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Multipartite Gaussian steering: Monogamy constraints and quantum cryptography applications
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We derive laws for the distribution of quantum steering among different parties in multipartite Gaussian states
under Gaussian measurements. We prove that a monogamy relation akin to the generalized Coffman-Kundu-
Wootters inequality holds quantitatively for a recently introduced measure of Gaussian steering. We then define the
residual Gaussian steering, stemming from the monogamy inequality, as an indicator of collective steering-type
correlations. For pure three-mode Gaussian states, the residual acts as a quantifier of genuine multipartite steering,
and is interpreted operationally in terms of the guaranteed key rate in the task of secure quantum secret sharing.
Optimal resource states for the latter protocol are identified, and their possible experimental implementation
discussed. Our results pin down the role of multipartite steering for quantum communication.
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With the imminent debacle of Moore’s law, and the constant
need for faster and more reliable processing of information,
quantum technologies are set to radically change the landscape
of modern communication and computation. A successful
and secure quantum network relies on quantum correlations
distributed and shared over many sites [1]. Different kinds
of multipartite quantum correlations have been considered
as valuable resources for various applications in quantum
communication tasks. Multipartite entanglement [2–8] and
multipartite Bell nonlocality [9–12] are two well known
instances and have received extensive attention in recent
developments of quantum information theory, as well as in
other branches of modern physics. There has been substantial
experimental progress in the engineering and detection of both
such correlations, by using, e.g., photons [13–17], ions [18],
or continuous variable (CV) systems [19–22]. However, as
an intermediate type of quantum correlation between entan-
glement and Bell nonlocality, multipartite quantum steering
[23,24] still defies a complete understanding. In consideration
of the intrinsic relevance of the notion of steering to the
foundational core of quantum mechanics, it has become a
worthwhile objective to deeply explore the characteristics
of multipartite steering distributed over many parties, and
to establish what usefulness to multiuser quantum commu-
nication protocols can such a resource provide, where bare
entanglement is not enough and Bell nonlocality may not be
accessible.

The concept of quantum steering was originally introduced
by Schrödinger [25] to describe the “spooky action-at-a-
distance” effect noted in the Einstein-Podolsky-Rosen (EPR)
paradox [26–28], whereby local measurements performed on
one party apparently adjust (steer) the state of another distant
party. Recently identified as a distinct type of nonlocality
[29,30], quantum steering is thus a directional form of quantum
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correlations, characterized by its inherent asymmetry between
the parties [31–37]. Additionally, steering allows verification
of entanglement, without assumptions of the full trust of
reliability of equipment at all of the nodes of a communication
network [38]. Steering is then a natural resource for one-sided
device-independent quantum key distribution [39,40]. For
bipartite systems, a comprehensive quantitative investigation
of quantum steering has been recently proposed [41–44] and
tested in several systems [45–51]. Comparatively little is
known about steering in multipartite scenarios. For instance,
Refs. [52–54] derived criteria to detect genuine multipartite
steering, and Ref. [55] presented some limitations on joint
quantum steering in tripartite systems.

In this Rapid Communication we focus on steerability
of multipartite Gaussian states of CV systems by Gaussian
measurements, a physical scenario which closely aligns
with the traditional EPR paradox, and which is of primary
relevance for experimental implementations [56–58]. In order
to investigate the shareability of Gaussian steering from a
quantitative perspective [36], we establish monogamy relations
imposing constraints on the degree of bipartite EPR steering
that can be shared among N -mode CV systems in pure
Gaussian states, in analogy with the Coffman-Kundu-Wootters
(CKW) monogamy inequality for entanglement [6,7,59–63].
We further propose an indicator of collective steering-type
correlations, the residual Gaussian steering (RGS), stemming
from the laws of steering monogamy, that is shown to act
as a quantifier of genuine multipartite steering for pure
three-mode Gaussian states. Finally, we show how the RGS
acquires an operational interpretation in the context of a
partially device-independent quantum secret sharing (QSS)
protocol [64–68]. Specifically, taking into account arbitrary
eavesdropping and potential cheating strategies of some of the
parties [66], the achievable key rate of the protocol is shown
to admit tight lower and upper bounds which are simple linear
functions of the RGS. This in turn allows us to characterize
optimal resources for CV QSS in terms of their multipartite
steering.

(a) Monogamy of Gaussian steering. A fundamental prop-
erty of entanglement, which has profound applications in
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quantum communication, is known as monogamy [59,63,69].
Any two quantum systems that are maximally entangled
with each other, cannot be entangled (or even classically
correlated) with any other third system. Therefore, entan-
glement cannot be freely shared among different parties.
In their seminal paper [59], CKW derived a monogamy
inequality that quantitatively describes this phenomenon for
any finite entanglement shared among arbitrary three-qubit
states ρ: C2

A:(BC)(ρ) � C2
A:B(ρ) + C2

A:C(ρ), where C2
A:(BC)(ρ) is

the squared concurrence, quantifying the amount of bipartite
entanglement across the bipartition A : (BC). Osborne and
Verstraete later generalized the CKW monogamy inequality to
n qubits [61]. For CV systems, however, both the quantification
and the study of the distribution of entanglement constitute in
general a considerably harder problem. Remarkably, if one
focuses on the theoretically and practically relevant class
of Gaussian states, various results similar to the qubit case
have been derived, using different entanglement measures
[6,7,56,60,62,70]. Of particular interest to us will be the fact
that the Gaussian Rényi-2 entanglement monotone EA:B(ρAB),
which quantifies entanglement of bipartite Gaussian states
ρAB , has been shown to obey a CKW-type monogamy inequal-
ity for all m-mode Gaussian states ρA1...Am

with covariance
matrix (CM) σA1...Am

[62],

EAk :(A1,...,Ak−1,Ak+1,...,Am)
(
σA1...Am

) −
∑
j �=k

EAk :Aj

(
σA1...Am

)
� 0,

(1)

where each Aj comprises one mode only. Recall that the
2m × 2m CM σA1...Am

of a m-mode state ρA1...Am
has elements

σij = tr[{R̂i,R̂j }+ ρ], where R̂ = (x̂1,p̂1, . . . ,x̂m,p̂m)T is the
vector collecting position and momentum operators of each
mode, satisfying canonical commutation relations [R̂i,R̂j ] =
i(�A1...Am

)ij , with (�A1...Am
) = ω⊕m and ω = ( 0 1

−1 0) being
the single-mode symplectic form [56].

Quantum steering is a type of correlation that allows
for entanglement certification in a multimode bipartite state
ρAB even when one of the parties’ devices, say Bob’s, are
completely uncharacterized (untrusted). In this case, we say
that Bob can steer Alice’s local state [29,30]. Keeping our
focus on Gaussian states and measurements [36], the question,
thus, naturally arises: is steering monogamous? Intuitively
one would expect that there should exist limitations on the
distribution of steering-type correlations, since steering is only
a stronger form of the already monogamous entanglement.
A first answer to this question was recently given by Reid
[55], who showed that, under restrictions to measurements
and detection criteria involving up to second order moments,
if a single-mode party A can be steered by a single-mode party
B then no other single-mode party C can simultaneously steer
A. This was recently generalized to the case of parties B and C

comprising an arbitrary number of modes [71,72]. Reference
[55] also discussed other monogamy relations for steering and
nonlocality both in discrete and CV systems.

In the following we provide general quantitative CKW-type
limitations to the distribution of Gaussian steering among
many parties. For our purposes, we will focus on a recently
proposed Gaussian steering measure [36], GB→A(σAB), which
quantifies how much party B can steer party A in a Gaussian

state with CM σAB by Gaussian measurements. In particular,
we now show that the Gaussian steering measure G is
monogamous, and hence satisfies a CKW-type monogamy
inequality in direct analogy with entanglement. Consider an
arbitrary (pure or mixed) m-mode Gaussian state ρA1...Am

with
CM σA1...Am

, where each party Aj comprises a single mode
(nj = 1, ∀j = 1, . . . ,m). Then, the following inequalities
hold, ∀ k = 1, . . . ,m:

G(A1,...,Ak−1,Ak+1,...,Am)→Ak (σA1...Am
)

−
∑
j �=k

GAj →Ak (σA1...Am
) � 0, (2)

GAk→(A1,...,Ak−1,Ak+1,...,Am)(σA1...Am
)

−
∑
j �=k

GAk→Aj (σA1...Am
) � 0. (3)

For pure states with CM σ
pure
A1...Am

, the proof is straightfor-
ward. Namely, recall from [36] that the first terms of (2),
(3), and (1) all coincide on pure states. On the other hand,
for the marginal states of any two modes i and j one has
EAi :Aj

(σ pure
A1...Am

) � GAi→Aj (σ pure
A1...Am

) [36]. Inequalities (2) and
(3) then follow readily from the monogamy inequality (1) for
Gaussian entanglement. The full proof of the above inequali-
ties for general mixed states is deferred to the Appendix.

The monogamy relations just derived in this work impose
fundamental restrictions to the distribution of Gaussian steer-
ing among multiple parties in fully quantitative terms. To
analyze these in more detail, let us focus on a tripartite scenario,
in which the monogamy inequalities take the simpler form,

G(AB)→C(σABC) − GA→C(σABC) − GB→C(σABC) � 0, (4)

GC→(AB)(σABC) − GC→A(σABC) − GC→B(σABC) � 0. (5)

As in the original CKW inequality, these inequalities enjoy
a very appealing interpretation: the degree of steering (by
Gaussian measurements) exhibited by the state when all three
parties are considered (i.e., G(AB)→C > 0, or GC→(AB) > 0)
can be larger than the sum of the degrees of steering exhibited
by the individual pairs. On a more extreme level, there exist
quantum states where parties A and B cannot individually
steer party C, i.e., GA→C = GB→C = 0, but collectively they
can, i.e., G(AB)→C > 0. We will see the importance of this type
of correlations later when we discuss applications to QSS.
We remark that the monogamy inequality (4) realizes a crucial
nontrivial strengthening of Result 5 in [55], which can be recast
as G(AB)→C(σABC) − 1

2GA→C(σABC) − 1
2GB→C(σABC) � 0 in

our notation. On the other hand, the reverse monogamy relation
(3) settles an open question raised in the same work [55].

The residuals of the subtractions in (4) and (5) quantify
steering-type correlations that correspond to a collective
property of the three parties, not reducible to the properties
of the individual pairs. We proceed by investigating this
quantitatively in a mode-invariant way. In analogy with what is
done for entanglement [6,7,62], we can calculate the residuals
from the monogamy inequalities (4) or (5) and minimize
them over all mode permutations. It turns out that, in the
paradigmatic case of pure three-mode Gaussian states with
CM σ

pure
ABC (m = 3), we obtain the same quantity (RGS) from
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(b)(a)

FIG. 1. Residual tripartite Gaussian steering GA:B:C for pure
three-mode Gaussian states with CM σ

pure
ABC (a) with fixed a =

2 (local variance of subsystem A), and (b) generated by three
squeezed vacuum fields at −3 dB injected in two beamsplitters with
reflectivities R and R′ (see inset), setting R′ = 1/2 to obtain b = c;
the permutationally invariant GHZ-like state (a = b = c) is obtained
at R = 1/3.

either (4) or (5), regardless of the steering direction. Explicitly,
denoting by 〈i,j,k〉 any cyclic permutation of A,B,C, the RGS
for three-mode pure Gaussian states with CM σ

pure
ABC is defined

as

GA:B:C(
σ

pure
ABC

) = min
〈i,j,k〉

{G(jk)→i − Gj→i − Gk→i} (6a)

= min
〈i,j,k〉

{Gi→(jk) − Gi→j − Gi→k} (6b)

= ln[min{bc/a,ca/b,ab/c}], (6c)

where a = √
det σA, b = √

det σB , and c = √
det σC are lo-

cal symplectic invariants (with |b − c| + 1 � a � b + c − 1),
fully determining the CM σ

pure
ABC in standard form [7,62].

The RGS GA:B:C is a monotone under Gaussian local
operations and classical communication, as one can prove
analogously to the case of the residual entanglement of
Gaussian states [6,7,36,42,62]. Furthermore, finding a nonzero
value of the RGS certifies genuine tripartite steering, as
defined by He and Reid [52], since a sufficient requirement
to violate the corresponding biseparable model for pure states
is the demonstration of steering in all directions: (BC) →
A, (AC) → B, and (AB) → C. We can then regard the RGS
as a meaningful quantitative indicator of genuine tripartite
steering for pure three-mode Gaussian states under Gaussian
measurements.

In Fig. 1(a) we plot the RGS as a function of b and c

for a given a. An elementary analysis reveals that the RGS
GA:B:C is maximized on bisymmetric states with b = c � a,
i.e., when the states are steerable across any global split of
the three modes and also B ↔ C steerable, but no other
steering exists between any two parties. In this case, the
genuine tripartite steering GA:B:C reduces to the collective
steering G(BC)→A = GA→(BC) = ln a. This quantitative anal-
ysis completes the existing picture of quantum correlations
in pure three-mode Gaussian states, together with the cases of
tripartite Bell nonlocality in terms of maximum violation of the
Svetlichny inequality [12] and genuine tripartite entanglement
in terms of Gaussian Rényi-2 entanglement [12]. Bisymmetric
states maximize all three forms of nonclassical correlations;
compare, e.g., our Fig. 1(a) with Figs. 1(a) and 1(b) in [12].

Figure 1(b) presents the RGS measure for Gaussian
states generated by three squeezed vacuum fields (one in
momentum, two in position) with experimentally feasible

squeezing parameter r = 0.345 (i.e., 3 dB of squeezing)
[20,73,74] injected at two beamsplitters with reflectivities
R and R′ as depicted in the inset of Fig. 1(b), setting
R′ = 1/2 so that a = √

1 + 2R(1 − R)(cosh 4r − 1), b =
c =

√
[1 + R2 − (R2 − 1) cosh 4r]/2. When R = 1/3, one

can generate a permutationally invariant Greenberger-Horne-
Zeilinger (GHZ)-like state with a = b = c [3]. As one might
expect, the latter states maximize the RGS in this case.

(b) Operational connections to quantum secret sharing.
Secret sharing [75,76] is a conventional cryptographic protocol
in which a dealer (Alice) wants to share a secret with two
players, Bob and Charlie, but with one condition: Bob and
Charlie should be unable to individually access the secret
(which may involve highly confidential information) and
their collaboration would be required in order to prevent
wrongdoings.

QSS schemes [64,67,77] have been proposed to securely
accomplish this task, by exploiting multipartite entanglement
to secure and split the classical secret among the players in a
single go. Very recently, we provided an unconditional security
proof for entanglement-based QSS protocols in a companion
paper [66]. In our scheme, the goal of the dealer is to establish
a secret key with a joint degree of freedom of the players.
The players can only retrieve Alice’s key and decode the
classical secret by collaborating and communicating to each
other their local measurements to form the joint variable.
The unconditional security of these schemes stems from
the utilized partially device-independent setting, treating the
dealer as a trusted party with characterized devices, and the
(potentially, dishonest) players as untrusted parties whose
measuring devices are described as black boxes. Given this
intrinsically asymmetric separation of roles, one would expect
that multipartite steering be closely related to the security
figure of merit of QSS. Here we prove such a connection
quantitatively.

To start with, let us assume that the dealer, Alice, and
the players, Bob and Charlie, all perform homodyne mea-
surements of the quadratures x̂i ,p̂i with outcomes Xi,Pi ,
with i = A,B,C, on the shared tripartite state. Following
[66], a guaranteed (asymptotic) secret key rate for the QSS
protocol (extracted from the correlations of Alice’s momentum
detection PA and a joint variable P̄ for Bob and Charlie)
to provide security against external eavesdropping is given
by K

A→{B,C}
E � − ln (e

√
VPA|P̄ VXA|X̄), while the key rate

providing unconditional security against both eavesdropping
and dishonest actions of the players is

K
A→{B,C}
full � − ln

(
e

√
VPA|P̄ max{VXA|XC

,VXA|XB
}). (7)

Here, VPA|P̄ = ∫
dP̄ p(P̄ )(〈P 2

A〉P̄ − 〈PA〉2
P̄

) is the minimum
inference variance of Alice’s momentum outcome given the
players’ joint outcome P̄ , and similarly for the other variances.
A tripartite shared state ρABC whose correlations result in
nonzero values of the right-hand side of (7) can be regarded a
useful resource for unconditionally secure QSS.

We focus on pure three-mode Gaussian states with CM
σ

pure
ABC in standard form, fully specified by the local invariants

a,b,c as before. Our first observation is that KE is di-
rectly quantified by the collective steering, G(BC)→A(σ pure

ABC) =
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FIG. 2. Mode-invariant secure QSS key rate versus RGS for 105

pure three-mode Gaussian states (dots); see text for details on the
lines.

max{0, 1
2 ln det σBC

det σABC
}. For the considered class of states, one

has indeed det σABC

det σBC
= 4VPA|P̄ VXA|X̄ = 1/a2, where the joint

variables were chosen to have the linear form X̄ = gXXB +
hXXC and P̄ = gP PB + hP PC , with the real constants
gX(P ),hX(P ) optimized as to minimize the inferred variances
VXA|X̄,VPA|P̄ (see also [36,40]). Putting everything together,

we get K
A→{B,C}
E (σ pure

ABC) � max{0,G(BC)→A(σ pure
ABC) − ln e

2 }.
We can now define a mode-invariant QSS key rate bound

KA:B:C
full that takes into account eavesdropping and potential

dishonesty of the players, by minimizing the right-hand side
of Eq. (7) over the choice of the dealer, i.e., over permutations
of A, B, and C. A nonzero value of the figure of merit
KA:B:C

full (σABC) on a tripartite Gaussian state with CM σABC

guarantees the usefulness of the state for unconditionally
secure QSS, for any possible assignment of the roles. For
pure three-mode Gaussian states, the mode-invariant key rate
KA:B:C

full (σ pure
ABC) can be evaluated explicitly (although its lengthy

expression is omitted here) and analyzed in the physical space
of the parameters a,b,c. We find that KA:B:C

full (σ pure
ABC) admits

exact linear upper and lower bounds as a function of the RGS
GA:B:C(σ pure

ABC), for all states with standard form CM σ
pure
ABC :

GA:B:C
(
σ

pure
ABC

)
2

− ln
e

2
� KA:B:C

full

(
σ

pure
ABC

)

� GA:B:C
(
σ

pure
ABC

) − ln
e

2
. (8)

The bounds are illustrated in Fig. 2 together with a
numerical exploration of 105 randomly generated pure three-
mode Gaussian states. Remarkably, the bounds are tight, and
families of states saturating them can be readily provided.
Specifically, the lower (dotted blue) boundary is spanned by
states with a � 1, b = c = (a + 1)/2; conversely, the upper
(solid black) boundary is spanned by states with a � 1,
b = c → ∞. While these cases are clearly extremal, GHZ-like
states (dashed red), specified by a = b = c and producible as
discussed in Fig. 1(b), nearly maximize the QSS key rate at
fixed RGS, thus arising as convenient practical resources for
the considered task, independently of the distribution of trust.
Indeed, a squeezing level of 4.315 dB, referring to the scheme
of Fig. 1(b), is required to ensure a nonzero key rate using these
states. This is well within the current experimental feasibility,
since up to 10 dB of squeezing has been demonstrated [73,74].
In general, by imposing non-negativity of the lower bound in
(8), we find that KA:B:C

full (σ pure
ABC) > 0 for all pure three-mode

Gaussian states with RGS GA:B:C(σ pure
ABC) > 2 ln(e/2) ≈ 0.614.

Our analysis reveals that partially device-independent QSS is
empowered by multipartite steering, yielding a direct opera-
tional interpretation for the RGS in terms of the guaranteed
key rate of the protocol.

(c) Discussion and conclusion. We have proven that a re-
cently proposed measure of quantum steering under Gaussian
measurements [36,42] obeys CKW-type monogamy inequali-
ties for all Gaussian states of any number of modes. We remark
that monogamy extends in fact to arbitrary non-Gaussian states
under Gaussian measurements, as it is established solely at the
level of covariance matrices. Notice, however, that resorting to
non-Gaussian measurements can lead to extra steerability even
for Gaussian states [51,78], and might allow circumventing
some monogamy constraints [55,71,72].

In the important case of pure three-mode Gaussian states,
we demonstrate that the residual steering emerging from the
laws of monogamy can act as a quantifier of genuine tripartite
steering. The latter measure is endowed with an operational
interpretation, as it is shown to provide tight bounds on the
mode-invariant key rate of a partially device-independent QSS
protocol, whose unconditional security has been very recently
investigated [66]. Our study, combined with [66], provides
practical recipes demonstrating that an implementation of QSS
secure against eavesdropping and potentially dishonest players
is feasible with current technology using tripartite Gaussian
states and Gaussian measurements [79].

Note added. Recently, monogamy inequalities for multipar-
tite Gaussian steering in the case of more than one mode per
party have been investigated in [80].
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Appendix A: Proof of (2). It suffices to prove the inequality
for tripartite states as in (4), with C being a single mode and
A,B comprising an arbitrary number of modes. One can then
apply iteratively this inequality to obtain the corresponding
m-partite one (2).

To do so, recall that from [55,71,72] it is impossible
for A and B to simultaneously steer the one-mode party
C, that is, GA→C(σABC) > 0 implies GB→C(σABC) = 0 (and
vice versa). Therefore, the monogamy relation (4) reduces
to G(AB)→C(σABC) − GA→C(σABC) � 0 (or the analogous ex-
pression with swapped A ↔ B), which holds true because the
Gaussian steering measure (for one-mode steered party C) is
nonincreasing under local Gaussian operations on the steering
party (AB) [42], which include discarding B (or A). This
proves Eq. (2) for any m-mode CM σA1...Am

. �
Appendix B: Proof of (3). In this case we have to recall

the explicit expression of the Gaussian steering measure [42],
defined for a bipartite (nA + nB)-mode state with CM σAB as

GA→B(σAB)

=
⎧⎨
⎩

0, ν̄
AB\A
j � 1∀j = 1, . . . ,nB ;

−∑
j :ν̄AB\A

j <1 ln
(
ν̄

AB\A
j

)
, otherwise,
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where {ν̄AB\A
j }nB

j=1 denote the symplectic eigenvalues
of the Schur complement σ̄AB\A of σA in σAB .
By definition of the Schur complement, and observ-
ing that σ̄AB\A > 0 for any valid CM σAB , notice
that we can write

√
(det σAB)/(det σA) = √

det σ̄AB\A =∏nB

j=1 ν̄
AB\A
j = (

∏
j :ν̄AB\A

j <1 ν̄
AB\A
j )(

∏
j :ν̄AB\A

j � 1 ν̄
AB\A
j ) �

(
∏

j :ν̄AB\A
j <1 ν̄

AB\A
j ).

Applying (− ln) to both sides we get, for any CM σAB with
GA→B(σAB) > 0, the bound (tight when nB = 1 [42])

2GA→B(σAB) � M(σA) − M(σAB) = −IB|A(σAB), (B1)

where M(σ ) = ln det σ is the log-determinant of the CM
σ [72], and IB|A(σAB) = M(σAB) − M(σA) is the condi-
tional log-determinant, which—in analogy to the standard
conditional quantum entropy—is concave on the set of
CMs [72] and subadditive with respect to the conditioned

subsystems,

IBC|A(σABC) � IB|A(σABC) + IC|A(σABC). (B2)

Notice that the latter property is equivalent to the strong
subadditivity for the log-determinant of the CM σABC [62,72].

To prove (3), it suffices to consider the case in which
the multimode term GAk→(A1,...,Ak−1,Ak+1,...,Am) and all
the pairwise terms GAk→Aj are nonzero. Applying then
(B1) to the first term in (3), and using repeatedly
the negation of (B2), we get GAk→(A1,...,Ak−1,Ak+1,...,Am)

(σA1...Am
) � 1

2 [M(σA1,...,Ak−1,Ak+1,...,Am
) − M (σA1...Am

)] = − 1
2

I(A1,...,Ak−1,Ak+1,...,Am)|Ak
(σA1,...,Am

)�− 1
2

∑
j �=k IAj |Ak

(σA1...Am
)=∑

j �=k GAk→Aj (σA1...Am
), where in the last step we used again

(B1) which holds with equality on each of the two-mode terms
involving Ak and any Aj , provided GAk→Aj (σA1...Am

) > 0 as
per assumption. This concludes the proof of Eq. (3) for any
m-mode CM σA1...Am

. �
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