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A bipartite state is said to be steerable if and only if it does not have a single-system description, i.e., the
bipartite state cannot be explained by a local hidden state model. Several steering inequalities have been derived
using different local uncertainty relations to verify the ability to control the state of one subsystem by the other
party. Here, we derive complementarity relations between coherences measured on mutually unbiased bases using
various coherence measures such as the l1-norm, relative entropy, and skew information. Using these relations,
we derive conditions under which a nonlocal advantage of quantum coherence can be achieved and the state is
steerable. We show that not all steerable states can achieve such an advantage.

DOI: 10.1103/PhysRevA.95.010301

Steering is a kind of nonlocal correlation introduced by
Schrödinger [1] to reinterpret the Einstein-Podolsky-Rosen
(EPR) paradox [2]. According to Schrödinger, the presence
of entanglement between two subsystems in a bipartite state
enables one to control the state of one subsystem by its
entangled counterpart. Wiseman et al. [3] formulated the
operational and mathematical definition of quantum steering
and showed that steering lies between quantum entanglement
and Bell nonlocality on the basis of their strength [4]. The
notion of the steerability of quantum states is also intimately
connected [5] to the idea of remote state preparation [6,7].

As introduced in Ref. [3], let us consider a hypothetical
game to explain the steerability of quantum states. Suppose
Alice prepares two quantum systems, say, A and B, in an
entangled state ρAB and sends the system B to Bob. Bob does
not trust Alice but agrees with the fact that the system B is
quantum. Therefore, Alice’s task is to convince Bob that the
prepared state is indeed entangled and they share a nonlocal
correlation. On the other hand, Bob thinks that Alice may
cheat by preparing the system B in a single quantum system,
on the basis of possible strategies [8,9]. Bob agrees with Alice
that the prepared state is entangled and they share a nonlocal
correlation if and only if the state of Bob cannot be written by
local hidden state model (LHS) [3]

ρa
A =

∑
λ

P(λ)P(a|A,λ)ρQ
B (λ), (1)

where {P(λ),ρQ
B } is an ensemble of LHS prepared by Alice

andP(a|A,λ) is Alice’s stochastic map to convince Bob. Here,
we consider λ to be a hidden variable with the constraint∑

λ P(λ) = 1 and ρ
Q
B (λ) is a quantum state received by Bob.

The joint probability distribution on such states, P (aAi
,bBi

),
of obtaining an outcome a for the measurement of observables
chosen from the set {Ai} by Alice and an outcome b for the
measurement of observables chosen from the set {Bi} by Bob
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can be written as

P
(
aAi

,bBi

) =
∑

λ

P (λ)P
(
aAi

|λ)
PQ(bi |λ), (2)

where PQ(bi |λ) is the quantum probability of the measurement
outcome bi due to the measurement of Bi .

Several steering conditions have been derived on the basis
of Eq. (2) and the existence of a single-system description
of a part of the bipartite systems [8–10]. It has also been
quantified for two-qubit systems [11]. In the last few years,
several experiments have been performed to demonstrate the
steering effect with increasing measurement settings [8] and
with loophole-free arrangements [12]. For continuous variable
systems, the steerability has also been quantified [13].

Recently, quantum coherence has been established as
an important notion, especially in the areas of quantum
information theory, quantum biology [14–18], and quantum
thermodynamics [19–23]. In quantum information theory,
it is expected that it can be used as a resource [24–26].
This has been the main motivation for recent studies to
quantify and develop a number of measures of quantum
coherence [24,25,27,28]. Most importantly, operational in-
terpretations of the resource theory of quantum coherence
have also been put forward [29,30]. An intriguing connection
between quantum coherence and quantum speed limit (QSL)
has been established [31,32]. However, much work needs to
be done to really understand how to control and manipulate
coherence so as to use it properly as a resource, particularly in
multipartite scenarios.

In this Rapid Communication, we study the effects of
nonlocality on quantum coherence in a bipartite scenario. We
derive a set of inequalities for various quantum coherence
measures. The violation of any one of these inequalities by the
conditional states of a part of the system implies that it can
achieve nonlocal advantage [the advantage, which cannot be
achieved by a single system and local operations and classical
communication (LOCC)] of quantum coherence. Moreover,
these inequalities can also be considered as sufficient steering
criteria. Intuitively, for quantum systems, it may seem that
all steerable states can achieve a nonlocal advantage on
quantum coherence. But here we show that for mixed states,
steerability captured by different steering criteria [8–10] based
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FIG. 1. Coherence of Bob’s particle is being steered beyond what
could have been achieved by a single system, only by local projective
measurements on Alice’s particle and classical communications
(LOCC).

on uncertainty relations are drastically different from the
steerability captured by coherence. In other words, we show
that there are steerable states which cannot achieve a nonlocal
advantage of quantum coherence.

One should note that we do not aim to derive a stronger
steering criteria but aim to establish a connection between
the steerability and the quantum coherence (see Fig. 1). This
eventually leads us to show the effects of quantum steering
on the speed of quantum evolutions (see the Supplemental
Material [33]).

To quantify coherence, we consider the l1-norm and the
relative entropy of coherence as a measure of quantum
coherence [24]. We also use the skew information [34], which
is an observable measure of quantum coherence [25] and is also
known as a measure of asymmetry [35–38]. The l1-norm of
the coherence of a state ρ is defined as Cl1 (ρ) = ∑

i,j

i �= j

|ρi,j |.
Now, if a qubit is prepared in either a spin-up or spin-down
state along the z direction, then the qubit is incoherent when
we calculate the coherence in the z basis (i.e., Cl1

z = 0) and is
fully coherent in the x and y bases, i.e., Cl1

x(y) = 1. The l1-norm

of coherence of a general single qubit ρ = 1
2 (I + �n · �σ ) [where

|�n| � 1 and �σ ≡ (σx,σy,σz) are the Pauli matrices] in the basis
of the Pauli matrix σi is given by

C
l1
i (ρ) =

√
n2

j + n2
k, (3)

where k �= i �= j and i,j,k ∈ {x,y,z}.
Therefore, one may ask, what is the upper bound of

Cl1 = Cl1
x (ρ) + Cl1

y (ρ) + Cl1
z (ρ) for any general qubit state ρ.

Using Cl1
x Cl1

y + Cl1
x Cl1

z + Cl1
y Cl1

z � C2
x + C2

y + C2
z � 2 (see

Ref. [33]), we find that the above quantity is upper
bounded by ∑

i=x,y,z

C
l1
i (ρ) �

√
6, (4)

where the equality sign holds for a pure state, which is an equal
superposition of all the mutually orthonormal states spanning
the state space, i.e.,

ρC
max = 1

2

[
I + 1√

3
(σx + σy + σz)

]
, (5)

where I is the 2 × 2 identity matrix. Hence, in the single-
system description, the quantity Cl1 cannot be larger than√

6 and the corresponding inequality (4) can be thought as
a coherence complementarity relation.

Another measure of coherence, called the relative entropy of
coherence, is defined as [24] CE(ρ) = S(ρD) − S(ρ), where
S(ρ) is the von Neumann entropy of the state ρ and ρD is

the diagonal matrix formed by the diagonal elements of ρ in a
fixed basis, i.e., ρD is the completely decohered state of ρ. This
quantity has also been considered as “wavelike information”
in Ref. [39], which satisfies a duality relation. In this case,
the sum of coherences of a single-qubit system in the three
mutually unbiased bases for qubit systems is bounded by

∑
i=x,y,z

CE
i (ρ) =

∑
i=x,y,z

H
(

1 + ni

2

)
− 3H

(
1 + |�n|

2

)
,

� Cm
2 , (6)

where H(x) = −x log2(x) − (1 − x) log2(1 − x) and |�n| =√
n2

x + n2
y + n2

z . Using the symmetry, one can easily show
that the maximum occurs at nx = ny = nz = 1/

√
3 [i.e., for a

maximally coherent state given by Eq. (5)] and Cm
2 ≈ 2.23.

Recently, the skew information [34] has also been consid-
ered as an observable measure of coherence of a state [25].
The coherence of a state ρ, captured by an observable B, i.e.,
the coherence of the state in the basis of eigenvectors of the
spin observable σi , is given by

CS
i = −1

2
Tr[

√
ρ,σi]

2 =
(
n2

j + n2
k

)
(1 −

√
1 − |�n|2)

|�n|2 , (7)

which is a measure of the quantum part of the uncertainty for
the measurement of the observable σi and hence it does not
increase under a classical mixing of states [34]. The sum of
the coherences measured by skew information in the bases of
σx , σy , and σz is upper bounded by∑

i=x,y,z

CS
i (ρ) = 2(1 −

√
1 − |�n|2) � 2, (8)

where the maximum occurs for the maximally coherent state
ρC

max given by Eq. (5). The inequalities (4), (6), and (8) are
complementarity relations for coherences of a state measured
in the mutually unbiased bases.

Let us now describe our steering protocol, which we use to
observe the effects of steering of the coherence of a part of a
bipartite system. We consider a general two-qubit state of the
form of

ηAB = 1

4

⎛
⎝IA ⊗ IB + �r · σA ⊗ IB + IA ⊗ �s · �σB

+
∑

i,j=x,y,z

tij σ
A
i ⊗ σB

j

⎞
⎠, (9)

where �r ≡ (rx,ry,rz), �s ≡ (sx,sy,sz), with |r| � 1, |s| � 1, and
(tij ) is the correlation matrix. Alice may, in principle, perform
measurements in arbitrarily chosen bases. For simplicity, we
derive the coherence steerability criteria for three measurement
settings in the eigenbases of {σx,σy,σz}. When Alice declares
that she performs a measurement on the eigenbasis of σz and
obtains an outcome a ∈ {0,1} with probability p(ηB|�a

z
) =

Tr[(�a
z ⊗ IB)ηAB], Bob measures the coherence randomly

with respect to the eigenbasis of (say) the other two of the
three Pauli matrices σx and σy . As Alice’s measurement in the
σk basis affects the coherence of Bob’s state, the coherence of
the conditional state of B,ηB|�a

k
in the basis of σi becomes
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C
l1
i (ηB|�a

k
) =

√∑
j �=i α2

jka

γ 2
ka

, where αija
= si + (−1)atji , γka

=
1 + (−1)ark , and i,j,k ∈ {x,y,z}. Note that the violation of
any of the inequalities in Eqs. (4), (6), and (8) by the conditional
states of Bob implies that a single-system description of the
coherence of the system B does not exist. Thus, the criterion for
achieving the nonlocal advantage on the quantum coherence
of Bob using the l1-norm comes out to be

1

2

∑
i,j,a

p
(
ηB|�a

j �=i

)
C

l1
i

(
ηB|�a

j �=i

)
>

√
6, (10)

where p(ηB|�a
j
) = γja

2 , i,j ∈ {x,y,z}, and a ∈ {0,1}. This
inequality forms a volume in the two-qubit state space.

Let us now derive the same criterion following the relative
entropy of coherence measure. We can easily show that
the eigenvalues of the conditional state of B,ηB|�a

i
are

given by λ±
ia

= 1
2 ±

√∑
j α2

jia

2γia
. Therefore, the relative entropy

of coherence, when Alice measures in �a
k , is given by

CE
i (ηB|�a

k
) = ∑

p=+,− λ
p

ka
log2 λ

p

ka
− β

p

ika
log2 β

p

ika
, where the

diagonal element β±
ija

of the conditional state ηB|�a
j
, when

expressed in the σi th basis, is given by β±
ija

= 1
2 ± αija

2γja
. Thus,

the criterion for achieving the nonlocal advantage of quantum
coherence becomes (6)

1

2

∑
i,j,a

p
(
ηB|�a

j �=i

)
CE

i

(
ηB|�a

j �=i

)
> Cm

2 , (11)

where i,j ∈ {x,y,z} and a ∈ {0,1}. Similarly, we obtain
another inequality using the skew information as the observ-
able measure of quantum coherence. The coherence of the
conditional state ηB|σa

k
measured with respect to σi in this case

is given by CS
i (ηB|�a

k
) = (

∑
j �=i α2

jka
)[1−

√
1−(2λ±

ka
−1)

2
]

γ 2
ka

(2λ±
ka

−1)
2 . Thus, from

Eq. (8) we get the coherence steering inequality using the
skew-information complementarity relation as

1

2

∑
i,j,a

p
(
ηB|�a

j �=i

)
CS

i

(
ηB|�a

j �=i

)
> 2, (12)

where i,j ∈ {x,y,z} and a ∈ {0,1}.
It is important to mention here that although the violation

of the coherence complementarity relations in Eqs. (4), (6),
and (8) implies the steerability of the quantum state and the
achievability of the nonlocal advantage of quantum coher-
ence, its violation is highly dependent on the measurement
settings [33]. Therefore, the state of Bob (B) can achieve
the nonlocal advantage of quantum coherence with the help
of Alice if at least one of the inequalities in Eqs. (10)–(12)
is satisfied, but it is not necessary. A better choice of
projective measurement bases by Alice may reveal steerability
of an apparently unsteerable state with respect to the above
inequalities. On the other hand, it is also necessary to
show that separable states can never violate the coherence
complementarity relations using the present protocol.

To show that no separable state can violate the coherence
complementarity relations, we use the protocol stated above for
an arbitrary number n of measurement settings. We consider a

two-qubit separable state ρab as

ρAB =
∑

i

piρ
i
A ⊗ ρi

B, (13)

with
∑

i pi = 1 and pi > 0 for all i. Suppose Alice performs
a projective measurement in an arbitrary basis �a

n, where
a ∈ {0,1} corresponding to two outcomes of the measurement
and n ∈ Z+ (set of positive integers), each measurement basis
associated with an integer. To compare with the coherence
complementarity relations, Alice must choose a 3Z+ number
of measurement bases, making n to run up to 3k (say),
where k ∈ Z+. This provides Bob a 2k number of coherence
measurement results on a particular Pauli basis. This is
due to the fact that for measurements on each basis, Bob
can measure coherence randomly only on two of the three
mutually unbiased Pauli bases. Bob receives the state ρB|�a

n
=∑

i pi 〈na |ρi
A|na〉ρi

B∑
i pi 〈na |ρi

A|na〉 with probability p(ρB|�a
n
) = ∑

i pi〈na|ρi
A|na〉

due to the projective measurement �a
n by Alice. If the proposed

protocol is followed, one can show that the above state in
Eq. (13) can never violate the coherence complementarity
relations. To show that, we start with

1,3k,1∑
a=0,n=1,m=0

p
(
ρB|�a

n

)
C

q
n⊕m

(
ρB|�a

n

)

�
∑

a,n,m,i

piC
q
n⊕m

(〈na|ρi
A|na〉ρi

B

)

�
∑

a,n,m,i

pi〈na|ρi
A|na〉Cq

n⊕m

(
ρi

B

)

=
∑

i

3k,1∑
n=1,m=0

piC
q
n⊕m

(
ρi

B

)
, (14)

where we denote n ⊕ m = mod(n + m,3) + 1 and q ∈
{l1,E,S}, stands for various measures of coherence. In the
second and the third inequalities, we used the fact that the
coherence and the observable measure of quantum coherence
decreases under a classical mixing of states. Here, we
use the notation {Cq

1 ,C
q

2 ,C
q

3 } ≡ {Cq
x ,C

q
y ,C

q
z }. By taking the

summation over n and m, one can show from the last line of
Eq. (14) that∑

a,n,m

p
(
ρB|�a

n

)
C

q
n⊕m

(
ρB|�a

n

)

� 2k
∑

i

pi

[
Cq

x

(
ρi

B

) + Cq
y

(
ρi

B

) + Cq
z

(
ρi

B

)]

� 2k
∑

i

piε
q = 2kεq, (15)

where εq ∈ {√6,2.23,2} depending on q. This implies that the
coherence complementarity relations can never be violated by
any separable state. Mathematically, for any separable state,

1

2

1,3,1∑
a=0,n=1,m=0

p
(
ρB|�a

n

)
C

q
n⊕m

(
ρB|�a

n

)
� εq, (16)

for the three-measurement-settings scenario (k = 1). A viola-
tion of this inequality implies that the state is steerable and
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Bob can achieve a nonlocal advantage of quantum coherence
by Alice.

Let us now illustrate the coherence steerability condi-
tion with an example, say, a two-qubit Werner state de-
fined by ρw = p|ψ−

AB〉〈ψ−
AB | + (1−p)

4 IA ⊗ IB , where |ψ−
AB〉 =

1√
2
(|01〉 − |10〉) and the mixing parameter p is chosen from the

range 0 � p � 1. For this state, �r = 0, �s = 0, and txx = tyy =
p, tzz = p. The state ρw is steerable for p > 1

2 , entangled for
p > 1

3 , and Bell nonlocal for p > 1√
2
.

Here, the optimal strategy for Alice to maximize the
violation of the coherence complementary relation by Bob’s
conditional state is similar to that stated earlier for the deriva-
tion of Eqs. (10)–(12). With the help of these inequalities, it
is easy to show that for the Werner state, the coherence of

the state of B is steerable for p >

√
2
3 when one uses the

l1-norm as a measure of coherence, p > 0.914 when one uses
the relative entropy of coherence as a measure, and p > 2

√
2

3
for the choice of skew information as a measure of quantum
coherence.

Hence, Alice controls the coherence of Bob’s system for

p >

√
2
3 whereas Alice controls Bob’s state for p > 1

2 . This

difference occurs due to the presence of the noise part ( I⊗I
4 ) in

steering the state, whereas the coherence steerability criteria
are never influenced by such classical noise. This raises a
natural question: Is it possible to increase the range of p to
control the coherence of Bob’s system using local filtering
operations? It has been shown that filtering operations can
improve the steerablity [40]. From Fig. 2, it is clear that the
filtering operation on Bob can increase the range of p to some
extent for certain values of θ , for which the resulting state
can achieve the nonlocal advantage of quantum coherence
from Alice to Bob. Moreover, any steerable Werner state
can be turned into an unsteerable state by local filtering
operations [40] (see Fig. 2).

To summarize, in this Rapid Communication, we use
various measures of quantum coherence and derive comple-
mentarity relations (4), (6), and (8) between coherences of
a single quantum system (qubit) measured in the mutually
unbiased bases. Using these complementarity relations, we
derive conditions (10)–(12), under which the nonlocal advan-
tage of quantum coherence can be achieved for any general
two-qubit bipartite systems. These conditions also provide
sufficient criteria for the state to be steerable. We also show
that not all steerable states can achieve the nonlocal advantage
on quantum coherence.

FIG. 2. Filtering operation F (θ ) = diag{1/ cos(θ ),1/ sin θ} is ap-
plied on the Werner state ρw . The red colored dashed line corresponds
to the situation when F (θ ) is applied on Alice and the green solid
plot is when it is applied on Bob. The nonlocal advantage of quantum
coherence is not achievable by the resulting state for the ranges of
p under the curves. For example, the resulting state is steerable or
the state can achieve the nonlocal advantage of quantum coherence
for Bob for p � 0.845, when F (θ ≈ 0.5) is applied on Bob. Here,
we assume that Alice is the steering party, and Bob is the party to be

steered. The horizontal thin dashed line denotes p =
√

2
3 .

Additionally, our results reveal an important connection
between quantum nonlocality and the quantum speed limit
(see the Supplemental Material [33]). One can show that not
all steerable states, or, for that matter, not even all states,
for which a nonlocal advantage on quantum coherence is
achievable, can, in principle, achieve a nonlocal advantage
on the QSL [33]. Only those states which achieve a nonlocal
advantage on the observable measure of quantum coherence
or asymmetry [35–38] can achieve a nonlocal QSL [33]. One
important application of our results has been uncovered in the
detection of Unruh effects as well [41].

Note added. Recently, Fan et al. presented a study on the
quantum coherence of steered states [42]. We consider our
works to be complementary. Though examining a similar topic,
our approaches are very different [we consider steering from
the existence of a local hidden state model rather than from
the perspective of the quantum size effect (QSE) formalism].
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thank Sk. Sazim for useful discussions. We also thank the
anonymous referees for valuable comments and suggestions.
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