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Double transverse wave-vector correlations in photon pairs generated by spontaneous parametric
down-conversion pumped by Bessel-Gauss beams
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We present an experimental and theoretical study of type I, frequency-degenerate spontaneous parametric
down-conversion (SPDC) with a Bessel-Gauss pump in which we include both paraxial and nonparaxial pump
beam configurations. We present measurements of the SPDC angular spectrum (AS), of the conditional angular
spectrum (CAS) of signal-mode single photons as heralded by the detection of an idler photon, and of the transverse
wave-vector signal-idler correlations (TWC). We show that as the pump is made increasingly nonparaxial, the
AS acquires a nonconcentric double-cone structure, with the CAS shape depending on the azimuthal location
of the heralding detector, while the signal-idler wave-vector correlation region splits into characteristic doublet
stripes, representing as yet unexplored nontrivial, nonlocal quantum correlations between the signal and idler
photons. Our work provides further understanding of SPDC with a particular class of structured pump beams,
and we believe that the controlled presence of double wave-vector correlations represents an interesting resource
for photon-pair quantum-state engineering.
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I. INTRODUCTION

The study and generation of spatially structured beams
has gained huge importance in a number of fields, including
micromanipulation [1–3] and linear [4,5] and nonlinear [6–8]
optics and microscopy [9]. Bessel-Gauss beams are char-
acterized by some particularly interesting properties: (i)
they are propagation invariant [10], (ii) they may exhibit
optical vortices [11,12] and nonlocal correlations in orbital
angular momentum (OAM) [13,14], (iii) they have self-healing
attributes, implying that they may reconstruct following the
presence of an obstacle [15], and (iv) they are turbulence
invariant [16]. It has been predicted [17,18] and experimentally
observed [19–21] that the generation of photon pairs with
similar characteristics seemingly inherited from the pump can
be achieved through the process of spontaneous parametric
down-conversion (SPDC) using as pump a Bessel-Gauss
beam. The resulting photons possess the properties (i) through
(iv) above, besides transverse wave-vector quantum correla-
tions with an unusual topology that could make them especially
attractive for the implementation of quantum protocols.

In this work we report a careful experimental study of pho-
ton pairs generated through a type I SPDC process employing a
negative uniaxial nonlinear crystal with a zeroth-order Bessel-
Gauss (BG) beam as pump. The high quality of the pump
beam was ascertained by measuring its angular spectrum,
which exhibits a high degree of cylindrical symmetry and
is well characterized by the value of its mean transverse
wave-number κ⊥ and corresponding width δκ⊥ (see below).
The experimental and theoretical study here reported assumes
normal incidence of the pump beam on the crystal with κ⊥
values, both within and outside of the paraxial regime. In
the latter case, birefringence effects such as walkoff can be
observed, and new effects can also arise in the nonlinear optics
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realm. The meticulous preparation of the pump beam in our
experiment allows the observation of a number of interesting
properties of the photon pairs generated in the SPDC process.
In particular, we study the appearance of a nonconcentric
double-cone emission structure [19,22], in contrast with the
single cone which characterizes SPDC sources based on a
Bessel-Gauss pump with a small κ⊥ value (κ⊥ � δκ⊥ � ω/c),
which includes Gaussian-beam pumps in the limit κ⊥ → 0.
Our study shows that photon pairs can be emitted with an
easily controllable azimuthal asymmetry that depends on the
value of κ⊥: The probability of detecting a photon pair has the
highest values within a well-defined region of the transverse
plane. This asymmetry, in the nonparaxial regime for the pump,
leads also to the generation of heralded photons described
by superpositions of stationary Bessel modes of different
orders, as dependent on the azimuthal angle of detection [22].
Meanwhile, in the paraxial regime the spatial structure of the
photon pairs is directly inherited from the pump beam, as is
known from previous works [17–19,22–25].

In this paper we report results for the correlations in the
x-x, x-y, and y-y transverse wave-vector components of the
photon pairs in both the paraxial and nonparaxial regimes [26–
28]. In the first regime a diagonal stripe in the space formed
by ks

a and ki
b, where a and b can take the values x and y,

correlates the wave vectors for the signal and idler photons.
While the width of this stripe is determined by the wave-vector
spread δκ , its length is determined by the crystal properties, in
particular the crystal thickness L. As the pump beam departs
from the paraxial regime, this stripe splits into characteristic
doublet stripes compatible with the double-cone structure of
the SPDC angular spectrum. That is, each ks

a value is strongly
correlated with a pair of ki

b values (with a = b). To the best
of our knowledge, these double correlations have not been
studied before; they undoubtedly constitute a resource for the
controlled generation of photon pairs entangled in continuous
variables with a particularly nontrivial topology.
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II. TYPE I SPDC WITH A BESSEL-GAUSS PUMP

In general, the SPDC photon-pair properties have the
following control parameters: (i) the crystal characteristics
including dimensions, orientation of optic axes, and spatial
variation of the nonlinear electric susceptibility and (ii) the
pump characteristics, in particular its spatial and temporal
structure. In previous papers, we have studied type I SPDC
with a Bessel-Gauss pump beam from the theoretical point
of view [22], and, for relatively low values of κ⊥, also from
the experimental point of view [19–21]. We note that in the
literature, most SPDC work involves the use of paraxial pump
beams. In this paper we extend our experimental study to also
include (i) pump beams outside of the paraxial regime and
(ii) measurements of the wave-vector signal-idler correlations.
Our analysis relies on electromagnetic modes which fulfill
Maxwell’s equations strictly, so that it applies both within
and outside of the paraxial regime. We will focus on spectrally
degenerate SPDC—both photons are centered around the same
frequency—with noncollinear emission.

Consider a continuous, quasimonochromatic, and coherent
pump beam of amplitude αp and frequency ωp that impinges
on a wide (as compared to the pump transverse dimensions)
nonlinear crystal of length L, with its main propagation
direction parallel to the normal of the crystal surfaces, defined
as the Z axis. The quantum state of the electromagnetic
field related to the SPDC process at asymptotic times is
given by

|�〉 = |0; αp〉 + π

i�

∫
dωs αp

∫
d2ks

⊥

∫
d2ki

⊥ Np Ns Ni χ

×F (ks
⊥,ωs,ki

⊥,ωp − ωs) |0; αkp ; 1ks ; 1ki〉, (1)

where Np,s,i represents the normalization factors associated
with the pump (p), signal (s), and idler (i) modes, the
factor χ is the effective nonlinear electric susceptibility that
depends on the particular crystal under consideration, and
F (ks

⊥,ωs,ki
⊥,ωp − ωs) is the joint amplitude defined as

F (ks
⊥,ωs,ki

⊥,ωp − ωs)

= ψ(ks
⊥ + ki

⊥) sinc(L
kz/2) exp(−i L
kz/2), (2)

where 
kz = k
p
z − ks

z − ki
z, and where signal (idler) wave

vectors are evaluated at frequency ωs (ωp − ωs). The 0 in the
ket |0; αkp ; 1ks ; 1ki〉 denotes that the vacuum is not explicitly
written for all modes, αkp is the coherent state of the pump
beam, with wave vector kp, and 1ks,i is a single-photon
state in the signal and idler mode expressed in wave-vector
space. The joint amplitude includes the incident structure of
the pump photons through its angular spectrum ψ(kp

⊥). For
a linearly polarized zeroth-order BG beam, it corresponds
to a Gaussian function of the modulus of the transverse
component of the wave-vector around a given value κ⊥ with a
width δκ⊥ ,

ψ(kp
⊥) = e

−(kp
⊥−κ⊥)2/2δ2

κ⊥ . (3)

Note that this expression reduces for κ⊥ � δκ⊥ to the angular
spectrum of a Gaussian beam. We will work, however, in
the regime κ⊥ � δκ⊥ , which guarantees quasipropagation
invariance and permits a close approximation to an ideal Bessel
beam which can be realistically implemented in the laboratory.

The angular spectrum ψ(kp
⊥), together with the

L-dependent longitudinal phase-matching term, determines
the angular spectra of the idler and signal photons via the
strong phasematching condition ks

⊥ + ki
⊥ = kp

⊥; see Eq. (2).
We assume that the crystal is uniaxial, with its optic axis
specified by vector a. In the paraxial regime the standard
effective dispersion relation for the extraordinary pump beam
kE

z (k⊥ ∼ 0) = neω/c can be assumed, while outside of this
regime the dispersion relation takes the form

kE
z (k⊥,ω) = −βa⊥ · k⊥ + ω

c
ne

√
1 − k2

⊥c2

ω2
η, (4)

ne =
√

ε⊥ε‖
ε⊥ + 
εa2

z

, (5)

β = 
εaz

ε⊥ + 
εa2
z

, (6)

η = 1

ε⊥ + 
εa2
z

, (7)

where 
ε = ε‖ − ε⊥ is the difference between the ordinary ε⊥
and extraordinary ε‖ linear permittivities. These permittivities
are frequency dependent so that the ordinary refractive index
no = √

ε⊥ and the terms ne, β, and η that determine the
dispersion relation for extraordinary beams are also frequency
dependent; for quasi-plane waves with a polarization along
the crystal axis, ne can be considered as the extraordinary
refractive index. Notice that the exact expression, Eq. (4), is
anisotropic even for normal incidence and a linearly polarized
pump beam. In fact, the parameter β is a measure of the
so-called Poynting vector walkoff, i.e., the deviation of the
energy flux as given by the Poynting vector with respect to the
main direction of propagation of a paraxial beam within the
birefringent crystal.

A. Angular spectrum of SPDC from a Bessel-Gauss pump beam

In general, from the joint amplitude F , the angular spectrum
(AS) of the photon pairs can be calculated as

Rs(ks
⊥) = |gαp|2

∫
dωs

∫
d2ki

⊥|F (ks
⊥,ωs,ki

⊥ωp − ωs)|2,
g = πNp Ns Niχ/�. (8)

It has been shown recently [22] that approximating the
function sinc(x) in the joint amplitude by a Gaussian function
exp[−(γ x)2], with γ = 0.4393, and taking the limit δk⊥ → 0
with the restriction of a finite pump intensity, yields the fol-
lowing expression for the AS, valid for frequency-degenerate
SPDC (ωs = ωi = ωp/2) with a BG pump beam:

Rs

(
ks

x,k
s
y

) ≈ e
−σ−2

AS

[(
ks

⊥
)2

−r2
AS

]2

×
∫ 2π

0
e− (γL)2

2 (|d|κ⊥ sin ϕp−κ̃)2
dϕp, (9)

r2
AS = (1/2)(noω

p/c)2[1 − (ne/no)], (10)

σ−2
AS = 2(γLc/noω

p)2, (11)
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κ̃ = (ωp/c)(ne − no) + (2c/noω
p)(ks

⊥)2, (12)

d = βa⊥ + (2c/noω
p)ks

⊥. (13)

Note that for a negative uniaxial crystal (ne < no) and
for a paraxial pump beam, i.e. κ⊥ � (ωp/c)|ne − no| (which
includes Gaussian-beam pumps [31] with κ⊥ = 0 as a special
case), the AS is concentrated nearby a cone given by the
condition

ks
⊥ = (noω

p/
√

2c)
√

1 − ne/no = rAS.

Note also that the Gaussian factor multiplying the integral in
Eq. (9) is a function of (ks

⊥)2, so that σAS has units of the inverse
of length squared, and the cone width is given approximately
by 
AS = σAS/rAS. It becomes clear that, in this regime,
the cone aperture in wave-vector space, rAS , depends only
on the refractive indices evaluated at the pump and SPDC
frequencies, no(ωp/2) and ne(ωp), while the width σAS depends
also on these indices but is also inversely proportional to the
crystal length.

As κ⊥ increases, the restriction ks
⊥ ≈ rAS is relaxed: The

SPDC spatial structure is the result of the superposition of the
contributions to the two-photon state from individual pump
wave vectors that arrive symmetrically on the crystal front
surface but are not distributed symmetrically with respect to
the optic axis. This anisotropy yields structures that are not
centered at the origin, but are displaced along the direction
of the optic axis. This displacement would be absent if κ⊥
were zero, e.g., for a Gaussian-beam pump. The AS of a BG
beam which is outside of the paraxial regime involves two
nonhomogenous (i.e., with an azimuthally varying width) and
nonconcentric cones with unequal radii [22]. For a negative
birefringent crystal and for |noω

pβa⊥/2c| ≈ rAS � κ⊥, the
two cones have a quasicircular transverse structure with larger
(smaller) radius r+ (r−), and center defined by the transverse
vector A+â⊥ (A−â⊥), with

r± ≈ rAS − κ⊥
2

(
1 ± noω

pβ|a⊥|
2crAS

∓ κ⊥
2rAS

)
, (14)

A± ≈ ∓ κ⊥
2

(
1 + noω

pβ|a⊥|
2crAS

− κ⊥
2rAS

)
. (15)

The two emission cones are nearly tangent to each other
along the direction defined by the wave vector ∼(−rAS +
κ⊥/2)â⊥ + kzêz. The double-conical structure of the AS
reflects both the asymmetric distribution of the wave vectors
in the incoming Bessel pump beam with respect to the optic
axis and effects proportional to the β term arising in the
extraordinary-ray dispersion relation. Below, in Fig. 1, we
show a schematic of the SPDC source with BG pump used
in our experiments.

As the crystal length is increased, the regions where the
AS has significant values become smaller and the anisotropy
associated with the extraordinary pump beam dispersion
relation becomes more evident. It is expected that a similar
structure of the AS would be exhibited if other propagation-
invariant beams were to be used as pump beams, in particular,
higher-order Bessel-Gauss beams.

FIG. 1. Experimental setup. Back: beam preparation apparatus.
Front: photon pair generation and measurement. Left-hand inset:
schematic of the nonlinear crystal indicating the orientation of
the optic axis. Right-hand inset: schematic of the SPDC angular
spectrum, as resolved on the Fourier plane.

B. Conditional angular spectrum (CAS) and transverse
wave-vector correlation (TWC) functions

The conditional angular spectrum Rc represents the angular
spectrum of the signal photon conditioned on the detection of
an idler photon with wave vector ki

0. For zeroth-order BG
pump beams, Rc may be expressed as

Rc(ks
⊥; ki

⊥0; ωs,ωi
0)=|gαp|2S (ks

⊥,ki
⊥0)L (ks

⊥,ki
⊥0; ωs,ωi

0),

(16)

with

ωs + ωi
0 = ωp, (17)

S (ks
⊥,ki

⊥0) = |ψ(ks
⊥ + ki

⊥)|2

= e
−(|ks

⊥+ki
⊥0|2−κ⊥)2/δ2

κ⊥ , (18)

L (ks
⊥,ki

⊥0; ωs,ωi
0) = sinc2(L
kz/2). (19)

Here we have assumed a monochromatic pump beam and
an ideal resolution in the characterization of the idler and
signal wave vectors (corresponding in a practical experimental
situation to filtering the SPDC photons with a narrow bandpass
filter so as to retain only the degenerate photon pairs with
frequency ωp/2).

The signal-idler transverse wave-vector correlations, or
TWC, are evaluated in terms of the probability of detecting
a pair of photons characterized by wave-vector components
ks
a and ki

b while maintaining the complementary components
ks
c and ki

d at fixed values, where a, b, c, d = x, y, with
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c �= a and d �= b. For instance, the x-x TWC function is
given by Rc(ks

x,k
s
y0; ki

x,k
i
y0; ωs

0,ω
i
0). As we will study below,

the topology of photon-pair wave-vector correlations for a
nonparaxial BG pump beam has an unusual double-correlation
structure which may lead to interesting quantum nonlocal
effects.

The structure of Rc shows that the wave-vector correlation
functions for BG beams are expected to be maximized in
regions of the ks,i

⊥ space where the following phase-matching
conditions are fulfilled:

|ks
⊥ + ki

⊥| ≈ κ⊥, (20)


kz ≈ 0. (21)

The equalities in Eqs. (20) and (21) are approached for
smaller values of δκ⊥ and larger values of the crystal length
L, respectively. Note that the condition given by Eq. (20)
for Gaussian beams, that is, for κ⊥ = 0, is equivalent to
ks

⊥ ≈ −ki
⊥.

1. Transverse phase-matching constraints

In what follows, we study the constraints on the signal and
idler transverse wave vectors derived from Eq. (20), in the
case of interest for which κ⊥ � δκ⊥ . There are, in principle,
four different types of transverse wave-vector correlation
measurements: x-x, y-y, x-y, and y-x. The symmetry of the
joint wave-vector amplitude expected for a type I, frequency-
degenerate photon pair source implies that the x-y and y-x
measurements yield the same information. The following
items result from Eq. (20):

(a) The conditional angular spectrum is maximized on a
contour given by a circumference of radius κ⊥ centered around
−ki

⊥0.
(b) The x-y TWC function is also maximized on a contour

given by a circumference of radius κ⊥ centered around
(−ki

x0, − ks
y0). This circumference may yield nonlocal Bessel-

like photons similar to those reported in Ref. [29].
(c) The x-x TWC function is maximized on contours

defined by two lines with a slope of negative unity, ks
x =

−ki
x ±

√
κ2

⊥ − (ks
y0 + ki

y0)2, whenever κ⊥ � |ks
y0 + ki

y0|.
(d) The y-y TWC function, analogously to (c), is maxi-

mized on contours defined by two lines with slope of negative
unity, ks

y = −ki
y ±

√
κ2

⊥ − (ks
x0 + ki

x0)2, whenever κ⊥ � |ks
x0 +

ki
x0|.

It is important to point out that the structure of the doublet
stripes appearing in the x-x and y-y TWC functions can
be controlled by the source parameters. In particular, the
separation of the stripes in transverse wave-vector space is
determined by κ⊥, as is clear from the above discussion.
Likewise, as can be verified through numerical simulations,
the width of the stripes is controlled in part by the BG
cone width parameter δκ⊥ , and their length by the crystal
thickness L.

2. Longitudinal phase-matching constraints

In the case of frequency-degenerate type I SPDC, the
approximate conservation of the z wave-vector component,

Eq. (21), can be written as


kz ≈ κ̃ − d · (ks
⊥ + ki

⊥) ≈ 0. (22)

This expression results from the first-order Taylor expan-
sion of the extraordinary-ray dispersion relation, Eq. (4), in
κ⊥c/ωp and the strong phase-matching condition for the trans-
verse wave vectors. The width of the distribution associated
with this phase-matching condition decreases linearly with the
crystal length. A direct calculation shows that the fulfillment
of Eqs. (20) and (22) implies the following condition:∣∣∣∣ks

⊥ − noω
p

2c
βa⊥

∣∣∣∣
2

+
∣∣∣∣ki

⊥ − noω
p

2c
βa⊥

∣∣∣∣
2

≈ 2r2
AS + κ2

⊥ +
(

noω
pβ|a⊥|√

2c

)2

. (23)

In the paraxial limit, the terms proportional to β can
be neglected and the signal photon has the structure of a
zeroth-order BG photon. Outside of the paraxial limit the
CAS function becomes anisotropic: There is a dependence
on ks,i

⊥ · a⊥ arising from the modulii |ks,i
⊥ − noω

p

2c
βa⊥|2. Taking

a given value ki
⊥0 for the idler transverse wave-vector we find

that the CAS is maximal on a contour defined by the following
condition:∣∣∣∣ks

⊥ − noω
p

2c
βa⊥

∣∣∣∣
2

≈ 2r2
AS + κ2

⊥ +
(

noω
pβ|a⊥|√

2c

)2

−
∣∣∣∣ki

⊥0 − noω
p

2c
βa⊥

∣∣∣∣
2

. (24)

Similarly, taking fixed values for ks
y0 and ki

x0, the x-y TWC
functions are maximal around(

ks
x − noω

p

2c
βax

)2

+
(

ki
y − noω

p

2c
βay

)2

≈ 2r2
AS + κ2

⊥ +
(

noω
pβ|a⊥|√

2c

)2

−
(

ks
y0 − noω

p

2c
βay

)2

+
(

ki
x0 − noω

p

2c
βax

)2

. (25)

For studying the structure of the y-y and x-x TWC
functions, it is more convenient to write the 
kz = 0
condition as

ks
⊥ · ki

⊥ + r2
AS + noω

pβ

2c
a⊥ · (ks

⊥ + ki
⊥) ≈ 0, (26)

so that we expect the TWC functions to be maximal on
contours given by hyperbolae, defined by

ks
yk

i
y ≈ −r2

AS − ks
x0k

i
x0 − noω

pβ

2c

[
ax

(
ks
x0 + ki

x0

)

∓ ay

√
κ2

⊥ − (ks
x0 + ki

x0)2

]
. (27)

In Eq. (27) the sign of the last term is positive (negative) for
ks
y + ki

y negative (positive). As a consequence, we expect that
the maximal y-y correlations lie on the intersection of the pair
of lines mentioned in the previous subsection which result from
the transverse phase-matching constraint, and the hyperbolae
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defined by Eq. (27), which result from the longitudinal phase-
matching constraint. Note that for visualizing this intersection
it is helpful to consider the structure of the angular spectrum,
since it describes the region where the idler and signal
photons can be emitted. For instance, the regions nearby the
circumferences described in items (a) and (b) and the parallel
lines described in (c) and (d) should overlap with the regions
nearby the cones where the angular spectrum is maximal.

In order to make the asymmetry in the TWC functions,
which arises from the direction of the optic axis, even more
evident, let us give the explicit expressions of the ks

yk
i
y and

ks
xk

i
x phase-matching conditions when a⊥ is parallel to the x

axis:

ks
yk

i
y ≈ −r2

AS − ks
x0k

i
x0 − a⊥

noω
pβ

2c

(
ks
x0 + ki

x0

)
,

ks
xk

i
x ≈ −r2

AS − ks
y0k

i
y0 ∓ a⊥

noω
pβ

2c

√
κ2

⊥ − (
ks
y0 + ki

y0

)2
.

Note that the analysis in this and in the previous subsections
is based on the fulfillment of perfect transverse and longi-
tudinal phase-matching conditions, yielding contours (with
zero thickness) on the transverse wave-vector spaces. Under
realistic experimental conditions, the full conditional angular
spectrum and transverse wave-vector correlation functions
exhibit a width which depends on the crystal length L and
BG cone pump width δκ⊥ . The expected full CAS and TWC
functions, including these widths, may be obtained theoreti-
cally by direct plotting of |F (ks

⊥,ωs,ki
⊥,ωp − ωs)|2 (see, for

example, Fig. 8 below), and may likewise be appreciated from
our experimental measurements (see below).

III. EXPERIMENT

Our experiment exploits a spontaneous parametric down-
conversion photon-pair source based on a β-barium-borate
(BBO) crystal in a type I, frequency-degenerate phase-
matching configuration. We have used as pump zeroth-order
BG beams and report two different, contrasting values of the
κ⊥ parameter which defines the transverse extent of the pump
angular spectrum.

The pump beam preparation was accomplished in three
steps (see Fig. 1). The beam from a diode laser (DL, λp =
406.7 nm with ∼70 mW power) was first transmitted through a
telescope (T1) built from lenses (L1 and L2) with focal lengths
f1 = 5 cm and f2 = 50 cm, so as to magnify the beam by a
factor of 10×. Second, the magnified beam was transmitted
through an axicon (A), placed at a distance of 10 cm from
lens L2, with apex angle of either 1◦ or 2◦; the axicons were
manufactured by Altechna. Third, the beam was propagated
through a second telescope (T2) built from lenses (L3 and L4)

with focal lengths f3 = 10 cm, and either f4 = 15 cm or f4 =
30 cm. Note that lens L3 is placed one focal length distance
f3 from a specific plane separated by either ∼24 or ∼4.5 cm
from the axicon apex on which a high-quality Bessel-Gauss
beam could be observed with a CCD camera (DCU224M from
Thorlabs). The purpose of the second telescope is to magnify
the resulting Bessel-Gauss beam so as to define the value of
the κ⊥ parameter.

We have selected two different pump configurations, as
stated above, each with different values of the κ⊥ parameter.
These two configurations are obtained, as indicated in Table 1,
by appropriate combinations of two different choices of axi-
con, and two different choices of focal lengths in telescope T2.
The two parameters which characterize the pump beam, i.e.,
the BG cone radius κ⊥ and the Gaussian transverse envelope
width δκ⊥ , are determined as best-fit parameters from a mea-
surement of the angular spectrum for each of the two configu-
rations. Note that while the resulting values of δκ⊥ are similar in
the two configurations, the parameter κ⊥ exhibits a large con-
trast, with κ⊥ = 0.0195 μm−1 for configuration 1 and κ⊥ =
0.147 μm−1 for configuration 2. In the first row of Fig. 2, we
show the measured pump angular spectrum for these two con-
figurations along with an intermediate configuration with κ⊥ =
0.045 μm−1 (with increasing value of κ⊥ from left to right).

We have used a BBO crystal (from Castech) with length
L = 1 mm and phase-matching angle θpm = 29.3◦, in order
to produce frequency-degenerate, noncollinear SPDC photon
pairs centered at 813.7 nm. We have used two filters (F1 and
F2) following the crystal (see Fig. 1): a longpass edge filter
(LP02-488RS-25 from Semrock) which transmits wavelengths
λ > 488 nm in order to suppress the pump and a bandpass
filter (FBH810-10 from Thorlabs) centered at 810 nm with
a bandwidth of 10 nm so as to restrict the bandwidth of the
photon pairs.

The signal and idler photons are transmitted through a
lens (L5) with focal length f5 = 5 cm, placed at a distance
f5 from the crystal which defines a Fourier plane (FP) at a
further distance f5 from the lens. Each point on the plane FP
corresponds to a specific transverse wave-vector value, so that
a pair of displaceable ideal pointlike detectors on this plane,
set to record counts in coincidence, may be used to obtain a
measurement of |F (ks

⊥,ωs,ki
⊥,ωp − ωs)|2, as a function of any

two of the four transverse wave-vector components, while the
other two are kept constant. Let us note that throughout this
paper, the coordinate system is chosen so that z is defined by
the propagation of the pump and the zy plane is parallel to the
optical table; the walkoff in the nonlinear crystal occurs on the
xz plane.

We have taken three different types of spatially resolved
measurements on the FP plane. First, monitoring the number

TABLE I. For configurations 1 and 2, we show the parameters for the BG pump beam, κ⊥ and δκ⊥ (second and third columns), obtained
through a fit of the measured pump angular spectra (first row of Fig. 2) to |ψ(kp

⊥)|2 [see Eq. (3)]. In this table we have also indicated the axicon
apex angle (fourth column) and the parameters for the second telescope (T2) (fifth column). The notation coincides with that used in Fig. 1.

Second telescope (T2)
Configuration κ⊥ [μm−1] δκ⊥ [μm−1] Apex [◦] (magnification, focal lengths for L3 and L4)

1 0.0195 0.00076 1 3×, f3 = 10 cm, f4 = 30 cm
2 0.147 0.0008 2 1.5×, f3 = 10 cm, f4 = 15 cm
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FIG. 2. For pump configurations 1 (first column), 2 (third col-
umn), along with an intermediate configuration (second column), we
show the following: in the first row, the measured angular spectrum of
the pump; in the second row, the measured SPDC angular spectrum
obtained through spatially resolved, single-channel photon counting
on the Fourier plane; and in the third row, simulated SPDC angular
spectrum using the parameters from Table 1 for the first and third
columns.

of counts per unit time recorded as a function of the position
of a single detector on FP, we were able to measure the
marginal SPDC angular spectrum, i.e., the SPDC angular
spectrum. Second, fixing one detector at a certain location
on FP, corresponding to wave vector k⊥0, and monitoring
the counts measured in coincidence with a second detector
as a function of the position of this second detector on FP,
we obtained the conditional angular spectrum. Third, we
measured signal-idler transverse wave-vector correlations by
monitoring the coincidence counts as a function of the position
(along the x or y axes) of one detector, and the position
(likewise along the x or y axes) of the second detector.

For measuring the AS, we placed an intensified charge-
coupled device (ICCD) camera (iStar DH334T-18-F-73 from
Andor), which is sensitive at the single-photon level in
each of 1024 × 1024 pixels, on the plane FP. We have
measured the AS for configurations 1 and 2 of the pump, with
transverse pump wave-vector values of κ⊥ = 0.0195 μm−1

and κ⊥ = 0.147 μm−1, respectively, and in addition for an
intermediate configuration with κ⊥ = 0.045 μm−1. The results
are presented in the second row of Fig. 2, along with
corresponding simulations, obtained by numerical integration
of Eq. (8) in the third row; note the excellent agreement
between the numerical simulations and our measurements.
Note, also, that while the smallest value of κ⊥ leads to an AS
which is very similar to the one that would be expected for a
type-I SPDC source with a paraxial Gaussian-beam pump, the
AS for the largest κ⊥ value exhibits a dual-ring structure with a

TABLE II. Comparison between the experimental and expected
parameters describing the angular spectra of SPDC with Bessel-Gauss
pump beams. In the paraxial regime, illustrated by a pump beam with
κ⊥ = 0.0195 μm−1, the emission cone is expected to have an rAS

radius in wave-vector space given by Eq. (10), and a width 
AS =
σAS/rAS with σAS given by Eq. (11). Outside this regime, illustrated
by a pump beam with κ⊥ = 0.147 μm−1, two noncollinear cones
exhibit radii given by r±, Eq. (14), and are centered at A±, Eq. (15).

Configuration Theory Experiment

κ⊥ = 0.0195 μm−1 rAS = 0.484 μm−1 r̃AS = 0.473 μm−1

κ⊥ = 0.0195 μm−1 
AS = 0.081μm−1 
̃AS = 0.080μm−1

κ⊥ = 0.147 μm−1 r+ = 0.55 μm−1 r̃+ = 0.58 μm−1

κ⊥ = 0.147 μm−1 r− = 0.27 μm−1 r̃− = 0.30 μm−1

κ⊥ = 0.147 μm−1 A± = ∓0.1 μm−1 Ã± = ∓0.1 μm−1

high degree of azimuthal asymmetry. Note that this structure is
qualitatively different from that generated by a highly focused
Gaussian-beam pump, which exhibits a single, azimuthally
asymmetric ring [30–32].

For the particular experimental situations considered in this
paper, the radii and centers of the emission cones inferred
from our experimental measurements exhibit a reasonable
agreement with the corresponding values obtained from the
theoretical expressions given in Sec. II A. The formalism
predicts, for κ⊥ = 0.0195 μm−1 (configuration 1, which may
be considered essentially paraxial), an angular spectrum
radius of rAS = 0.484 μm−1 with width parameter of 
AS =
σAS/rAS = 0.081 μm−1; note that we have relied on the
Sellmeier expressions for the BBO electric susceptibilities in
computing these predictions. The corresponding values in-
ferred form measurements are r̃AS = 0.473 μm−1 and 
̃AS =
0.080 μm−1. For the case κ⊥ = 0.147 μm−1 (configuration 2,
which departs from the paraxial regime), the theoretical radii
of the two emission cones in wave-vector space are r+ =
0.55 μm−1 and r− = 0.27 μm−1, with their centers located
at A± = ∓0.1 μm−1 along a⊥. From our measurements
we may infer the corresponding values r̃+ = 0.58 μm−1,
r̃− = 0.30 μm−1, and Ã± = ∓0.1 μm−1. These results are
summarized in Table II.

Note that there are a number of factors which contribute
to determine the observed widths of the SPDC emission
cones. First, the parameter σAS in Eq. (9) is highly dependent
on the crystal length L; in addition, while Eq. (9) assumes
δκ⊥ → 0, the BG cone width δκ⊥ also influences the width
of the SPDC cones. Second, while the theoretical description
assumes that the pump is normally incident, unavoidable small
tilts in the experiment may also contribute. Third, while the
form of the theory presented here assumes ideal spectral
filters of zero width applied to the signal and idler photon
pairs, the actual width of the spectral filters used (10 nm)
also has an important effect. In the numerical simulations all
these factors can be incorporated, in particular distributions
(e.g., described by Gaussian functions), introduced so as to
describe both the spectral filtering and the pump spectral
envelope [30,33]. The simulations show that a tilt between
the incident pump and the normal to the crystal surface (while
leaving the crystal cut angle fixed) of less than 0.2◦ is enough to
surmount almost completely the slight discrepancies between
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FIG. 3. (a) SPDC angular spectrum for pump configuration 1 [also shown in Fig. 2(d)], in which we have indicated five different locations
distributed around the upper circumference of the SPDC angular spectrum, labeled as (i) through (v), of the fixed conditioning detector along
with the corresponding conditional angular spectrum (CAS) appearing in the diametrically opposed portion of the ring, labeled as (i’) through
(v’). In each of panels (i’) through (v’) we have shown the CAS for each of the fixed conditioning detector positions (i) through (v) in individual
plots for enhanced clarity.

Figs. 2(e) and 2(h), and between Figs. 2(f) and 2(i). Let us
emphasize that Figs. 2(g)–2(i) illustrate the predictions of
the ideal model described in Sec. II B (which excludes such
tilting) and from which the parameters shown in Table II were
obtained.

For measuring the CAS, we placed the fiber tips of
two different multimode fibers (with 64-μm core radius) on
the FP plane, each fiber leading to a Si avalance photo-
diode (APD). Each of the two fiber tips was mounted so
that it could be displaced on the FP plane with the help
of two computer-controlled linear microtranslation stages
(M-111.1DG from Physik Instrumente, with 50-nm resolution
and 1.5-cm travel). A given position on FP of the idler-mode
fiber tip, corresponding to wave-vector value ki

⊥ is then
selected and the signal-mode fiber tip is scanned around the
position corresponding to the transverse wave vector −ki

⊥,
while monitoring coincidence counts between the signal and
idler photons.

We set out to compare measurements of the CAS performed
for our two different pump beam configurations. In order to
test the azimuthal distinguishability of the two-photon state,
we selected five different positions of the idler-mode fiber tip
around the upper half of the angular spectrum. In Fig. 3 we
show—for pump configuration 1—the angular spectrum along
with the five selected idler detector locations, labeled i, ii, iii,
iv, and v. We also show, superimposed on the plot of the AS,
plots for the CAS function measured for each of these points,
each labeled with the corresponding primed Roman numeral.
While in this plot the relative locations with respect to the
AS of these five different CAS functions can be appreciated
clearly, we also show in five additional panels each of the CAS
measurements for easier visualization of their structure.

Note that, interestingly, the CAS exhibits essentially the
same structure for the five selected positions of the idler
detector. This is consistent with the relatively small value
of κ⊥ for pump configuration 1, for which the two-photon
state is determined mainly by the pump properties. In fact,

as explained in Sec. II B, in this case the CAS has a similar
structure to the pump angular spectrum, except for a transverse
displacement according to the position of the idler detector.
This is a consequence of the fact that for a sufficiently
small value of κ⊥ (in combination with a sufficiently thin
crystal) the width of the function S (ks

⊥,ki
⊥)—see Eq. (18)—is

considerably less than that of the function L (ks
⊥,ki

⊥)–see
Eq. (19)—so that the former dominates. Note that the fact that
the CAS has an unchanging structure around the AS leads to
the azimuthal symmetry (i.e., single SPDC ring with constant
width) of the AS.

Let us now compare this behavior with that resulting
from pump configuration 2, which is characterized by a
much larger value of κ⊥. In this case, we have likewise
selected five positions for the idler detector around the SPDC
angular spectrum, labeled as i, ii, iii, iv, and v, in the large
panel of Fig. 4. We also show superimposed on the SPDC
angular spectrum, as we did for configuration 1, the CAS
corresponding to each of these idler detector positions, each
labeled with the corresponding primed Roman numeral; in
addition, we have presented in five additional panels each of
the CAS measurements for easier visualization of its structure.
It is no surprise that each CAS function covers a larger
area of the transverse wave-vector space, as compared to
configuration 1, since the CAS transverse extent is seemingly
inherited from the pump angular spectrum. More interestingly,
in this case the CAS function leads to signal photons that
have a conditional angular spectrum which differs significantly
from that of a Bessel-Gauss photon. The resulting azimuthal
angular structure in the transverse wave-vector space can be
written as a superposition of cos(nϕk) functions (that would be
related to stationary Bessel-Gauss photons [22]) or Mathieu
cen(ϕk) functions (that would be related to stationary Mathieu
photons [34]). This effect is a consequence of the fact that
the S (ks

⊥,ki
⊥) function is now much wider as compared to

configuration 1, to the extent that the function L (ks
⊥,ki

⊥)
(which does not depend on the pump spatial structure) now
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FIG. 4. (a) SPDC angular spectrum for pump configuration 2 [also shown in Fig. 2(f)], in which we have indicated 5 different locations
distributed around the upper circumference of the SPDC angular spectrum, labeled as (i) through (v), of the fixed conditioning detector along
with the corresponding conditional angular spectrum (CAS) appearing in the diametrically opposed portion of the ring, labeled as (i’) through
(v’). In each of panels (i’) through (v’) we have shown the CAS for each of the fixed conditioning detector positions (i) through (v) in individual
plots for enhanced clarity.

clips the displaced pump angular spectrum in a different
manner at each location of the SPDC angular spectrum.

In order to further study the anisotropy induced by the
direction of the optic axis on the CAS, we show in Fig. 5
our measurement of the CAS for pump configuration 2, for
three different positions labeled as i, ii, and iii, of the idler
detector across the right flank of the SPDC ring. It becomes
clear that as we displace the idler detector, different portions
of the S (ks

⊥,ki
⊥) function, which has an annular structure, are

revealed.
In order to measure the signal-idler transverse wave-vector

correlations we use the same setup as was used for measuring
the CAS function. First, we choose two reference locations
on the FP plane for the signal and idler detectors, around
which the detectors will be displaced. Second, we choose
directions of detector displacement, x or y, for each of the

signal and idler detectors. Third, for each position of the
signal detector, we scan the idler detector along the full range
permitted. In this manner, we build a matrix of coincidence
counts corresponding to different combinations of positions,
along the selected directions and around the selected reference
locations, for the two detectors.

In the large panel of Fig. 6 we show a contour plot of the
SPDC angular spectrum, for pump configuration 1, and show
two pairs of axes with their respective origins indicating the
selected reference locations. While in the top row of smaller
panels we show our measurements of the x-x, y-y, and x-y
TWC functions, in the second row we show corresponding
simulations obtained from numerical integration of Eq. (8).
It is notable that there is excellent agreement between theory
and experiment. As discussed in Sec. II B, the most striking
difference with respect to similar measurements that would
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FIG. 5. (a) SPDC angular spectrum for pump configuration 2 [also shown in Fig. 2(f)], in which we have indicated three different locations
distributed radially on the right-hand side of the SPDC angular spectrum, labeled as (i) through (iii), of the fixed conditioning detector along
with the corresponding conditional angular spectrum (CAS) appearing in the diametrically opposed portion of the ring, labeled as (i’) through
(iii’). In each of panels (i’) through (iii’) we have shown the CAS for each of the fixed conditioning detector positions (i) through (iii) in
individual plots for enhanced clarity.
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FIG. 6. (a) SPDC angular spectrum for pump configuration 1 [also shown in Fig. 2(d)], on which we have indicated (origins of the two sets
of red-colored axes) the central locations from which we scan the signal and idler detectors for our x-x, y-y, and x-y transverse wave-vector
correlation measurements. In panels (b), (c), and (d) we have shown our measured x-x, y-y, and x-y transverse wave-vector correlations. In
panels (e), (f), and (g) we have shown corresponding simulations for each of the x-x, y-y, and x-y correlations.

be obtained for a standard Gaussian-beam pump [35] is
that both x-x and y-y correlations become double corre-
lations in the sense that the diagonal region with nonzero
coincidence counts becomes, for a Bessel-Gauss beam,
duplicated.

Note that the x-y TWC function measurement reveals
a structure which is essentially that of the pump angular
spectrum, as expected from the discussion in Sec. II B.
Note also that the y-y TWC function measurements yields
significantly longer coincidence count regions as compared to
the x-x TWC function measurements. This is because while
the y direction is tangent to the SPDC angular spectrum, the
x direction cuts radially through the angular spectrum. It is
interesting that the same source can yield very different degrees
of correlation according to whether detectors are scanned in
the x or y directions. Note that it becomes possible to scan
the detectors in rotated x and y axes with the possibility of
continuously tuning between the two extremes of shorter x-x
and longer y-y correlations, as controlled by the axis rotation.
This represents an interesting added versatility of this type of
source.

Let us now compare this behavior with that resulting for
pump configuration 2. The large panel in Fig. 7 shows a contour
plot of the SPDC spectrum, and as for the previous case, the
origins of the two sets of shown axes indicate the two chosen
reference locations. While in the first row of smaller panels we
have shown x-x, y-y, and x-y TWC function measurements, in
the second row we have indicated corresponding simulations
obtained from numerical integration of Eq. (16). Note that
in this case, the two coincidence-count regions in the x-x
correlation measurement become highly unequal, and further-
more these two regions no longer overlap in the ks

x coordinate
and essentially do not overlap in the ki

x coordinate. This
is necessarily due to dependence of the longitudinal phase-
matching function L on the orientation of the optic axis [in
our configuration a = (ax,0,az)]. Notice also that the relevant
values of ks

x are negative while ki
x are positive; evidently, the

phase-matching effective equation, Eq. (26), cannot be fulfilled
for ks

x and ki
x with the same sign in this configuration. Also

note that the x-y measurement once again shows essentially
the structure of the pump angular spectrum, except clipped by
L , for this larger value of κ⊥ as expected from Eq. (25).

In Fig. 8 we have shown, for pump configuration 2, how
the structure of the transverse x-x, y-y and x-y correlations is
determined by functions S (ks

⊥,ki
⊥) and L (ks

⊥,ki
⊥). The case

of x-x correlations (with ks
y = ks

y0 and ki
y = ki

y0) is shown in
the first row. Figures 8(a), 8(b), and 8(c) show resulting plots
of the functions S (ks

⊥,ki
⊥), which contains information about

the pump angular spectrum, L (ks
⊥,ki

⊥), which contains infor-
mation about the crystal phase-matching properties, and the
product S (ks

⊥,ki
⊥)L (ks

⊥,ki
⊥), which represents the x-x TWC

function. The second row is similar to the first row, except now
for the case of y-y correlations (with ks

x = ks
x0 and ki

x = ki
x0).

It becomes evident that while function S (ks
⊥,ki

⊥) defines the
doublet stripe structure, function L (ks

⊥,ki
⊥) determines the

transverse extent of these stripes. The third row is similar to
the previous one, illustrating now the x-y correlations; while
S (ks

⊥,ki
⊥) carries direct information from the pump beam, the

varying magnitude along the circumference in the CAS is due
to the L (ks

⊥,ki
⊥) factor.

One of the salient features of SPDC with BG pump beams
is that as the value of κ⊥ increases, the angular spectrum
of the signal and idler photon pairs becomes increasingly
concentrated on the transverse wave-vector plane. This effect
is evident for example in Fig. 5(a), where the probability of
emission is greater on the right flank of the angular spectrum.
Let us note that in typical type I SPDC sources, with an
azimuthally symmetric cone of emission, all of the flux emitted
which does not correspond to two diametrically opposed
portions of the ring is effectively wasted. In this context, the
breaking of azimuthal symmetry and concentration of the flux
on the transverse wave-vector plane could prove to be a useful
resource for a boosted flux along a specific, desired direction
of propagation.
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FIG. 7. (a) SPDC angular spectrum for pump configuration 2 (also shown in Fig. 2), on which we have indicated (origins of the two sets
of red-colored axes) the central locations from which we scan the signal and idler detectors for our x-x, y-y, and x-y transverse wave-vector
correlation measurements. In panels (b), (c), and (d) we have shown our measured x-x, y-y, and x-y transverse wave-vector correlations. In
panels (e), (f), and (g) we have shown corresponding simulations for each of the x-x, y-y, and x-y correlations.

In this paper we have focused our attention on the
appearance of double transverse wave-vector correlations. As
we have discussed, the ring structure of the pump angular
spectrum directly implies that the TWC function splits into
characteristic doublet stripes. It is interesting to point out
that a pump formed by the coherent addition of two BG

FIG. 8. In the first column we show plots of the function
S (ks

⊥,ki
⊥); in the second column the plots correspond to the

function L (k⊥s ,k⊥i); in the third column the corresponding product
S (ks

⊥,ki
⊥)L (ks

⊥,ki
⊥) is shown. Panels (a), (b), and (c), refer to the

x − x wavevector correlations, with ki
y0 = ks

y0 = 0; panels (d), (e) and
(f) to y − y transverse wavevector correlations with ki

x0 = ks
x0 = 0;

panels (g), (h), and (i) show the plots for x − y transverse wavevector
correlations.

beams with different values of κ⊥, i.e., exhibiting a dual-ring
angular spectrum, would lead to TWC functions exhibiting
four instead of two stripes. Likewise, the coherent addition of a
Gaussian beam and a BG beam would result in TWC functions
showing three characteristic stripes. Appropriate combinations
of Gaussian and BG pump modes could then result in a
certain scalability in the splitting of transverse wave-vector
correlations [36]. One possibility would be to employ such a
source in a ghost imaging setup [37,38] so as to obtain multiple
ghost images, one per stripe appearing in the TWC functions.

IV. CONCLUSIONS

The two-photon state produced by spontaneous parametric
down-conversion is constructed from the coherent addition
of the individual contributions due to all available pump
wave vectors. In this paper we have focused on the use of
a Bessel-Gauss (BG) pump, which corresponds to a conical
superposition of Gaussian beams; we have characterized BG
beams with two parameters: the transverse wave-vector cone
radius κ⊥ and its width δκ⊥ . While in our experiments we have
oriented the main pump propagation axis parallel to the normal
to the crystal front surface, BG pump beams imply a significant
spread of pump wave vectors impinging nonsymetrically with
respect to the optic axis, leading to a considerable departure
from cylindrical symmetry in the two-photon state. This
is reflected in a nonconcentric double-cone SPDC angular
spectrum, with the conditional angular spectrum exhibiting a
shape which depends on the azimuthal location of the heralding
detector. In addition, as the pump becomes increasingly
nonparaxial (quantified by larger values of κ⊥), the signal-
idler wave-vector correlation region splits into characteristic
doublet stripes, implying that each signal-photon wave vector
is correlated with two distinct idler wave vectors.

We have presented a general theory which describes
SPDC two-photon states involving a BG pump which can
range from paraxial to highly nonparaxial. We have also
presented measurements which agree extremely well with
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corresponding simulations based on our theory. We believe
that the double transverse wave-vector correlations which
we have demonstrated represents an interesting resource for
photon-pair quantum state engineering.
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propagation invariant photons with orbital angular momentum,
Phys. Rev. A 90, 013833 (2014).

[23] S. Prabhakar, S. Gangi Reddy, A. Aadhi, A. Kumar, P.
Chithrabhanu, G. K. Samanta, and R. P. Singh, Spatial dis-
tribution of spontaneous parametric down-converted photons
for higher order optical vortices, Opt. Commun. 326, 64
(2014).

[24] M. V. Jabir, N. Apurv Chaitanya, A. Aadhi, and G. K. Samanta,
Generation of “perfect” vortex of variable size and its effect in
angular spectrum of the down-converted photons, Sci. Rep. 6,
21877 (2016).

[25] C. I. Osorio, G. Molina-Terriza, and, J. P. Torres, Correlations in
orbital angular momentum of spatially entangled paired photons
generated in parametric down-conversion, Phys. Rev. A 77,
015810 (2008).
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