the value of k

should be 1.

FIG. 1. Precision of frequency δω2 as a function of the uncertainty
of reference time δ. Curve 1 represents the precision in the case of
Markovian dephasing with the initial product state. Curve 2 represents
the case of non-Markovian dephasing with the maximally entangled
state. Curve 3 represents 10−8 times the precision in the case of
Markovian dephasing with the maximally entangled state, where the
scaling factor of 10−8 is used to plot four curves in one diagram
because the precision in this case increases considerably faster than
in the other cases with the given parameters for the current scope
of δ. Curve 4 represents the precision in the case of non-Markovian
dephasing with the initial product state. When the uncertainty δ is
larger than a certain value, curve 2 (curve 3) exhibits higher precision
than curve 4 (curve 1). The following parameters are used here:
n = 104, γ (0) = 1, T = 1.

A similar calculation can be performed for the initial
state of the probe system in the maximally entangled state
|0〉⊗n + |1〉⊗n. The corresponding resolution of the frequency
is obtained as

δω2 = {1 − 〈cos(nφt) exp[−nγ (t)]〉2}〈t〉
n2T 〈t sin(nφt) exp[−nγ (t)]〉2

. (32)

In this case, the value of optimal interrogation time t0|e is given
by

2nt
dγ (t)

dt

∣∣∣∣
t=t0|e

= 1. (33)

The corresponding value of φ is given by nφt0|e = π/2.
From a previous study [12,13], it is known that with

a perfect measurement reference time, the product and the
maximally entangled preparations of the probe system achieve
the same resolution of frequency when subject to Markovian
dephasing γ (t) = γ (0)t . Further, when subject to general non-
Markovian dephasing γ (t) = γ (0)t2, the maximally entangled
state can perform better than the product state, thereby
leading to resolution beyond the quantum limit. Here, non-
Markovian dephasing generally occurs when condensed matter
systems are subjected to non-Markovian environments with
characteristically long correlation times and/or structured
spectral features [16–20]. The universal time dependence
γ (t) = γ (0)t2 is the fundamental basis of the quantum Zeno
effect [21,22].

From the above equations, we note that the resolution must
decrease because the coarsened reference time makes it im-
possible to perform measurements at the optimal interrogation
time. As shown in Fig. 1, the maximally entangled state does
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not achieve better precision than the product state when the
uncertainty δ is larger than a certain value. Namely, the product
state is more resistant to the interference of the coarsened
reference time than the entangled state. Further, the maximally
entangled state always achieves better precision in the case of
non-Markovian dephasing than that in the case of Markovian
dephasing.

V. CONCLUSION AND OUTLOOK

In this study, we investigated the role of coarsened mea-
surement reference basis and time in quantum metrology.
When subject to synchronously coarsened reference bases,
a unitary transformation before the measurement can aid
in eliminating the disadvantages arising from coarsened
measurement conditions. In the independent coarsened basis
reference, the maximally entangled state cannot overcome the
standard quantum limit in measuring the phase. Further, the
maximally entangled state does not always perform better than
the product state for a large number of particles n. In the

coarsened time reference, the product state is more resistant to
the interference of coarsened reference time than the entangled
state. The maximally entangled state always achieves better
precision in the case of non-Markovian dephasing than in the
case of Markovian dephasing.

The coarsened reference can exert a more significant
influence in quantum metrology than the coarsened mea-
surement precision. Namely, in typical noisy metrological
scenarios (depolarization, dephasing, and particle loss), the
Fisher information scales linearly with n, as opposed to
the Heisenberg scaling n2. Here, in the scenario of a noisy
reference, the Fisher information tends to zero exponentially in
the system size [Eq. (16)] for any fixed finite �. It is necessary
to reduce the the negative effects from the coarsened reference,
which is very important in experiments.
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