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Exact analytical solutions for time-dependent Hermitian Hamiltonian systems from static
unobservable non-Hermitian Hamiltonians

Andreas Fring* and Thomas Frith†

Department of Mathematics, City, University of London, Northampton Square, London EC1V 0HB, United Kingdom
(Received 1 November 2016; published 17 January 2017)

We propose a procedure to obtain exact analytical solutions to the time-dependent Schrödinger equations
involving explicit time-dependent Hermitian Hamiltonians from solutions to time-independent non-Hermitian
Hamiltonian systems and the time-dependent Dyson relation, together with the time-dependent quasi-Hermiticity
relation. We illustrate the working of this method for a simple Hermitian Rabi-type model by relating it to a
non-Hermitian time-independent system corresponding to the one-site lattice Yang-Lee model.
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I. INTRODUCTION

The time-dependent Schrödinger equation (TDSE) is cen-
tral in the description of almost all quantum mechanical phe-
nomena. When it involves explicitly time-dependent Hamilto-
nians it is usually extremely difficult to solve, so that only few
exact analytical solutions have been found so far. In most cases
one resorts to approximative approaches. For instance, for
systems with quantum potentials and classical electromagnetic
fields, one relies almost entirely on perturbative methods either
in the weak- or strong-field regime [1,2] with only a few
available approximative methods that go beyond [3]. Schemes
that allow one to construct exact analytical solutions, such
as, for instance, the method of invariants proposed by Lewis
and Riesenfeld [4], are extremely rare and only very few
exactly solvable models are known. Thus almost any workable
alternative procedure will constitute an advance of the subject
area.

Here, we propose a method that allows one, in principle,
to find exact analytical solutions, but it may also be adapted
to a perturbative setting. Our approach exploits some special
solutions of the time-dependent Dyson and time-dependent
quasi-Hermiticity relations [5–7] in which we take the non-
Hermitian Hamiltonian to be time independent. The problem
of solving the TDSE for a time-dependent Hermitian Hamilto-
nian h(t) = h†(t) is replaced by the much easier one to solve,
the TDSE for a time-independent non-Hermitian Hamiltonian
H �= H † and the time-dependent Dyson relation for the Dyson
map or time-dependent quasi-Hermiticity relation for the
metric operator.

Hence, our starting point are the two TDSEs,

h(t)φ(t) = i�∂tφ(t), H�(t) = i�∂t�(t), (1)

for which the two wave functions φ(t) and �(t) are assumed
to be related by a time-dependent invertible operator η(t), the
time-dependent Dyson map, as

φ(t) = η(t)�(t). (2)

It then follows by direct substitution of (2) into (1) that the two
Hamiltonians are related to each other by the time-dependent
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Dyson relation

h(t) = η(t)Hη−1(t) + i�∂tη(t)η−1(t). (3)

Thus computing φ(t) from the first equation in (2) becomes
equivalent to computing �(t) from the second equation in (1)
and η(t) from (3). Alternatively, we may also compute η(t) by
solving the quasi-Hermiticity relation

H †ρ(t) − ρ(t)H = i�∂tρ(t) (4)

for the metric operator ρ(t) and subsequently use ρ(t) :=
η†(t)η(t). So, despite the fact that the Hamiltonian H is static,
we will associate it to a time-dependent metric. We also note,
as previously argued in Ref. [7], that because of the presence
of the gaugelike term in (3), the non-Hermitian Hamiltonian H

is not quasi-Hermitian and therefore not observable. Instead,
the operator

H̃ (t) = η−1(t)h(t)η(t) = H + i�η−1(t)∂tη(t) (5)

is quasi-Hermitian and interpreted as the physical operator
that plays the role of the energy in the non-Hermitian system.
It does, however, not satisfy the relevant TDSE. One may
of course define for H̃ (t) a new time-dependent Schrödinger
equation H̃ (t)�̃(t) = i�∂t �̃(t), but that would be a new
system with different Hilbert space and therefore with different
physical content. Having solved (2), we can subsequently
construct an exact form for the unitary time-evolution operator,

u(t,t ′) = T exp

[
−i

∫ t

t ′
dsh(s)

]
, (6)

that evolves a state φ(t) = u(t,t ′)φ(t ′) from a time t ′
to t , satisfying h(t)u(t,t ′) = i�∂tu(t,t ′), u(t,t ′)u(t ′,t ′′) =
u(t,t ′′), u(t,t) = I, and preserves by definition the inner
product 〈u(t,t ′)φ(t ′)|u(t,t ′)φ̃(t ′)〉 = 〈φ(t)|φ̃(t)〉. The time-
evolution operator U (t,t ′) = η−1(t)u(t,t ′)η(t ′) that evolves
states �(t) = U (t,t ′)�(t ′) in the non-Hermitian system from
a time t ′ to t is not expected to be unitary in a standard matrix
representation, but it preserves the modified inner product,

〈U (t,t ′)�(t ′)|U (t,t ′)�̃(t ′)〉ρ = 〈�(t)|�̃(t)〉ρ
= 〈�(t)|ρ(t)�̃(t)〉, (7)

where 〈·|·〉 denoted the standard inner product. In that sense it
guarantees unitary time evolution.

A priori it is not clear whether the equations above actually
admit nontrivial and meaningful solutions in the way described

2469-9926/2017/95(1)/010102(4) 010102-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.010102


RAPID COMMUNICATIONS

ANDREAS FRING AND THOMAS FRITH PHYSICAL REVIEW A 95, 010102(R) (2017)

above. In fact, it was doubted that they make sense at all
and were interpreted as a no-go theorem for the possibility to
have consistent non-Hermitian systems with a time-dependent
metric [6]. This view was already challenged in Ref. [8] and in
Refs. [7,9,10] it was demonstrated that nontrivial solutions
do exist. Besides mathematical arguments questioning the
solvability of these equations, the main physical objection
was based on the fact that the Hamiltonian operator H , or
H (t), that governs the TDSE is no longer observable. In
Ref. [7] it was argued that this is an unnecessary requirement.
It is already well accepted that in the non-Hermitian setting,
many operators, such as, for instance, the standard position or
momentum operator, become mere auxiliary operators that do
not correspond to observable quantities. In the time-dependent
setting one simply needs to add H (t) to that list and interpret
H̃ (t) as the observable quantity.

Here, we will elaborate on the special type of solutions for
which the non-Hermitian Hamiltonian is kept independent of
time and study a simple (2 × 2)-matrix Hamiltonian with a
periodic time-dependent potential

h(t) = −1

2

[
ωI + 2φ2

2 + γ 2 sin (tφ) − γ 2
σz

]
, (8)

where σx,y,z denote the standard Pauli matrices and ω,γ,φ ∈
R are constants constrained as φ =

√
1 − γ 2, γ � 1. This

Hamiltonian is similar in type to the Hermitian Rabi model
solved in Ref. [11] using perturbation theory [12]. A pertur-
bative treatment of the non-Hermitian PT -symmetric version
of this model was recently considered in Ref. [13]. Here, we
are providing a nonperturbative analytical solution following
the procedure outlined above.

II. A GENERAL NON-HERMITIAN SU(2) HAMILTONIAN

The non-Hermitian counterpart to h(t) in (8) falls into the
general class of Hamiltonians built from generators of an
SU(2)-Lie algebra represented here by standard Pauli matrices

H = 1

2
[κ0 + iλ0]I + 1

2

∑
j=x,y,z

[κj + iλj ]σj , (9)

with κ0,λ0,κj ,λj ∈ R. In what follows, we will drop the
explicit sum and use the standard sum convention over repeated
indices. Trying to solve the time-dependent quasi-Hermiticity
relation (4), we make the generic ansatz

ρ(t) = α(t)I + βj (t)σj , α(t),βj (t) ∈ R, (10)

for the metric operator. Substituting (10) into (4) and reading
off the coefficients of the generators then leads to the
constraining first-order differential equations

αt = −αλ0 − �β · �λ, (11)

�βt = �κ × �β − λ0 �β − α�λ, (12)

for the as yet unknown functions α(t),βj (t). Demanding the
metric operator to be positive definite imposes the additional
constraint

det ρ = α2 − �β · �β > 0. (13)

Next, we will solve the constraints (11)–(13).

A. Time-independent Hamiltonian and time-independent
metric

At first we consider the simplest scenario that is obtained
when we just reduce the equations to the standard time-
independent scenario (see Refs. [14,15] for reviews). In this
case, (11) and (12) simplify to

�β · �λ = −αλ0 and �κ × �β = λ0 �β + α�λ, (14)

which, when taking λ0 = 0, is easily solved by

�β = α

|�κ|2
�λ × �κ + ν�κ, ν ∈ R. (15)

This solution was also reported in Ref. [9] and only serves here
as a benchmark when taking the limit to the time-independent
case. Using the parametrization (10) then reproduces solutions
previously obtained for the Hamiltonians falling into the class
reported in (9) for the time-independent scenario (see, for
instance, Ref. [16] for an example).

B. Time-independent Hamiltonian and time-dependent metric

Next, we allow ∂tρ to be nonvanishing so that H is no longer
quasi-Hermitian because (4) has a nonvanishing right-hand
side. Guided by the solution in the previous section, we keep
λ0 = 0 and substitute the ansatz

�β(t) = ζ1(t)�κ + ζ2(t)�λ + ζ3(t)�κ × �λ (16)

into (10) and (4), thus obtaining a set of simple first-order
coupled differential equations

∂tζ1 = ζ3�κ · �λ, ∂tζ2 = −α − ζ3|�κ|2, ∂t ζ3 = ζ2, (17)

as constraints. Assuming that �κ · �λ = 0, the general solutions
to these equations are easily obtained as

ζ1(t) = c4, (18)

ζ2(t) = c1 sin(φt) + c2 cos(φt), (19)

ζ3(t) = −c1

φ
cos(φt) + c2

φ
sin(φt) + c3, (20)

α(t) =
(

c1

φ
|�κ|2 − c1φ

)
cos(φt) (21)

+
(

c2φ − c2

φ
|�κ|2

)
sin(φt) − c3|�κ|2, (22)

with φ =
√

|�κ|2 − |�λ|2 and c1, . . . ,c4 ∈ R being arbitrary
constants.

Having obtained ρ(t), we may easily compute η(t), but
in order to carry out the second step in our procedure, that
is, solving the TDSE, we need to be more specific. Let us
therefore study a concrete model that falls into the general
class of Hamiltonians treated in this section.

III. THE ONE-SITE LATTICE YANG-LEE MODEL

We consider an Ising quantum spin chain in the presence
of a magnetic field in the z direction and a longitudinal
imaginary field in the x direction [17] that has been identified
as the discretized lattice version of the Yang-Lee model [18],
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described by the non-Hermitian Hamiltonian

HN = −1

2

N∑
j=1

(
σ z

j + λσx
j σ x

j+1 + iκσ x
j

)
, (23)

with λ,κ ∈ C. In Ref. [7] it was demonstrated that, when
taking N = 1, the time-dependent quasi-Hermiticity relation
admits nontrivial solutions. In this case the non-Hermitian
Hamiltonian just reduces to a particular example of (9),

H1 = − 1
2 [λI + σz + iκσx]. (24)

We will now solve the time-dependent Dyson relation (3)
together with the time-dependent quasi-Hermiticity relation
(4) and the TDSE for H1 in more detail.

A. Time-independent Hamiltonian and time-independent
metric

Specifying the quantities in Sec. II A as λ = ω ≡ const and
κ = γ ≡ const, we identify κ0 = −ω, λ0 = 0, �κ = (0,0, − 1),
�λ = (−γ,0,0), so that

�β = −αγ �ey − ν�ez, ρ = αI − αγσy − νσz, (25)

with det ρ = α2(1 − γ 2) − ν2 > 0 and �ei denoting the unit
vector in the direction i = x,y,z. As expected, the metric
ceases to be positive definite when the eigenvalues

E± = 1
2 (−ω ± φ) (26)

of H become complex conjugate, that is, when γ > 1. Taking
now ν = 0 for simplicity, we compute the Dyson map η as the
square root of the metric ρ as

η = √
ρ =

√
α

2
[(φ− + φ+)I + (φ− − φ+)σy], (27)

with φ± = √
1 ± γ . Assuming η to be Hermitian, it is

computed from ρ simply by taking the square root in the
standard way by diagonalizing it first as ρ = UDU−1 and
subsequently computing

√
ρ = UD1/2U−1. We select here

the plus sign for the square root without loss of generality,
as a minus sign will cancel out in all relevant computations.
Using this expression in (3) leads to the isospectral Hermitian
counterpart

h = − 1
2 (ωI + φσz). (28)

It is of course well known how to obtain these type of relations
in the time-independent case, but the expressions obtained here
serve as benchmarks for the time-dependent case.

B. Time-independent Hamiltonian and time-dependent metric

Switching on the time dependence, we solve first the TDSE.
Since H1 is time independent, this is easily achieved by
expanding the solution in terms of the energy eigenstates E± in
(26) as �±(t) = c±e−iE±t with some constants c±. Substitution
of this ansatz into (1) then yields the solutions to (1) with a
suitable normalization,

�±(t) =
√

γ√
2φ

√
1 ± φ

(
γ

i(1 ± φ)

)
e−iE±t . (29)

Next, we need to solve (3) and (4), for η(t) and ρ(t),
respectively. Keeping at first all integration constants generic,
we obtain from (13)

det[ρ(t)] = c2
3 − c2

4 − γ 2
(
c2

1 + c2
2 + c2

3

)
> 0. (30)

Thus it is vital to maintain c3 �= 0. Considering the solution
in Sec. II B, we first notice that ∂tρ = 0 leads to c1 = c2 = 0,
so that we recover the time-independent scenario in this case.
A nontrivial convenient choice is, for instance, c1 = 0, c2 =
−φ/γ , c3 = −1/γ , c4 = 0, leading to the time-dependent
metric

ρ(t) =
[

1

γ
+ γ sin(φt)

]
I + φ cos(φt)σx − [1 + sin(φt)]σy.

(31)

Taking the square root, similarly as in the previous section,
then yields the time-dependent Dyson map

η(t) = 1

2
[p+(t) + p−(t)]I + p+(t) − p−(t)

2|p0(t)|
× [Im[p0(t)]σx − Re[p0(t)]σy], (32)

where we abbreviated the functions

p±(t) =
√

γ −1 + γ sin(φt) ± |p0(t)|, (33)

p0(t) = 1 + sin(φt) + iφ cos(φt). (34)

Using this expression for η(t) in (3) produces the Hermitian
time-dependent Hamiltonian h(t) in (8).

We have now obtained explicit analytical solutions for all
time-dependent wave functions. Next, we verify that they yield
meaningful expectation values. Using (2) together with our
solutions (29), (31), and (32), we compute

〈�±(t) |ρ(t)�±(t)〉 = 〈φ±(t) |φ±(t)〉 = 1, (35)

〈�∓(t) |ρ(t)�±(t)〉 = 〈φ∓(t) |φ±(t)〉 = ±iγ . (36)

These states were not expected to be orthonormal, but we can
use them to easily find an orthonormal basis. A useful and
natural basis is

φ1(t0) =
(

1

0

)
= c+|φ−(t0)〉 + c−|φ+(t0)〉, (37)

φ2(t0) =
(

0

1

)
= c−|φ−(t0)〉 − c+|φ+(t0)〉, (38)

with

t0 = − π

2φ
, c± = 1√

2φ2
e

iπ
4 ( ω

φ
±1)(φ± − γφ∓). (39)

Using these states and t0 as the initial time, the time-evolution
operator is easily extracted from the explicit form of φ(t) as

u(t,t0) =
(

eiθ(t) 0

0 e
iπ
2 ( ω

φ
+ 2tω

π
)−iθ(t)

)
, (40)
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with

θ (t) = π

4
+ ω

2
(t − t0) + arctan

[
(1 − φ)2 + γ 2 tan

(
tφ

2

)
γ 2 + (1 − φ)2 tan

(
tφ

2

)]
.

(41)

One may verify that u(t,t0) indeed satisfies the TDSE. It is now
also straightforward to compute the time-evolution operator
for the non-Hermitian system U (t,t0) = η−1(t)u(t,t0)η(t0)
using (32) and (40).

In order to sustain our claim that the Hamiltonian H̃ (t)
defined in (5) represents the energy in the non-Hermitian
system, we compute the energy expectation values,

E±(t) = 〈�±(t)|H̃ (t)ρ(t)�±(t)〉 (42)

= 〈φ±(t)|h(t)φ±(t)〉 (43)

= ± φ3

2 + γ 2 sin (tφ) − γ 2
− ω

2
, (44)

oscillating with Rabi frequency φ = (E+ − E−) between the
values E±(t0) = E± and E±(−t0) = (±φ3 − ω)/2. Thus, h(t)
the Hermitian side corresponds to H̃ (t) on the non-Hermitian
side.

IV. CONCLUSIONS

We have demonstrated that the problem of solving the
TDSE involving an explicitly time-dependent Hermitian
Hamiltonian (1) can be replaced with a two-step procedure
consisting of, first, solving the TDSE for a time-independent
non-Hermitian Hamiltonian (1), and, second, solving the time-
dependent Dyson relation (3) together with the time-dependent
quasi-Hermiticity relation (4). For the simple model presented
here, it transpires that the equations in our two-step procedure
are indeed easier to solve than the original TDSE. For our

model the simplicity lies in the actual integrals involved at the
cost of some more algebra. The original integral is of the type
for which the integrand can be transformed into a rational
function by using the substitution z = tan(φt/2), whereas
in our proposed method only a simple harmonic oscillator
equation needs to be integrated. Here, we have presented a
derivation with H as a starting point, but of course all steps
are reversible and one may also take h(t) to commence with.
For more details on the limitations and alternative solution
procedures, we refer to Ref. [19].

As a by-product, we have also obtained further evidence
for the solvability of Eqs. (3) and (4), as already observed in
Refs. [7,10], but, in addition, we also showed here that the
solutions obtained constitute meaningful wave functions and
produce physical expectation values.

Clearly, our approach can also be adapted to a perturbative
treatment. Just as in the time-independent setting, where the
Dyson map is often only known perturbatively [14,15], this
limitation is likely to carry over to the time-dependent scenario.
So, a perturbative series would be in a parameter related to η

rather than one occurring in the model itself.
It will be very interesting to investigate the viability of

this approach further for more complicated systems of higher
rank matrix type, but especially for Hamiltonians related to
infinite-dimensional Hilbert spaces. More investigations are
also desirable for the situation in which the non-Hermitian
Hamiltonians in (1) are explicitly time dependent. For instance,
a detailed comparison with adiabatic approaches, e.g., in
Refs. [20,21], would be very insightful and valuable.
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