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Three-dimensional limaçon: Properties and applications
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We perform electromagnetic wave simulations of fully three-dimensional optical limaçon microcavities, on
the basis of their future applications in microlasers and photonic devices. The analysis of the three-dimensional
modes and far fields reveals an increase of the quality factors as compared to the two-dimensional case. The
structure of the far field in the third dimension shows pronounced maxima in the emission directionality inclined
to the resonator plane which may be exploited for coupling the resonator modes to the environment. This triggers
ideas for technical applications, such as the suggested sensor that can detect small changes in the environment
based on changes in the emission profile.
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The confinement and manipulation of light using micro-
cavites has attracted a lot of interest in basic and applied
physics research over the past decades [1,2], e.g., research
on microlasers [3], filters for communication technology [4],
or single molecule sensing [5]. Furthermore, the research on
microcombs [6–8] and optomechanics [9,10] benefits from the
progress made in the field of optical microresonators. Estab-
lished examples of optical microcavites are microdisks [3,11],
microspheres [12,13], and microtoroids [14,15] which confine
light in whispering gallery modes with high quality factors
Q. The first microdisk-based microlasers had the drawback
of isotropic light emission because of rotational symmetry.
In order to observe a directional laser emission, deformed
microcavities were investigated [16–18]. A promising shape
to combine directional emission and high quality factors is the
limaçon shape [19]. Here, ray and wave calculations based
on a two-dimensional model system agree very well with the
experimentally observed far-field characteristics [20–23].

In reality, however, microcavities are three-dimensional
(3D) objects with finite heights. This third dimension will be
especially important when the cavity sizes are further reduced
and both cavity height h and radius R become comparable
to the wavelength [24,25]. Here, we systematically study 3D
microcavities of limaçon shape (see left inset of Fig. 1). Its
cross section in the x-y plane is given in polar coordinates
(r,φ) (cf. Fig. 1), by

r(φ) = R[1 + δ cos(φ)], (1)

with mean radius R and deformation parameter δ. We set δ =
0.43, a value known [19] to yield a highly directional far-field
emission for two-dimensional (2D) cavities with refractive
index n = 3.3 embedded in vacuum (n0 = 1) as used here.
We first discuss modes and far fields of 3D limaçon cavities
of varying height to radius ratio h/R, followed by outlining a
sensor application based on the 3D character of the far field
and its extreme sensitivity to tiny changes in the refractive
index.
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Using MEEP [26], a free finite-difference time-domain
(FDTD) software package, 3D electromagnetic wave sim-
ulations have been performed to calculate the normalized
frequencies � = kR = Re(ω)R/c, with ω being a complex
frequency and c the speed of light, the quality factors
Q = −0.5 Re(ω)/Im(ω), the distributions of the electric field
component Ez(x,y,z) (modes), and the far-field intensity
I (φ,θ ). As our focus is on wavelength-scale cavities, kR

ranges from 1.9 up to 10.7, with k = 2π/λ being the wave
number and λ the wavelength in vacuum. We use an Ez-point-
dipole source to excite the modes and focus on the study of
TM-polarized modes.

We first discuss the analogies between the structures of
modes of the 2D and 3D limaçon cavity, respectively. An
example of a 2D mode and the (x,y) cross section of a 3D
mode are shown in Figs. 2(a) and 2(b). Both modes exhibit the
same azimuthal order m = 16 and a similar field distribution
of Ez, but different normalized frequencies kR and quality
factors Q. The higher kR and the much larger Q of the
3D mode arise from the additional confinement in the third
dimension and from the faster falloff of the electromagnetic
field in the resonator (x,y) plane (1/distance r instead of
1/

√
r), respectively, yielding a general increase of Q in finite

height cavities which is of crucial experimental relevance (see
the Appendix).

In order to investigate the mode structure perpendicular to
the resonator plane (z direction), we analyze Ez(z) in Fig. 2(c)
at one (x,y) position marked by a cross in Fig. 2(b). The mode
confinement between the top and bottom surface is clearly
visible, as well as the expected exponential decay of Ez outside
this dielectric slab. The finite value Ez(z = ±h/2) reflects the
boundary condition—the dielectric displacement field �D has
to be continuous at the top (t) and bottom (b) surfaces [27],
( �Dout − �Din) · �Nt,b = 0, where �Nt,b is the normal vector at the
top and bottom surface, respectively.

We analyze the exponential decay of Ez(z) using the
so-called effective refractive index model [28] [cf. inset of
Fig. 2(c)]. The key idea is to decompose the 3D wave vector
n�k into its horizontal (index xy) and its vertical (index z)
components

n�k = nkxy �exy + nkz�ez, (2)
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FIG. 1. Left inset shows the limaçon shape from Eq. (1) and for
comparison a circle with radius R centered at x = δR. Note that the
origin (0,0) of the polar coordinate system for the limaçon is quite off
its center. The right figure displays the 3D limaçon cavity with mean
radius R and height h. φ is the azimuthal and θ the inclination angle;
(φ,θ ) determine the far-field direction. The blue plane indicates the
resonator plane (x-y plane, z = 0 or θ = 0).

where �exy (�ez) is the unit vector in the x-y plane (in the z

direction). We make the following ansatz for the exponential
decay of Ez(z):

Ez(z) =
{
a1 exp(inkzz) + a2 exp(−inkzz) : |z| � h/2
a3 exp(−qz|z|) : |z| � h/2, (3)

FIG. 2. 3D mode structure. Comparison of (a) a 2D and (b) a 3D
limaçon mode taken at z = 0. Both modes have the same radial order
l = 1 and azimuthal order m = 16. (c) shows Ez parallel to the z

axis piercing through the point marked by the cross in (b). The inset
in (c) illustrates a dielectric slab and the decomposition of the wave
vector n�k.

where the vertical component qz outside the cavity is related
to the horizontal component nkxy inside and the wave
number k by q2

z = (nkxy)2 − k2 = k2(n2
xy − 1) according to

the boundary conditions. The effective refractive index nxy in
the x-y plane follows from the Pythagorean decomposition,
using Eq. (2),

n2 =: n2
xy + n2

z =
(

nkxy

k

)2

+
(

nkz

k

)2

. (4)

The nxy represents the ratio of the speed of light in vacuum
to that of a horizontally guided mode, and is a measure of
the inclination angle cos(χ ) = nxy/n of the 3D wave vector
n�k with regard to the x-y plane. It runs from nxy = 1 (total
internal reflection on the top and bottom areas) up to nxy = n

(light propagation in the x-y plane). An analytical form
of nxy = nxy(kh) for the dielectric slab was derived, e.g.,
in [27–29].

It is tempting to compare (kR)2D of the 2D mode with the
horizontal component kxyR of the 3D mode. The exponential
fit yields nxy = 2.245, which corresponds to kxyR = 5.7130.
This result is very close to (kR)2D = 5.7646 confirming the
similar mode structures, as seen in Fig. 2.

We now apply the effective refractive index model in order
to investigate the confinement in the third dimension in more
detail. To this end, we use numerics to fit nxy from the
exponential decay as a function of the (x,y) position, and make
the connection to the 3D far field. We distinguish between
(I) whispering-gallery-type modes, as seen in Fig. 2 and (II)
modes characterized by higher field amplitudes in the center
of the cavity. We will see below that modes of type II display
truly 3D far-field features in contrast to type I (cf. Figs. 3
and 4).

First (I), we analyze a whispering-gallery-type mode, as
depicted in Fig. 3(a) where the crosses mark the position at
which the nxy were fitted from the exponential decay of the
electric field outside the cavity (cf. Fig. 2). In addition, Fig. 3(c)
illustrates the electric field and displays the values of nxy at
the marked positions. We clearly observe a similar exponential
decay at all positions, denoting a high confinement between
the top and bottom areas. The resulting nxy vary within a
relatively small range from nxy = 2.969 up to nxy = 3.305,
which indicates that the mode propagates homogeneously and
with a large kxyR component since nxy ≈ 3 corresponds to an
inclination angle of the wave vector n�k with regard to the x-y
plane of about 25◦.

Having analyzed the mode propagation, we now make the
connection to the 3D far field of this mode that is depicted in
Fig. 3(b). It shows a parametric plot of the intensity I (φ,θ ) in
the Fraunhofer region r � 2(2R)2/λ (far field) that displays a
main lobe centered along the x axis. The intensity of the main
lobe is maximal in the plane of the resonator (x-y plane, θ = 0)
and decays away from this plane. We checked that this behavior
is very similar to that of a plane wave diffracted at a single slit
whose width is the cavity height. The inset of Fig. 3(b) shows a
polar plot of the far-field intensity of this mode in the plane of
the resonator that clearly exhibits directional emission. Thus,
we can think of the main components that determine the 3D
far field of this mode: (i) The 2D limaçon-shaped cross section
of the 3D cavity induces a characteristic, inherent emission
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FIG. 3. Modes and far fields in 3D of a whispering-gallery-type
mode. (a) A cross section of a 3D limaçon mode at z = 0. (b) 3D far
field and its cross section in the resonator plane (inset). (c) Electric
field component Ez above the cavity at positions numbered in (a) and
the deduced effective refractive indices nxy . The plot markers and
solid lines show numerical data and the fit of the exponential decay,
respectively.

profile (directional emission of the limaçon). (ii) 3D limaçon
modes experience diffraction at the side area due to its finite
height.

Next (II), we focus on modes which exhibit higher field
amplitudes in the center of the cavity, as depicted in Fig. 4(a).

●

■

◆

▲

▼

FIG. 4. As in Fig. 3, but for a mode characterized by higher field
amplitudes in the center of the cavity. Note the oscillations of Ez in
(c), e.g., at position 1. See the text for details.

This mode exhibits a much more complex field distribution
inside the cavity as well as outside the cavity, as shown
in Fig. 4(c). The resulting nxy vary within a wide range
from nxy = 1.807 up to nxy = 3.288, whereas nxy = 5.518
is an example of a failed exponential fit because the electric
field at position 1 propagates even outside the cavity. This
propagation indicates refractive output and as a result of
a reduced confinement between the top and bottom areas,
reflected also in a diminished quality factor Q. The wide
range of observed nxy reflects the complexity of the mode
that consists of whispering-gallery-type features at positions
2 and 3, as well as zigzagging (between the top and bottom
areas) features at position 4 since nxy(4) = 1.807 corresponds
to an inclination angle of the wave vector n�k with regard to
the x-y plane of about 57◦.

Based on this analysis, we now address the 3D far field of
this mode, shown in Fig. 4(b). We observe two main lobes that
are inclined with regard to the resonator (x,y) plane. The inset
confirms that directional emission still exists in the (x,y) plane
and into the expected direction, but the maximum intensity
is emitted along an inclined direction highlighting the 3D
character of the far field. This inclined and directional emission
is a truly 3D effect and originates in the output detected around
position 1 marked in Fig. 4(a). Therefore, for type-II modes
we complement the far-field determining mechanisms (i), (ii)
discussed above by (iii) refractive escape of electromagnetic
waves through the top and bottom areas.

We point out that all far fields are for freestanding
cavities. For a substrate-mounted cavity, additional reflec-
tions at the substrate could interfere with the direct light
emissions from the cavity and could thus modify the far
fields [30].

In the following, we use the truly 3D far-field features
described above to design a sensor that can detect parti-
cles or gases in the environment based on a change of
the emission characteristics, e.g., for a laboratory-on-a-chip
application [31]. An optical resonator, such as the 3D limaçon
cavity, can be very sensitive against tiny changes at the
boundary. Thus, changes in the environment could affect
mode structures [15] and consequently the far fields, too.
Since we focus on wavelength-scale cavities, bidirectional
emission is possible [25] unlike in large cavities where
universal emission directionality is determined by chaotic ray
dynamics. Here, we investigate the extent of the changes in
the environment necessary to change the far-field direction
significantly.

The idea of a particle sensor is illustrated in Fig. 5(a). A
3D limaçon is placed on a glass substrate that has a typical
refractive index ng = 1.5. The upper half space is enclosed
by a chamber which could contain a gas or cloud of particles
with a refractive index np higher than the vacuum index of
n0 = 1.0. Initially, we assume the chamber to be vacuum or
filled with air (refractive index 1.0). A laser (red arrow) excites
a mode in the 3D limaçon; its far-field direction is indicated by
the blue arrow. Next, the cavity is exposed to a gas of particles
raising the refractive index outside from n0 = 1.0 to np > 1.0.
The change of the refractive index influences the mode and the
far-field pattern resulting, e.g., in a reversed far-field emission
direction (green arrow) as the sensor measurement signal (cf.
Fig. 5).
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FIG. 5. 3D limaçon sensor. (a) sketches the idea of a 3D limaçon
sensor. (b), (c), and (d) show calculated far fields and the horizontal
mode structures at z = 0 (insets). Increasing the np results in reversed
and bidirectional emission in (d) compared to (b).

Figures 5(b)–5(d) show the calculated far fields and the
horizontal mode structures at z = 0 (insets). Note that the
far fields show exclusively positive inclinations, because
we are interested in far fields in the upper half space.
Remarkably, increasing the refractive index np by 2% [32]
and 5% [Figs. 5(c) and 5(d)] completely changes the far-field
characteristics. It leads to a modified field distribution in the
center of the cavity as well as to higher output indicated by
black arrows. Consequently, the quality factor Q decreases
successively and an additional far-field lobe appears, pointing
in the opposite direction compared to the initial far field for
np = 1.0 in Fig. 5(b). This allows for a relative measurement
of the intensities of the two far-field modes which promises
more stable and reliable sensor performance, or alternatively
to use one lobe to couple in and out, respectively.

To summarize, we have performed 3D FDTD wave sim-
ulations in order to investigate 3D mode structures and 3D
far fields of wavelength-scale 3D optical microresonators that
in view of the ongoing miniaturization of photonic devices
will soon become of experimental relevance. In particular,
we show that Q factors can be expected to be higher in 3D
systems. While we find that the mode distribution looks similar
inside the cavity for the 2D and 3D cases, the far fields can
differ significantly, implying that 2D far-field simulations can
be highly misleading.

Our results on 3D far fields embed those obtained for 2D
microcavities by explicitly showing how the emission pattern
looks perpendicular to the resonator plane. Besides a mere
diffractive spreading due to the finite height of the lateral area,
we predict a type of far field where the directions of maximum
far-field emission are not in the resonator plane, but inclined
to it, forming an angle of almost 60◦. It arises for modes with a

slightly increased intensity in the cavity center as compared to
whispering-gallery-type modes. This suggests that the far-field
properties can be customized by adjusting the mode structure,
e.g., via the 3D resonator geometry.

The unique emission characteristics of the 3D microres-
onators can potentially be exploited in sensors and highly
integrated optical microsensors [33]. We discuss a sensor that
can detect tiny changes in the environment via characteristic
far-field signal. Furthermore, we plan to utilize integrated
optical microsystems to optically address individual microdisk
resonators. The 3D simulations presented here enable the
optimization of the coupling efficiencies. Coherently coupled
microcavities can be fabricated by carefully aligning arrays
of individual resonators, which is feasible using lithographic
fabrication technologies. This will help to further enhance the
sensitivity of the microdisk sensors.

This work was partly supported by Emmy-Noether pro-
gramme of the German Research Foundation (DFG).

APPENDIX: ORIGIN OF INCREASED QUALITY FACTORS
IN FLAT 2D VS 3D CAVITIES

We consider a cylinder of height h, radius R, and refractive
index n with circular cross section in the x-y plane, and the
cylinder axis perpendicular to this plane in the z direction. We
will restrict our considerations to the case of TM polarization
(generalization to the TE case is straightforward) where the
electric field E(r) is parallel to the z axis. The magnetic field
lies in the x-y (or cavity) plane and is transverse both to the z

axis and the field propagation direction. The electric field E(r)
is then fully described by its z component Ez(r) that has to
fulfill the Helmholtz (wave) equation

[∇2 + n(r)2k2]Ez(r) = 0, (A1)

where k = ω/c is the vacuum wave number, ω the angular
frequency, and c the speed of light.

In the 2D case, we make use of the rotational symmetry of
our problem, apply ∇2 in cylindrical coordinates r,φ,z, and
perform a separation of variables. Assuming a φ dependence
of eimφ and a z dependence eikzz of Ez(r), its radial part E(r)
has to fulfill the equation

[
d2

dr2
+ 1

r

d

dr

]
E(r) + Veff(r)E(r) = 0 (A2)

with the effective potential (assuming kz = 0 for simplicity)

V 2D
eff (r) = n2k2 − m2

r2
, (A3)

where m is the angular momentum quantum number that,
via the conservation of angular momentum, contributes to the
effective potential barrier.

In the 3D case, although the use of cylindrical coordinates
seems suggestive, we rather use spherical coordinates r,φ,θ

where the polar angle θ runs within a small range at the
cavity boundaries in the case of the flat resonator geometries
we are interested in here. We assume again the separation of
variables, now with the radial part U (r) of Ez(r) deduced from
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the Helmholtz equation in spherical coordinates, to be of the
form[

d2

dr2
+ 2

r

d

dr

]
U (r) +

(
n2k2 − l(l + 1)

r2

)
U (r) = 0. (A4)

The azimuthal (φ) and polar (θ ) parts are given by the spherical
harmonics Yl,m(θ,φ). Since we wish to consider flat disks, we
are interested in those Yl,m(θ,φ) that possess nodal lines only
along the φ, but not along the θ direction [i.e., regions of the
same sign of Yl,m(θ,φ) form sectors, divided by meridians, on
the sphere; and these spherical harmonics are referred to as
sectoral]. As a consequence, the relation l = |m| holds in this
case, a crucial property that allows one to directly compare to
the 2D case, as we will see below.

In order to find the analogy to Bessel’s differential equation
as in the 2D case [cf. Eq. (A2)], we substitute further x = nkr

and U (x) = Ũ (x)/
√

x, and find
[

d2

dx2
+ 1

x

d

dx

]
Ũ (x) +

(
1 − (l + 1/2)2

x2

)
Ũ (x) = 0 . (A5)

This yields, in analogy to Eqs. (A2) and (A3), the effective
potential in the three-dimensional case as

V 3D
eff (r) = n2k2 − (l + 1/2)2

r2
. (A6)

The crucial difference is the angular momentum barrier
that is proportional to m2 in the 2D case, but proportional

to (l + 1/2)2 in 3D (instead of l2 when adopting the 2D
situation). Thinking in terms of the effective potential, it will
be deeper in 3D (note the minus sign in front of the angular
momentum barrier term), thereby directly explaining the better
confinement of resonances that corresponds to longer lifetimes
and provides one part of the analytical proof of the higher Q

factors seen in the 3D case.
We finish by pointing out the relation between the spherical

and the ordinary Bessel functions that reflects precisely the
difference between the effective potentials in 3D and 2D,
respectively. In the 3D situations, the complete solutions of the
radial part U (x) are given by the spherical Bessel functions jl

which are related to the ordinary Bessel functions Jl by

jl(x) =
√

2π

x
Jl+1/2(x). (A7)

We notice that the spherical Bessel function jl is related to
the ordinary Bessel function, with the order increased by one
half, Jl+1/2, corresponding to the effective potential argument
outlined above. Moreover, Jl+1/2 is divided by the square root
of x (normalized radial distance), which already causes a faster
falloff in the 3D case and provides the second part of the
analytical explanation for the higher Q factors seen in the
3D case. This enhances the effect that Bessel functions of
higher order show a faster falloff as a function of the argument.
Altogether, the radial component U (r) in 3D (in the x-y plane
of the resonator) of the electric field Ez(r) decays faster than
its 2D analog E(r).
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