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The theory of majorization and its variants, including thermomajorization, have been found to play a central
role in the formulation of many physical resource theories, ranging from entanglement theory to quantum
thermodynamics. Here we formulate the framework of quantum relative Lorenz curves, and show how it is able
to unify majorization, thermomajorization, and their noncommutative analogs. In doing so, we define the family
of Hilbert α divergences and show how it relates with other divergences used in quantum information theory. We
then apply these tools to the problem of deciding the existence of a suitable transformation from an initial pair
of quantum states to a final one, focusing in particular on applications to the resource theory of athermality, a
precursor of quantum thermodynamics.
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I. INTRODUCTION

Lorenz curves, originally introduced to give a quantitative
and pictorially clear representation of the inequality of the
wealth distribution in a country [1], have since then been used
also in other contexts in order to effectively compare different
distributions (see, for example, [2], and references therein).
In their typical formulation, Lorenz curves fully capture the
notion of “nonuniformity” [3] of a distribution, in the sense
that comparing the Lorenz curves associated to two given
distributions (say, p and q) induces an ordering equivalent
to the relation of majorization, which, in turn, is well known
to be equivalent to the existence of a random permutation (i.e.,
a bistochastic channel) transforming p into q [2].

More recently, some variants of the original definition
were proposed in order to capture other aspects of a given
distribution, besides its mixedness. In particular, thermoma-
jorization was introduced in [4] to characterize state transitions
under thermal operations or Gibbs preserving operations [5].
Here, the corresponding Lorenz curve characterizes a partial
ordering relative to the Gibbs distribution, rather than the
uniform one.

This suggests that Lorenz curves are best understood not
as properties of one given distribution, but rather of a given
pair of distributions, one being the “state” at hand and the
other being the “reference.” For example, the original Lorenz
curve contains information about a given distribution p with
respect to the uniform one: it is in this precise sense, then, that
the Lorenz curve characterizes the degree of nonuniformity
of p—exactly because the reference distribution is chosen
to be the uniform one. In the same way, thermomajorization
measures the degree of “athermality” because, in this case,
the reference distribution is chosen to be the thermal (Gibbs)
distribution.

A lot of attention has been devoted recently to the
generalization of the above ideas to the case in which,
rather than comparing distributions, one wants to compare
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quantum states, namely, density operators defined on a Hilbert
space. This is one of the topics lying at the core of theories
like quantum thermodynamics and, more generally, quantum
resource theories [6–8]. However, a general theory of quantum
Lorenz curves would be interesting in its own right, providing
insights on the rich analogies existing between quantum theory
and classical probability theory, despite their differences.

In this paper we develop such a theory by introducing
the notions of quantum testing region, quantum relative
Lorenz curves, and quantum relative majorization in much
analogy with their classical counterparts. We find equivalent
conditions for quantum relative majorization in terms of a
family of divergences that we call Hilbert α divergences, with
α ∈ (1,∞), and show that in the limits α → 1 and α → ∞
the Hilbert α divergences are equivalent to the trace distance
and the max-relative entropy, respectively. As an application
to quantum thermodynamics, we show that only the min- and
max-relative entropies are needed to determine whether it is
possible to convert one qubit athermality resource to another
by Gibbs preserving operations. Finally, we show that in
higher dimensions, quantum relative Lorenz curves can be
used to determine the existence of a test-and-prepare channel
converting one pair of states to another.

II. QUANTUM RELATIVE LORENZ CURVES

Consider the task of distinguishing which, among two
possible distributions, is the one that originated a set of
observed sample data. This scenario, central in statistics, is
usually treated within the framework known as hypothesis
testing [9]: the two distributions are called the null hypothesis
and the alternative hypothesis, respectively, and the task of the
statistician is to minimize the so-called type II error (i.e., the
probability of wrongly accepting the null hypothesis, namely,
the probability of false negatives) given that the type I error
(i.e., the probability of wrongly rejecting the null hypothesis,
namely, the probability of false positives) falls below a certain
threshold. The whole hypothesis testing problem is hence
“encoded” in the shape of the region of the xy plane containing
all achievable points (x,y) = (type I,type II). Such a region is,
by construction, convex, always contains the points (0,0) and
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FIG. 1. Example of classical testing region in dimension n =
4 with �p1 = (1/2,1/4,1/4,0)T and �p2 = (1/6,1/6,1/3,1/3)T . The
Lorenz curve (i.e., the upper boundary) is determined by the vertices
at which the Lorenz curve changes slope.

(1,1), and is symmetric, in the sense that (x,y) belongs to the
region if and only if (1 − x,1 − y) does, as this corresponds
to exchanging the roles of null and alternative hypotheses (see
Fig. 1). Hence, the hypothesis testing is fully characterized by
the upper boundary of the region. In particular, as noticed by
Renes [10], when testing p against the uniform distribution,
such boundary coincides with the usual Lorenz curve; when
testing p against the Gibbs distribution, it coincides with the
thermomajorization curve.

The observations in [10] exhibit a fundamental connection
between the theory of (thermo)majorization and hypothesis
testing. It is then extremely natural for us here to introduce
the definition of Lorenz curves for a pair of quantum states,
leveraging on the fact that hypothesis testing is well understood
in the quantum case too [11–15]:

Definition 1. Given two density matrices ρ1 and ρ2 on Cn,
the associated testing region T (ρ1,ρ2) ⊂ R2 is defined as the
set of achievable points

(x,y) = (Tr[Eρ2], Tr[Eρ1]),

with 0 � E � 1n. The quantum Lorenz curve of ρ1 relative to
ρ2 is defined as the upper boundary of T (ρ1,ρ2) (see Fig. 2 ).

Closely related to the testing region, the hypothesis testing
relative entropy (see, e.g., [16–18], and references therein) is
defined, for 0 � ε � 1, as follows:

Dε
H (ρ1‖ρ2) � − log Qε(ρ1‖ρ2),

Qε(ρ1‖ρ2) � min
0 � E � 1n

Tr[ρ1E] � 1 − ε

Tr[ρ2E]. (1)

As noted in Ref. [17], the computation of Qε(ρ1‖ρ2) can be
solved efficiently by semidefinite linear programming (SDP).
In fact, in what follows [see Eqs. (27) and (28 in Sec. IV]

FIG. 2. Numerical example of the quantum testing region for two
random four-dimensional density matrices. Notice that the curve is
only roughly approximated as the sampled measurements are not
enough to determine it neatly. Quantum Lorenz curves are efficiently
obtained by semidefinite linear programming, e.g., using Eq. (2) in
the main text.

we show that, using the strong duality relation of SDP, it is
possible to write Qε(ρ1‖ρ2), for any fixed ε, as the maximum
of a simple function of one real variable, namely, Qε(ρ1‖ρ2) =
maxr�0 fε(r), where

fε(r) � (1 − ε)r − Tr(rρ1 − ρ2)+
= 1

2 [1 + (1 − 2ε)r − ‖rρ1 − ρ2‖1]. (2)

This observation will play an important role in what follows,
by considerably simplifying our analysis.

The above definition of relative Lorenz curve generalizes
the classical Lorenz curve to the quantum case. In particular, if
ρ1 and ρ2 commute, they can be simultaneously diagonalized,
and the testing region in this case becomes the collection of
points

Tcl( �p1, �p2) � {(�t · �p1,�t · �p2) : �t ∈ Rn
+,�t � (1,1, . . . ,1)T },

where �p1 and �p2 are the diagonals of ρ1 and ρ2 written in
a vector form. In this case, Blackwell proved a very strong
relation [19,20]: given two pairs of distributions ( �p1, �p2)
and (�q1,�q2), the inclusion Tcl(�q1,�q2) ⊆ Tcl( �p1, �p2) holds if
and only if there exists a column stochastic matrix M

such that �q1 = M �p1 and �q2 = M �p2. Known results about
classical (thermo) majorization are therefore special cases of
Blackwell’s theorem, even though Blackwell’s work actually
predates some of them (see the discussion in Refs. [10,21]).

In the rest of the paper we explore the extent to which
statements similar to Blackwell’s theorem can be proved in
the quantum case. However, our interest here does not lie
as much in the general case, for which we know that many
classical results cease to hold [21–26], but rather in restricted

012110-2



QUANTUM RELATIVE LORENZ CURVES PHYSICAL REVIEW A 95, 012110 (2017)

scenarios of practical relevance, especially for the growing
field of quantum resource theories.

III. HILBERT α DIVERGENCES

In analogy with the notation used for majorization, we write

(ρ1,ρ2) 	 (ρ ′
1,ρ

′
2)

and say that (ρ1,ρ2) relatively majorizes (ρ ′
1,ρ

′
2), whenever the

quantum Lorenz curve of ρ1 relative to ρ2 lies everywhere
above the quantum Lorenz curve of ρ ′

1 relative to ρ ′
2, that is,

T (ρ1,ρ2) ⊇ T (ρ ′
1,ρ

′
2).

As a tool to characterize quantum relative majorization, we
introduce here a family of divergences as follows: given two
density matrices ρ and σ on Cn, we define, for all α � 1, the
following quantity:

supα(ρ/σ ) � sup
α−11n�E�1n

Tr[Eρ]

Tr[Eσ ]
, (3)

and the corresponding divergence:

Hα(ρ‖σ ) � α

α − 1
log2 supα(ρ/σ ). (4)

The notation used in Eq. (3) is adapted from Refs. [27–29]:
there the quantity

sup(ρ/σ ) � inf{λ : λσ − ρ � 0}
= lim

α→∞ supα(ρ/σ )

is used to define the Hilbert projective metric

h(ρ,σ ) � ln[sup(ρ/σ ) sup(σ/ρ)].

We note that, in Ref. [29], the quantity inf(ρ/σ ) is also
introduced as sup{λ : ρ − λσ � 0}: in our notation it coincides
with inf0�E�1n

{Tr[Eρ]/ Tr[Eσ ]} = 1/ sup(σ/ρ). Due to the
relation with the Hilbert’s metric, we refer to the divergences
in Eq. (4) as Hilbert α divergences. Their main properties are
summarized in the following theorem:

Theorem 1. Let ρ and σ be two density matrices on Cn.
Then

(i) for all α � 1, Hα(ρ‖σ ) � 0, with equality if and only if
ρ = σ ;

(ii) for all α � 1, the data-processing inequality holds: for
any (not necessarily completely) positive trace-preserving map
�, Hα[�(ρ)‖�(σ )] � Hα(ρ‖σ );

(iii) H∞(ρ‖σ ) � limα→∞ Hα(ρ‖σ )=Dmax(ρ‖σ ), namely,
the max-relative entropy of Ref. [30];

(iv) H1(ρ‖σ ) � limα→1 Hα(ρ‖σ ) = 1
2 ln(2)‖ρ − σ‖1.

Remark 1. Hα is thus a family of divergences connecting
the trace distance (when α→1) with Dmax (when α→∞). In
passing by, we also notice that, while in point (ii) above the
data-processing inequality is stated to hold for any positive
trace-preserving map, Hilbert α divergences are in fact mono-
tonically decreasing for an even larger set of transformations,
called 2-statistical morphisms: while this point is outside the
scope of the present work, we refer the interested reader to
Refs. [23–25,31].

Proof. Properties (ii) and (iii) are direct consequences of
the definition of supα(ρ/σ ).

In order to prove property (iv), we start by taking α > 1
and defining the following two quantities: ε � α − 1 and δε �
sup1+ε(ρ/σ ) − 1. With these notations, from the definition of
supα(ρ/σ ) we obtain

δε � Tr[Eρ]

Tr[Eσ ]
− 1 = Tr[E(ρ − σ )]

Tr[Eσ ]
, (5)

for all 1
1+ε

1 � E � 1. Introducing the operator

	 � 1

ε
[(1 + ε)E − 1], (6)

we get that Eq. (5) is equivalent to

δε � ε Tr[	(ρ − σ )]

1 + ε Tr[	σ ]
, (7)

for all 0 � 	 � 1. Hence, limε→0 δε = 0. We therefore have

lim
ε→0

H1+ε(ρ‖σ ) = 1

ln(2)
lim
ε→0

1 + ε

ε
ln(1 + δε)

= 1

ln(2)
lim
ε→0

1

ε
δε

� 1

ln(2)
lim
ε→0

1

ε

ε Tr[	(ρ − σ )]

1 + ε Tr[	σ ]

= 1

ln(2)
Tr[	(ρ − σ )], (8)

for all 0 � 	 � 1. We therefore conclude that

H1(ρ‖σ ) � 1

ln(2)
Tr[(ρ − σ )+] = 1

2 ln(2)
‖ρ − σ‖1, (9)

where we chose 	 to be the projection to the positive part of
ρ − σ . To see that H1(ρ‖σ ) = 1

2 ln 2‖ρ − σ‖1 note that, in fact,
by definition

δε = max
[1/(1+ε)]1�E�1

Tr[E(ρ − σ )]

Tr[Eσ ]

= max
0�	�1

ε Tr[	(ρ − σ )]

1 + ε Tr[	σ ]

= ε max
0�	�1

Tr[	(ρ − σ )] + O(ε2).

Hence, in the limit ε → 0 we get limε→0
1
ε
δε = Tr[(ρ −

σ )+] = 1
2‖ρ − σ‖1.

Finally, property (i) is proved as follows. Since
supα(ρ‖σ ) � 1, we always have Hα(ρ‖σ ) � 0. For α > 1 if
Hα(ρ‖σ ) = 0, then supα(ρ‖σ ) = 1. Hence, Tr[Eρ] � Tr[Eσ ]
for all α−11 � E � 1. Introducing

	 � α

α − 1

(
E − 1

α
1

)
,

we get Tr[	ρ] � Tr[	σ ], namely, Tr[	 (ρ − σ )] � 0, for all
0 � 	 � 1. We therefore must have ρ = σ . The case α = 1
follows from property (iv). �

IV. RELATIVE MAJORIZATION AS SETS
OF INEQUALITIES

We are now in a position to provide a set of alternative
conditions, reformulating the relative majorization ordering
(ρ1,ρ2) 	 (ρ ′

1,ρ
′
2) as sets of inequalities.
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Theorem 2. Consider two pairs of density matrices (ρ1,ρ2)
on Cn and (ρ ′

1,ρ
′
2) on Cm. The following are equivalent:

(i) (ρ1,ρ2) 	 (ρ ′
1,ρ

′
2);

(ii) for all t � 0, ‖ρ1 − tρ2‖1 � ‖ρ ′
1 − tρ ′

2‖1;
(iii) for all α � 1,

Hα(ρ1‖ρ2) � Hα(ρ ′
1‖ρ ′

2),

Hα(ρ2‖ρ1) � Hα(ρ ′
2‖ρ ′

1);

(iv) for all 0 � ε � 1,Dε
H (ρ1‖ρ2) � Dε

H (ρ ′
1‖ρ ′

2).
We split the proof into several lemmas.
Lemma 1. Given two pairs of density operators (ρ1,ρ2)

and (ρ ′
1,ρ

′
2) on Cn and Cm, respectively, the following are

equivalent:
(i) (ρ1,ρ2) 	 (ρ ′

1,ρ
′
2);

(ii) T (ρ1,ρ2) ⊇ T (ρ ′
1,ρ

′
2);

(iii) ‖t1ρ1 + t2ρ2‖1 � ‖t1ρ ′
1 + t2ρ

′
2‖1 for all t1,t2 ∈ R;

(iv) ‖ρ1 − tρ2‖1 � ‖ρ ′
1 − tρ ′

2‖1, for all t � 0.
Proof. The first equivalence holds by definition. Denoting

by (p,p̄) and (q,q̄) the generic element of T (ρ1,ρ2) and
T (ρ ′

1,ρ
′
2), respectively, the separation theorem for convex sets,

applied to T (ρ1,ρ2) and T (ρ ′
1,ρ

′
2), states that T (ρ1,ρ2) ⊇

T (ρ ′
1,ρ

′
2) if and only if, for any v = (a,b) ∈ R2,

max
(p,p̄)∈T (ρ1,ρ2)

[ap + bp̄] � max
(q,q̄)∈T (ρ ′

1,ρ
′
2)

[aq + bq̄]. (10)

The next step is to show that

max
(p,p̄)∈T (ρ1,ρ2)

[ap + bp̄] = a + b + ‖aρ1 − bρ2‖1

2
, (11)

and, analogously, for (ρ ′
1,ρ

′
2). This is done by the following

simple passages:

max
(p,p̄)∈T (ρ1,ρ2)

[ap + bp̄] = max
0�E�1

{a Tr[ρ1E] + b Tr[ρ2E]}

= max
0�E�1

Tr[(aρ1 + bρ2)E]

= Tr (aρ1 + bρ2)+, (12)

where the last expression denotes the positive part of the self-
adjoint operator aρ1 + bρ2. Then, since 2 Tr(A)+ = ‖A‖1 +
Tr[A] for any self-adjoint operator, we have that

2 max
(p,p̄)∈T (ρ1,ρ2)

[ap + bp̄] = a + b + ‖aρ1 + bρ2‖1. (13)

This proves that Eq. (10) is satisfied if and only if
‖aρ1 + bρ2‖1 � ‖aρ ′

1 + bρ ′
2‖1, for all a,b ∈ R.

We are left to prove that (iii) is equivalent to (iv). However,
since (iv) is a special case of (iii), we only need to prove that
(iv) implies (iii). To this end, we notice that, whenever t1,t2 � 0
or t1,t2 � 0, ‖t1ρ1 + t2ρ2‖1 = ‖t1ρ ′

1 − t2ρ
′
2‖1 always, simply

due to the positivity of ρ1,ρ2,ρ
′
1,ρ

′
2. We can hence consider

only the cases t1 > 0 > t2 or t2 > 0 > t1. However, since
‖X‖1 = ‖−X‖1, for any matrix X, we can further restrict the
parameters t1 and t2 to the case t2 < 0 < t1. The statement is
finally obtained by rescaling both t1 and t2 by the (positive)
factor 1/t1. �

Lemma 1 above shows that statements (i) and (ii) of
Theorem 2 are indeed equivalent. We now move on to proving
the equivalence of the point (iii). We begin with the following
lemma.

Lemma 2. For any choice of density operators ρ and σ ,

supα(ρ/σ ) = inf

{
λ � 1 :

‖λσ − ρ‖1

λ − 1
� α + 1

α − 1

}
.

Proof. Note first that

supα(ρ/σ )

� sup
α−11�E�1

{Tr[Eρ]/Tr[Eσ ]}

= inf{λ : λ � Tr[Eρ]/Tr[Eσ ] for all α−11 � E � 1}
= inf{λ : Tr[E(λσ − ρ)] � 0 for all α−11 � E � 1}
= inf{λ ∈ R : α−1 Tr[(λσ − ρ)+] � Tr[(λσ − ρ)−]},

where, in the last equality, we used the decomposition
A = A+ − A− for Hermitian operators and the choice E =
α−1
+ + 
−, being 
± the projectors onto the positive
and negative parts of (λσ − ρ), respectively. Indeed, this
is the choice for the operator E that poses the toughest
constraints compatible with the fixed value of the parameter
α. (Equivalently, if Tr[E(λσ − ρ)] � 0 for such a choice of
E, then it is positive for any α−11 � E � 1.)

Then, using the relations

λ − 1 = Tr[(λσ − ρ)+] − Tr[(λσ − ρ)−]

and

‖λσ − ρ‖1 = Tr[(λσ − ρ)+] + Tr[(λσ − ρ)−]

gives

supα(ρ‖σ ) = inf

{
λ ∈ R : Tr[(λσ − ρ)−] � λ − 1

α − 1

}
.

Then, since Tr[(λσ − ρ)−] � λ−1
α−1 if and only if ‖λσ − ρ‖1 �

λ−1
α−1 + Tr[(λσ − ρ)+] = λ−1

α−1 + λ−1+‖λσ−ρ‖1
2 , after an easy

manipulation we obtain

supα(ρ/σ ) = inf

{
λ ∈ R :

‖λσ − ρ‖1

λ − 1
� α + 1

α − 1

}
.

The statement is finally recovered by noticing that no loss of
generality comes from restricting λ to values greater than or
equal to 1. �

Lemma 3. For any choice of density operators ρ and σ , the
function

f (λ) = ‖λσ − ρ‖1

λ − 1

is monotonically nonincreasing in the domain λ � 1 with
f (1) = ∞ and f (∞) = 1.

Remark 2. In particular, Lemma 2 and Lemma 3 above
imply that, for any pair of density operators ρ and σ ,

‖supα(ρ/σ )σ − ρ‖1

supα(ρ/σ ) − 1
= α + 1

α − 1
.

Proof. Set t = 1/(λ − 1) and define g(t) =
‖(1 + t)σ − tρ‖1. Hence, g(t) = f (λ), and it is enough
to show that g(t) is monotonically nondecreasing in its
domain t ∈ [0,∞). First note that for any 0 < p < 1 and
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t1,t2 ∈ R+ we have

g[pt1 + (1 − p)t2]

= ‖p(1 + t1)σ − pt1ρ + (1 − p)(1 + t2)σ − (1 − p)t2ρ‖1

� ‖p(1 + t1)σ − pt1ρ‖1 + ‖(1 − p)(1 + t2)

− (1 − p)t2ρ‖1

= pg(t1) + (1 − p)g(t2).

Hence g(t) is a convex function. Moreover, note that g(0) =
1 � g(t) for all t � 0. These two properties of g(t) together
imply that it is monotonically nondecreasing in t . �

Lemma 4. Consider two pairs of states (ρ,σ ) and (ρ ′,σ ′).
Then, the following are equivalent:

(i) for all α � 1, supα(ρ/σ ) � supα(ρ ′/σ ′) and
infα(ρ/σ ) � infα(ρ ′/σ ′);

(ii) ‖tσ − ρ‖1 � ‖tσ ′ − ρ ′‖1 for all t � 0.
Proof. We only need to show that the condition

supα(ρ/σ ) � supα(ρ ′/σ ′) for all α � 1 is equivalent to
‖tσ − ρ‖1 � ‖tσ ′ − ρ ′‖1 for all t � 1. Then, if this holds, the
remaining statement, namely, that infα(ρ/σ ) � infα(ρ ′/σ ′)
for all α � 1 is equivalent to ‖tσ − ρ‖1 � ‖tσ ′ − ρ ′‖1 for
all t ∈ [0,1], simply follows from the definitions.

Set Mα ≡ supα(ρ/σ ),M ′
α ≡ supα(ρ ′/σ ′), and recall the

definition of f in Lemma 3. Then, as noticed in Remark 2
above, it follows that

f (Mα) = ‖Mασ − ρ‖1

Mα − 1
= α + 1

α − 1
= ‖M ′

ασ ′ − ρ ′‖1

M ′
α − 1

. (14)

Since f is monotonically nonincreasing, we get that Mα � M ′
α

implies that

‖M ′
ασ ′ − ρ ′‖1

M ′
α − 1

� ‖Mασ ′ − ρ ′‖1

Mα − 1
. (15)

Combining the above two equations gives

‖Mασ − ρ‖1 � ‖Mασ ′ − ρ ′‖1 ∀α � 1. (16)

We now make the simple observation that, by definition,
the function supα(ρ/σ ) = Mα is continuous and mono-
tonically nondecreasing in α, with supα=1(ρ/σ ) = 1 and
supα→∞(ρ/σ ) = sup(ρ/σ ). Hence,

‖tσ − ρ‖1 � ‖tσ ′ − ρ ′‖1, 1 � ∀t � sup(ρ/σ ), (17)

and the above is enough to conclude that the same ordering
holds in fact for all t � 1.

Conversely, suppose the inequality above holds for all
t � 1. This implies that, if

‖λσ − ρ‖1

λ − 1
� α + 1

α − 1
, (18)

then also

‖λσ ′ − ρ ′‖1

λ − 1
� α + 1

α − 1
. (19)

But from Lemma 2 this implies that supα(ρ ′/σ ′) �
supα(ρ/σ ). �

Lemma 4 above hence proves the equivalence of point
(ii) and point (iii) of Theorem 2, because supα(ρ1/ρ2) �
supα(ρ ′

1/ρ
′
2) if and only if Hα(ρ1‖ρ2) � Hα(ρ ′

1‖ρ ′
2), and

infα(ρ1/ρ2) � infα(ρ ′
1/ρ

′
2) if and only if Hα(ρ2‖ρ1) �

Hα(ρ ′
2‖ρ ′

1).
The proof of Theorem 2 is complete if we prove the

equivalence of the remaining point (iv). Also in this case,
rather than proving the statement for Dε

H , we will prove it for
the corresponding Qε , related with Dε

H as given in Eq. (1)
of the main text. We recall the definition: given two density
operators ρ1 and ρ2 on Cn, for any ε ∈ [0,1],

Qε(ρ1‖ρ2) = min
0 � A � 1n

Tr[ρ1A] � 1 − ε

Tr[ρ2A]. (20)

For later convenience, we introduce the following notation:
Hn to denote the set of n-by-n Hermitian matrices on Cn, and
Mn,+ to denote the set of n-by-n complex positive semidefinite
matrices.

Lemma 5. Given two pairs of density operators (ρ1,ρ2)
and (ρ ′

1,ρ
′
2) on Cn and Cm, respectively, the following are

equivalent:
(i) Qε(ρ1‖ρ2) � Qε(ρ ′

1‖ρ ′
2), for all ε ∈ [0,1];

(ii) ‖ρ2 − rρ1‖1 � ‖ρ ′
2 − rρ ′

1‖1, for all r � 0.
Proof. Consider the following setting of linear program-

ming. Let V1 and V2 be two (inner product) vector spaces
with two cones K1 ⊂ V1 and K2 ⊂ V2. Consider two vectors
v1 ∈ V1 and v2 ∈ V2, and a linear map � : V1 → V2. Given a
problem in its primal form:

max
x ∈ K1

v2 − �(x) ∈ K2

〈v1,x〉1, (21)

the dual form involves the adjoint map �∗ : V2 → V1:

min
y ∈ K2

�∗(y) − v1 ∈ K1

〈v2,y〉2, (22)

where �∗ is defined by the relation 〈y,�(x)〉 = 〈�∗(y),x〉, for
all x ∈ K1 and all y ∈ K2.

In our case, denote

V1 � R ⊕ Hn = {(r,A)|r ∈ R; A ∈ Hn}
with inner product

〈(r,A),(t,B)〉1 � rt + Tr[AB].

Further, define K1 = R+ ⊕ Mn,+ to be the positive cone in
V1. Similarly, set V2 = Hn and K2 = Mn,+. The linear map
� : V1 → V2 is given by

�(r,A) = rρ1 − A; (23)

hence, the corresponding dual map �∗ : V2 → V1 is given by

�∗(B) = (Tr[ρ1B],−B). (24)

Finally, set v1 = (1 − ε,−1n) and v2 = ρ2.
Since, for these choices, y ∈ K2 if and only if y � 0 and

�∗(y) − v1 ∈ K1 if and only if Tr[ρy] � 1 − ε and y � 1n,
the dual form (22) becomes exactly the right-hand side of
Eq. (20), namely,

min
y ∈ K2

�∗(y) − v1 ∈ K1

〈v2,y〉2 = Qε(ρ1‖ρ2). (25)

For the primal form, since x = (r,A) ∈ K1 if and only if r � 0
and A � 0, and v2 − �(x) ∈ K1 if and only if ρ2−rρ1+A�0,
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we obtain

max
x ∈ K1

v2 − �(x) ∈ K2

〈v1,x〉1 = max
A � rρ1 − ρ2

r,A � 0

{(1 − ε)r − Tr[A]}. (26)

The right-hand side of the above equation can be further
simplified as follows. We first fix r and optimize over A.
Since the A � 0 with minimum trace such that A � rρ1 − ρ2

is exactly A = (rρ1 − ρ2)+, we conclude that

max
x ∈ K1

v2 − �(x) ∈ K2

〈v1,x〉1 = max
r�0

{(1 − ε)r − Tr(rρ1 − ρ2)+},

that is,

Qε(ρ1‖ρ2) = max
r�0

fε(r), (27)

where

fε(r) � (1 − ε)r − Tr(rρ1 − ρ2)+. (28)

Note that

Tr(rρ1 − ρ2)+ = ‖rρ1 − ρ2‖1 + r − 1

2
,

that is,

fε(r) = 1 + (1 − 2ε)r − ‖rρ1 − ρ2‖1

2
.

Therefore, denoting f ′
ε (r) = 2−1{1 + (1 − 2ε)r − ‖rρ ′

1 −
ρ ′

2‖1}, we have that

‖rρ1 − ρ2‖1 � ‖rρ ′
1 − ρ ′

2‖1 ⇒ fε(r) � f ′
ε (r),

independently of r and ε. We thus have proved that (ii)
implies (i).

To show that (i) implies (ii), suppose Qε(ρ1‖ρ2) �
Qε(ρ ′

1‖ρ ′
2) for all ε ∈ [0,1]. Let rε � 0 be the minimum value

of r achieving Qε(ρ ′
1‖ρ ′

2), in formula

rε � min{r � 0 : f ′
ε (r) = Qε(ρ ′

1‖ρ ′
2)}. (29)

In all such points rε , definition (27) together with the
assumption (i) guarantee that ‖rερ1 − ρ2‖1 � ‖rερ

′
1 − ρ ′

2‖1.
This fact can be simply shown by the following chain of
inequalities:

1 + (1 − 2ε)rε − ‖rερ
′
1 − ρ ′

2‖1

2

= Qε(ρ ′
1‖ρ ′

2) � Qε(ρ1‖ρ2)

= max
r

1 + (1 − 2ε)r − ‖rρ1 − ρ2‖1

2

� 1 + (1 − 2ε)rε − ‖rερ1 − ρ2‖1

2
.

The crucial observation now is that the points rε , representing
the solutions of (29) for varying ε ∈ [0,1], coincide with the
points where the quantity ‖rρ ′

1 − ρ ′
2‖1, thought of as a function

of r , changes its slope (see Fig. 3 below). For example, for
ε = 0, we have to consider the function

f ′
0(r) = 1 + r − ‖rρ ′

1 − ρ ′
2‖1

2
,

and this achieves its maximum value 1 for r � r∗ ≡ r0 =
sup(ρ ′

2/ρ
′
1). But then, if we know that the curve ‖rρ1 − ρ2‖1

FIG. 3. Typical behavior of ‖rρ1 − ρ2‖1, for two random density
matrices ρ1 and ρ2 on C3, as a function of r ∈ R (continuous
line). For r � r∗ ≡ inf(ρ2/ρ1) = sup{λ : λρ1 − ρ2 � 0}, the curve
becomes equal to 1 − r (dashed line). For r � r∗ ≡ sup(ρ2/ρ1) =
inf{λ : λρ1 − ρ2 � 0}, the curve becomes equal to r − 1 (dotted line).

is not below ‖rρ ′
1 − ρ ′

2‖1 in all the points where the latter
changes its slope, this is sufficient to conclude that

‖rρ ′
1 − ρ ′

2‖1 � ‖rρ1 − ρ2‖1 ∀r � 0.

This completes the proof of the lemma. �

The classical case

As a “consistency check” we separately consider the
classical case here. Suppose ρ and σ are both diagonal
with elements p1, . . . ,pn and q1, . . . ,qn, respectively. Denote
rj ≡ qj/pj if pj > 0 and otherwise rj = 0. Without loss of
generality suppose r1 � r2 � · · · � rn. We therefore get

rpj − qj > 0 ⇐⇒ r > rj . (30)

Hence, for r ∈ (rk,rk+1],

f (r) = (1 − ε)r − Tr(rρ − σ )+

= (1 − ε)r − r

k∑
j=1

pj +
k∑

j=1

qj . (31)

Due to the linearity in r of the expression above we conclude
that in the classical case

Qε(ρ‖σ ) = max
k∈{1,...,n}

f (rk)

= max
k∈{1,...,n}

⎧⎨
⎩

⎛
⎝1 − ε −

k∑
j=1

pj

⎞
⎠rk +

k∑
j=1

qj

⎫⎬
⎭,

thus reconstructing the Blackwell criterion for pairs of prob-
ability distributions (including majorization and thermoma-
jorization).

V. APPLICATIONS

In this section, we study how the conditions in Theorem 2
are logically related to the existence of a suitable transforma-
tion mapping (ρ1,ρ2) into (ρ ′

1,ρ
′
2).
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A. Coherent energy transitions with Gibbs-preserving
operations

We consider here the resource theory of athermality [4,5].
In this theory, quantum systems that are not in thermal
equilibrium with their environment are considered resources
(e.g., work can be extracted from such systems). Hence,
free systems are those prepared in the Gibbs state, i.e.,
γ = Z−1 ∑d

x=1 e−βEx |x〉〈x|, and permitted operations must
preserve γ . Consider now two possibly noncommuting quan-
tum states ρ and σ both with the same two-dimensional
support spanned by the same two energy eigenstates, say
|x〉 and |y〉. Such states form the building blocks of quan-
tum thermodynamics as they contain the smallest units of
athermality [5]. Here we find both necessary and sufficient
conditions under which a Gibbs-preserving transition between
ρ and σ is possible. We call such transitions coherent energy
transitions, since not only the transitions |x〉 → |y〉 and
|y〉 → |x〉 are considered, but also transitions between any
linear superpositions of such energy eigenstates.

The main result about coherent energy transitions is the
following:

Theorem 3. With γ, ρ, and σ as above, assuming that γ >

0 (i.e., nonzero temperature), the following are equivalent:
(i) ρ can be transformed into σ by a γ -preserving

completely positive trace-preserving (CPTP) operation (i.e.,
Gibbs-preserving operation);

(ii) (ρ,γ ) 	 (σ,γ );
(iii) it holds that

Dmax(ρ‖γ ) � Dmax(σ‖γ ),

Dmax(γ ‖ρ) � Dmax(γ ‖σ ).
(32)

In other words, in this case, we do not need to check the
validity of point (iii) of Theorem 2 for all values of α, but only
in the limit α → ∞. Moreover, in this case, we know that a
CPTP map between the two pairs of states exists. In the case
of zero temperature, i.e., if γ � 0, a third condition has to
be added to the above list, namely, Dmin(γ ‖ρ) � Dmin(γ ‖σ ),
where Dmin(γ ‖ρ) = − log Tr[
γ ρ] denotes the min-relative
entropy [30] and 
γ is the projector onto the support of
γ . Finally, we did not include the condition Dmin(ρ‖γ ) �
Dmin(σ‖γ ) since it is trivial, unless σ is rank one (i.e., a pure
state). However, as shown below in the proof, it turns out that
in this case the other conditions imply this one.

Theorem 3 generalizes an earlier work given in [32] to
the generic case in which the Gibbs state is not pure. It
demonstrates that three athermality monotones (given in terms
of the min/max relative entropies) provide both necessary
and sufficient conditions for the existence of a Gibbs pre-
serving map connecting two nonthermal states with the same
two-dimensional support. Since the set of Gibbs-preserving
operations is strictly larger than the set of thermal operations
[5], these three monotones, in general, will not be sufficient to
determine convertibility under thermal operations [33].

The Gibbs state is given by

γ = 1

Z

d∑
x=1

exp(−βEx)|x〉〈x|, (33)

where β = 1/kT is the inverse temperature, d is the dimension
of the quantum system, {|x〉}dx=1 is the complete set of eigen-
states of the Hamiltonian, Ex the eigenvalues of the Hamil-
tonian, and Z is the partition function

∑d
x=1 exp(−βEx).

Consider now two quantum states ρ and σ both with the same
two-dimensional support given by, e.g.,

supp(ρ) = supp(σ ) = span{|x〉}x=1,2, (34)

but it does not matter which two energy eigenstates are chosen
(with the condition E2 � E1). Denote further by γ (2) the Gibbs
state projected onto this two-dimensional subspace:

γ (2) ≡ p|1〉〈1| + (1 − p)|2〉〈2|, (35)

where

p ≡ exp(−βE1)

exp(−βE1) + exp(−βE2)
= 1

1 + exp(−β	E)
, (36)

with 	E = E2 − E1 � 0 so that p � 1/2. We start with the
following lemma:

Lemma 6. Let ρ and σ be as in (34), and let γ be as in (33)
with γ (2) as in (35). Then, there exists a CPTP map � such that
�(ρ) = σ and �(γ ) = γ if and only if there exists a CPTP
map E such that E(ρ) = σ and E(γ (2)) = γ (2).

Proof. Suppose there exists � such that �(ρ) = σ and
�(γ ) = γ . Then, for all t > 0 we have

‖σ − tγ ‖1 = ‖�(ρ) − �(γ )‖1 � ‖ρ − tγ ‖1, (37)

since the trace norm is contractive. Next, denoting by
P the projection onto span{|1〉,|2〉} and r ≡ exp(−βE1) +
exp(−βE2), we have

‖ρ − tγ ‖1 = ‖PρP − tP γP ‖1 + t‖(I − P )γ (I − P )‖1

=
∥∥∥∥ρ − t

r

Z γ (2)

∥∥∥∥
1

+ t

∥∥∥∥γ − r

Z γ (2)

∥∥∥∥
1

,

and, analogously,

‖σ − tγ ‖1 =
∥∥∥∥σ − t

r

Z γ (2)

∥∥∥∥
1

+ t

∥∥∥∥γ − r

Z γ (2)

∥∥∥∥
1

.

Therefore, since r/Z > 0, we can introduce the new parameter
t ′ � t r

Z so that the inequality in Eq. (37) can be rewritten as

‖σ − t ′γ (2)‖1 � ‖ρ − t ′γ (2)‖1 ∀t ′ > 0. (38)

From the Alberti-Uhlmann result on qubits [34] there exists E
as in the lemma.

Conversely, suppose there exists a CPTP map E such that
E(ρ) = σ and E(γ (2)) = γ (2). Then, define � as follows. Let
P = |1〉〈1| + |2〉〈2| be the projector onto the support of ρ and
σ , and define

�(·) := E(P (·)P ) + (Id − P )(·)(Id − P ). (39)

By construction, � is CPTP since E is CPTP, and it is easy
to verify that �(ρ) = σ and �(γ ) = γ . This completes the
proof. �

Lemma 7. Let ρ and σ be two qubit density matrices and let
γ (2) be the Gibbs state given in (35). Then, ρ can be converted
to σ by Gibbs-preserving operations if and only if the following
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three inequalities simultaneously hold:

Dmax(ρ‖γ (2)) � Dmax(σ‖γ (2)),

Dmax(γ (2)‖ρ) � Dmax(γ (2)‖σ ),

Dmin(γ (2)‖ρ) � Dmin(γ (2)‖σ ).

(40)

Before proceeding, we notice that, while in Eq. (40) above
the projected Gibbs state γ (2) appears, in Eq. (32) of Theorem 3
we use the original γ . However, since PρP = ρ, PσP = σ ,
and PγP = cγ (2) (for some c � 0), and since both Dmax and
Dmin in this case only depend on what there is on the support
of P , the two sets of conditions are clearly equivalent.

Denote by

m(ρ,γ (2)) � inf(ρ/γ (2)) = sup{t ∈ R : tγ (2) − ρ � 0},
M(ρ,γ (2)) � sup(ρ/γ (2)) = inf{t ∈ R : tγ (2) − ρ � 0}.

(41)

Note that m(ρ,γ (2)) � 1 � M(ρ,γ (2)). Since we consider here
the qubit case, it follows that m(ρ,γ (2)) and M(ρ,γ (2)) are
the roots to the quadratic polynomial det (ρ − tγ (2)). A
straightforward calculation gives [assuming det(γ (2)) > 0]

det(ρ − tγ (2)) = det(γ (2))[t − m(ρ,γ (2))][t − M(ρ,γ (2))]

(42)

with m and M given explicitly below after we introduce a few
notations.

Without loss of generality we can assume that the off-
diagonal terms of ρ are non-negative real numbers since γ (2) is
invariant under conjugation by any 2 × 2 unitary matrix which
is diagonal on the energy eigenbasis (i.e., commutes with γ (2)).
Hence, we can write

ρ =
(

a ε
√

a(1 − a)

ε
√

a(1 − a) 1 − a

)
(43)

with ε,a ∈ [0,1]. Taking γ (2) as in (35) we get the following
explicit expressions for m(ρ,γ (2)) and M(ρ,γ (2)) assuming
det(γ (2)) > 0 (i.e., 0 < p < 1),

m(ρ,γ (2)) = 1
2 [r0 + r1 −

√
(r0 − r1)2 + 4r0r1ε2],

M(ρ,γ (2)) = 1
2 [r0 + r1 +

√
(r0 − r1)2 + 4r0r1ε2], (44)

where

r0 ≡ a

p
and r1 ≡ 1 − a

1 − p
. (45)

By definition, both m and M are monotonic in the sense that

M(�(ρ),�(γ (2))) � M(ρ,γ (2))

m(�(ρ),�(γ (2))) � m(ρ,γ (2)). (46)

Note that m(ρ,γ (2)) = 1/M(γ (2),ρ) and M is related to the
max relative entropy (in what follows, log is a shortcut for
log2):

Dmax(ρ‖γ (2)) = log2 M(ρ,γ (2)),

Dmax(γ (2)‖ρ) = log2 M(γ (2),ρ) = − log m(ρ,γ (2)). (47)

A dual definition is the min-relative entropy defined by

Dmin(γ (2)‖ρ) = − log Tr[ρ
γ (2) ], (48)

where 
γ (2) is the projection to the support of γ (2). Clearly,
if det(γ (2)) > 0 then Dmin(γ (2),ρ) = 0. Summarizing, we
showed that the conditions in Eq. (40) are equivalent to
(remember the assumption here γ (2) > 0; the case of rank-one
γ (2) will be considered separately below)

M(ρ,γ (2)) � M(σ,γ (2)),

m(ρ,γ (2)) � m(σ,γ (2)).

To see how the above conditions can be used to prove
Theorem 3, we need the following lemma from Ref. [34].

Lemma 8. (Alberti-Uhlmann) Let ρ, σ, η, and τ be qubit
density matrices. Then, there exists a CPTP map � such that
σ = �(ρ) and η = �(τ ) if and only if

M(ρ,τ ) � M(σ,η) � m(σ,η) � m(ρ,τ ), (49)

and

det(σ − tη) � det(ρ − tτ ) ∀ m(σ,η) � t � M(σ,η).

(50)

We now apply the above lemma above to the case
τ = η = γ (2).

1. First case: Nonzero temperature (γ (2) > 0)

We first assume det(γ (2)) > 0. The necessity of (40) follows
from the fact that the min and max relative entropies both
satisfy the data processing inequality. We therefore need to
show that they are sufficient. With the choice τ = η = γ (2) the
conditions (49) are equivalent to the conditions (40) [recall the
last condition of (40) is trivial since we assume for now that
γ (2) is full rank]. It is therefore left to show that the conditions
(50) hold automatically if Eqs. (40) hold. Indeed, recall that
for det(γ (2)) > 0 we have

det(ρ − tγ (2)) = det(γ (2))[t − m(ρ,γ (2))][t − M(ρ,γ (2))]

(51)

and

det(σ − tγ (2)) = det(γ (2))[t − m(σ,γ (2))][t − M(σ,γ (2))].

(52)

Hence, the inequality det(σ − tγ (2)) � det(ρ − tγ (2)) is
equivalent to

t[M(ρ,γ (2)) + m(ρ,γ (2)) − M(σ,γ (2)) − m(σ,γ (2))]

+m(σ,γ (2))M(σ,γ (2)) − m(ρ,γ (2))M(ρ,γ (2)) � 0. (53)

We therefore need to show that the above inequality holds
for all m(σ,γ (2)) � t � M(σ,γ (2)). It is therefore sufficient to
show that it holds at the two extreme points of the interval.
Indeed, for t = m(σ,γ (2)) after some algebra the expression in
(53) becomes

[M(ρ,γ (2)) − m(σ,γ (2))][m(σ,γ (2)) − m(ρ,γ (2))],

which is non-negative due to (40). Similarly, substituting t =
M(σ,γ (2)) in (53) gives

[M(σ,γ (2)) − m(ρ,γ (2))][M(ρ,γ (2)) − M(σ,γ (2))],

which is again non-negative due to (40). This completes the
proof of the theorem for the case det(γ (2)) > 0.
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2. Second case: Zero temperature [det(γ (2)) = 0]

In this case direct calculation gives

det(ρ − tγ (2)) = det(ρ) − t(1 − Tr[ρ
γ (2) ]) (54)

and

det(σ − tγ (2)) = det(σ ) − t(1 − Tr[σ
γ (2) ]). (55)

Note that 
γ (2) is either the projection |1〉〈1| or |2〉〈2|.
Now, assuming ρ �= σ �= γ (2) (otherwise the problem be-

comes trivial), since γ (2) is rank one we have M(ρ,γ (2)) =
M(σ,γ (2)) = ∞. On the other hand, in this case a simple
calculation gives

m(ρ,γ (2)) = det(ρ)

1 − Tr[ρ
γ (2) ]
,

m(σ,γ (2)) = det(σ )

1 − Tr[σ
γ (2) ]
,

where we used ρ �= γ (2) and σ �= γ (2), so that together
with γ (2) being rank one gives Tr[ρ
γ (2) ] < 1 and similarly
Tr[σ
γ (2) ] < 1. Hence, in this case exploring the behavior of
det(σ − tγ (2)) � det(ρ − tγ (2)) in the limit t → M(σ,γ (2)) =
∞ we must have

Tr[σ
γ (2) ] � Tr[ρ
γ (2) ],

which is equivalent to Dmin(γ (2)‖ρ) � Dmin(γ (2)‖σ ). At the
point t = m(σ,γ (2)), the inequality det(σ − tγ (2)) � det(ρ −
tγ (2)) becomes

0 � det(ρ) − m(σ,γ (2))(1 − Tr[ρ
γ (2) ])

= (1 − Tr[ρ
γ (2) ])

(
det(ρ)

1 − Tr[ρ
γ (2) ]
− m(σ,γ (2))

)

= (1 − Tr[ρ
γ (2) ])[m(ρ,γ (2)) − m(σ,γ (2))],

which is satisfied since m(ρ,γ (2)) � m(σ,γ (2)). Hence,
det(σ − tγ (2)) � det(ρ − tγ (2)) for all t with m(σ,γ (2)) � t <

∞. This completes the proof.

B. Test-and-prepare channels

The proof of Theorem 3 above relies on a lemma proved by
Alberti and Uhlmann [34], which, together with Theorem 2,
implies that, if n = m = 2 (i.e., for qubits) then (ρ1,ρ2) 	
(ρ ′

1,ρ
′
2) if and only if there exists a CPTP map � such

that �(ρi) = ρ ′
i (i = 1,2). However, explicit counterexamples

exist, showing that as soon as one leaves the qubit case, already
when n = 3 and m = 2, this is not true anymore [26]. Hence,
leaving aside the general case, we focus instead on a special
class of CPTP maps, namely, test-and-prepare channels
of the form

E(ρ) � Tr[Eρ]ξ1 + Tr[(1 − E)ρ]ξ2,

for some effect 0 � E � 1 and some density matrices ξ1 and
ξ2. Test-and-prepare channels are, in other words, measure-
and-prepare channels for which the measurement has only two
possible outcomes. Although restricted, this class seems quite
natural in the framework of quantum relative Lorenz curves,
which are defined only in terms of binary measurements (i.e.,
hypothesis tests). Indeed, a necessary and sufficient condition

for the existence of a test-and-prepare channel between two
pairs of density matrices can be expressed in terms of quantum
relative Lorenz curves as follows:

Theorem 4. Given two pairs of density matrices (ρ1,ρ2)
and (ρ ′

1,ρ
′
2) on Cn and Cm, respectively, there exists a test-

and-prepare channel E such that E(ρ1) = ρ ′
1 and E(ρ2) = ρ ′

2,
if and only if the quantum Lorenz curve of ρ1 relative to ρ2

is nowhere below the segments joining the points (0,0), (1,1)
and passing through either

(x,y) =
(

1 − m′

M ′ − m′ ,
M ′(1 − m′)
M ′ − m′

)
or

(x,y) =
(

M ′ − 1

M ′ − m′ ,
m′(M ′ − 1)

M ′ − m′

)
,

whichever is higher, where

M ′ � 2Dmax(ρ ′
1‖ρ ′

2) = sup(ρ ′
1/ρ

′
2)

and

m′ � 2−Dmax(ρ ′
2‖ρ ′

1) = inf(ρ ′
1/ρ

′
2).

Proof. Consider a test-and-prepare channel of the form

E(ρ) = Tr[Eρ]σ1 + Tr [(1 − E)ρ]σ2, (56)

where σ1,σ2 are density matrices (i.e., positivie semidefinite
matrices with trace 1) and 0 � E � 1. If E(ρj ) = ρ ′

j for j =
1,2, then

ρ ′
1 = e1σ1 + (1 − e1)σ2,

ρ ′
2 = e2σ1 + (1 − e2)σ2,

where ej ≡ Tr[Eρj ] for j = 1,2. Assuming e1 �= e2 (other-
wise, ρ ′

1 = ρ ′
2), the above equations are equivalent to

σ1 = 1

e1 − e2
[(1 − e2)ρ ′

1 − (1 − e1)ρ ′
2],

σ2 = 1

e1 − e2
[−e2ρ

′
1 + e1ρ

′
2].

Note that σ1 and σ2 have trace 1 since ρ ′
1 and ρ ′

2 have trace 1.
Without loss of generality we can assume e1 > e2. With this
choice, σ1 and σ2 are positive semidefinite if and only if

ρ ′
1 − 1 − e1

1 − e2
ρ ′

2 � 0 and ρ ′
2 − e2

e1
ρ ′

1 � 0. (57)

Note that since we assume e1 > e2 we have 1 − e2 > 0 and
e1 > 0. Denote by m′ ≡ inf(ρ ′

1/ρ
′
2) and by M ′ ≡ sup(ρ ′

1/ρ
′
2),

and note that inf(ρ ′
2/ρ

′
1) = 1/M ′. We therefore get that σ1 and

σ2 are positive semidefinite if and only if

1 − e1

1 − e2
� m′ and

e2

e1
� 1

M ′ . (58)

The above inequalities are equivalent to

Tr[E(ρ1 − m′ρ2)] � 1 − m′,
Tr[E(ρ1 − M ′ρ2)] � 0.

We therefore arrive at the following lemma:
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Lemma 9. There exists a channel E of the form (56) such
that E(ρ1) = ρ ′

1 and E(ρ2) = ρ ′
2, if and only if

W (ρ1,ρ2,ρ
′
1,ρ

′
2) � 0, (59)

where the witness W is defined as

W (ρ1,ρ2,ρ
′
1,ρ

′
2)

� m′ − 1 + max
0 � E � 1

Tr[E(ρ1 − M ′ρ2)] � 0

Tr[E(ρ1 − m′ρ2)]. (60)

The calculation of W can be simplified using the following
dual formulation of linear programming, analogously to what
we did in the proof of Lemma 5. Let V1 and V2 be two (inner
product) vector spaces with two cones K1 ⊂ V1 and K2 ⊂ V2.
Consider two vectors v1 ∈ V1 and v2 ∈ V2, and a linear map
� : V1 → V2. Then, the primal form is

max
x ∈ K1

v2 − �(x) ∈ K2

〈v1,x〉1. (61)

The dual form involves the adjoint map �∗ : V2 → V1:

min
y ∈ K2

�∗(y) − v1 ∈ K1

〈v2,y〉2. (62)

For our purposes, we take V1 = Hn the space of n × n

Hermitian matrices, and we take K1 = Hn,+ the cone of
positive semidefinite matrices in Hn. We further define the
vector space

V2 ≡ R ⊕ Hn = {(r,A) | r ∈ R; A ∈ Hn} , (63)

with inner product 〈(r,A),(t,B)〉1 := rt + Tr[AB]. Further,
define K2 = R+ ⊕ Hn,+ to be the positive cone in V2. The

linear map � : V1 → V2 is defined as follows:

�(A) = (− Tr[A(ρ1 − M ′ρ2)],A). (64)

Note that the dual map �∗ : V2 → V1 is given by

�∗(r,A) = A − r(ρ1 − M ′ρ2). (65)

Finally, set v1 = ρ1 − m′ρ2 and v2 = (0,1n). With these
choices, v2 − �(x) = (Tr [x(ρ1 − M ′ρ2)],1n − x), so that the
primal problem becomes

max
x ∈ K1

v2 − �(x) ∈ K2

〈v1,x〉1 = max
0 � E � 1n

Tr[E(ρ1 − M ′ρ2)] � 0

Tr[E(ρ1 − m′ρ2)],

(66)

where we renamed x with E. The dual problem is given by

min
y ∈ K2

�∗(y) − v1 ∈ K1

〈v2,y〉2 = min
r,F � 0

F � r(ρ1 − M ′ρ2) + (ρ1 − m′ρ2)

Tr[F ], (67)

where we took y = (r,F ). We can further simplify the above
expression. First note that, for any given r , the positive
semidefinite matrix F with the smallest trace that satisfies

F � r(ρ1 − M ′ρ2) + (ρ1 − m′ρ2)

= (1 + r)ρ1 − (rM ′ + m′)ρ2

is of course the positive part of the left-hand side:

F = [(1 + r)ρ1 − (rM ′ + m′)ρ2]+. (68)

We therefore conclude that the dual problem is equivalent to

min
r�0

Tr[(1 + r)ρ1 − (rM ′ + m′)ρ2]+ = min
r�0

1 − m′ − r(M ′ − 1) + ‖(1 + r)ρ1 − (rM ′ + m′)ρ2‖1

2
. (69)

By plugging the above equation into (60), we therefore conclude that

W (ρ1,ρ2,ρ
′
1,ρ

′
2) = m′ − 1 + 1

2 (1 − m′) + 1
2 min

r�0
[‖(1 + r)ρ1 − (rM ′ + m′)ρ2‖1 − r(M ′ − 1)]

= 1
2 (m′ − 1) + 1

2 min
r�0

[‖(1 + r)ρ1 − (rM ′ + m′)ρ2‖1 − r(M ′ − 1)],

namely,

2W (ρ1,ρ2,ρ
′
1,ρ

′
2) = −(1 − m′) + min

r�0
(‖(1 + r)ρ1 − (rM ′ + m′)ρ2‖1 − r(M ′ − 1)) . (70)

Introducing

t � rM ′ + m′

1 + r
,

and noting that t ∈ [m′,M ′) we obtain that there exists a
channel E of the form (56) such that E(ρ1) = ρ ′

1 and E(ρ2) =
ρ ′

2, if and only if

‖ρ1 − tρ2‖1 � (M ′ − t)(1 − m′) + (t − m′)(M ′ − 1)

M ′ − m′

= m′ + M ′ − 2m′M ′ + t
[
m′ + M ′ − 2)

]
M ′ − m′ ,

(71)

for all t ∈ [m′,M ′], or equivalently,

‖ρ1 − tρ2‖1 � ‖σ1 − tσ2‖1, ∀t � 0, (72)

where

σ1 ≡ 1

M ′ − m′

(
M ′(1 − m′) 0

0 m′(M ′ − 1)

)
,

σ2 ≡ 1

M ′ − m′

(
1 − m′ 0

0 M ′ − 1

)
(73)

are two diagonal 2 × 2 density matrices with the property
that sup(σ1/σ2) = M ′ ≡ sup(ρ ′

1/ρ
′
2) and inf(σ1/σ2) = m′ ≡

inf(ρ ′
1/ρ

′
2).
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Finally, the statement of Theorem 4 is obtained noticing
that condition (72) is equivalent, due to Theorem 2, to saying
that the Lorenz curve of ρ1 relative to ρ2 is never below that
of σ1 relative to σ2. However, since the latter is the quantum
Lorenz curve of two classical probability distributions, it is
just made of two segments joining the points (0,0) with (1,1),
passing through either ( 1−m′

M ′−m′ ,
M ′(1−m′)
M ′−m′ ) or ( M ′−1

M ′−m′ ,
m′(M ′−1)
M ′−m′ ),

whichever determines the steepest curve. �

C. Probabilistic transformations

By mixing ρ ′
1 with a sufficient fraction of ρ ′

2, while keeping
ρ ′

2 unchanged, it is always possible to decrease the gap between
m′ and M ′, until the conditions of Theorem 4 are met. In this
way, with sufficient mixing, any output pair can be obtained,
but the noise due to mixing cannot be undone afterwards.

One way to overcome this problem is to relax the assump-
tions made on the channel, in particular, the condition of trace
preservation. We hence consider probabilistic channels of the
following form:

E(ρ) � Tr[Eρ]ξ1 + Tr[Fρ]ξ2, (74)

where E,F � 0, E + F � 1, and ξ1,ξ2 are two (normalized)
density matrices. The above transformation constitutes a
heralded probabilistic transformation, in the sense that we
know if the protocol succeeded or not, with success probability
given by Psucc = Tr[(E + F )ρ]. The main result of this section
is given by the following.

Theorem 5. Consider two pairs of density matrices (ρ1,ρ2)
and (ρ ′

1,ρ
′
2) on Cn and Cm, respectively. Then, a channel of

the form (74), such that

E(ρ1) = p1ρ
′
1, E(ρ2) = p2ρ

′
2, (75)

exists if and only if

m

m′ � p1

p2
� M

M ′ ,

where pi = Tr[(E + F )ρi], and m,M,m′, and M ′ are as in
Theorem 4.

When the protocol fails, we just prepare the state ρ ′
2

independently of the input. In this way, we realize a channel
that deterministically transforms ρ2 into ρ ′

2, but is also able
to transform ρ1 into ρ ′

1, whenever the successful event is
recorded.

In Ref. [29], it is shown that a probabilistic transformation
from (ρ1,ρ2) to (ρ ′

1,ρ
′
2) exists if and only if M ′/m′ � M/m.

The above theorem hence slightly extends that. For exam-
ple, Theorem 5 implies that the success probability p1 be
bounded as

p1 � M/M ′ ≡ e−	Fmax ,

where we define the max-free energy difference as

	Fmax � Dmax(ρ ′
1‖ρ ′

2) − Dmax(ρ1‖ρ2).

In order to prove Theorem 5, let us consider a probabilistic
test-and-prepare channel of the form

�(ρ) = Tr[Eρ]σ1 + Tr [Fρ]σ2, (76)

where σ1,σ2 are normalized density matrices and E,F � 0
with E + F � 1. If E(ρj ) = pjρ

′
j for j = 1,2 with 0 <

p1,p2 � 1, then

p1ρ
′
1 = e1σ1 + f1σ2,

p2ρ
′
2 = e2σ1 + f2σ2,

where ej ≡ Tr[Eρj ] and fj ≡ Tr[Fρj ] for j = 1,2. Assuming
e1f2 �= e2f1 the above equations are equivalent to

σ1 = 1

e1f2 − e2f1
[f2p1ρ

′
1 − f1p2ρ

′
2],

σ2 = 1

e1f2 − e2f1
[−e2p1ρ

′
1 + e1p2ρ

′
2].

Note that σ1 and σ2 have trace 1 since ρ ′
1 and ρ ′

2 have trace
1. Without loss of generality, we can assume e1/e2 > f1/f2.
With this choice, σ1 and σ2 are positive semidefinite if and
only if

ρ ′
1 − q−1 f1

f2
ρ ′

2 � 0 and q−1 e1

e2
ρ ′

2 − ρ ′
1 � 0, (77)

where q � p1/p2. Again, denote by m′ = inf(ρ ′
1/ρ

′
2) and by

M ′ = sup(ρ ′
1/ρ

′
2). We therefore get that σ1 and σ2 are positive

semidefinite if and only if

f1

f2
� qm′ and

e1

e2
� qM ′. (78)

Recalling the definitions of e1,e2,f1,f2, the above inequalities
are equivalent to

Tr[F (qm′ρ2 − ρ1)] � 0, Tr[E(ρ1 − qM ′ρ2)] � 0. (79)

We therefore arrive at the following lemma.
Lemma 10. There exists a CP map � of the form (76) such

that �(ρ1) = p1ρ
′
1 and �(ρ2) = p2ρ

′
2, if and only if

Tr[F (qm′ρ2 − ρ1)] � 0 (80)

and

Tr[E(ρ1 − qM ′ρ2)] � 0. (81)

Our goal is to maximize p1 under these constraints along
with the constraint Tr[(E + F )(qρ2 − ρ1)] = 0 that defines q.
Therefore, the maximum value of p1, with a fixed value of
q ∈ R+, is given by

Pmax(q) = max
Tr[(E + F )(qρ2 − ρ1)] = 0

Tr[E(ρ1 − qM ′ρ2)] � 0
Tr[F (qm′ρ2 − ρ1)] � 0
E,F � 0, E + F � 1n

Tr[(E + F )ρ1]. (82)

This is an optimization problem that can be solved efficiently
and algorithmically using SDP. Moreover, in the lemma below
we show that if q is not in the right interval, then Pmax(q) = 0.

Lemma 11. Pmax(q) > 0 implies that

m

m′ � q � M

M ′ .

Proof. Suppose q < m
m′ . Then, qm′ < m so that qm′ρ2 −

ρ1 � 0. Moreover,

Tr[F (qm′ρ2 − ρ1)] = Tr[F (mρ2 − ρ1)] − (m − m′q)Tr[Fρ2]

< 0,
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unless Tr[Fρ1] = Tr[Fρ2] = 0. We therefore must have
Tr[Fρ1] = Tr[Fρ2] = 0. This latter condition gives

Tr[(E + F )(qρ2 − ρ1)] = 0

⇐⇒ Tr[E(qρ2 − ρ1)] = 0

⇐⇒ Tr[Eρ1] = qTr[Eρ2].

But this last equality gives

Tr[E(ρ1 − qM ′ρ2)] = (1 − M ′)Tr[Eρ1] � 0, (83)

since M ′ > 1. We therefore must have Tr[Eρ1] = Tr[Eρ2] =
0. Together with Tr[Fρ1] = Tr[Fρ2] = 0, it gives Pmax(q) =
0. Following similar lines we get Pmax(q) = 0 for q >

M/M ′. �
As a consequence of the above discussion, we obtain

the following corollary, which is consistent with a result in
Ref. [29], but slightly more general:

Corollary 1.

max
q∈R+

Pmax(q) > 0 ⇐⇒ h(ρ1,ρ2) � h(ρ ′
1,ρ

′
2).

VI. DISCUSSION

In the present work we introduced quantum relative Lorenz
curves and Hilbert α divergences, studied their properties,
and applied them to the problem of characterizing necessary
and sufficient conditions for the existence of a suitable
transformation from an initial pair of states (ρ1,ρ2) to a
final one (ρ ′

1,ρ
′
2). In particular, a strong equivalence has

been proved in the case of coherent energy transitions
with Gibbs-preserving maps, a paradigm that has immediate
applications in quantum thermodynamics and the resource
theory of athermality. Finally, we also considered the cases of
test-and-prepare channels and probabilistic transformations,
giving necessary and sufficient conditions for both.
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