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Majorization of quantum polarization distributions
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Majorization provides a rather powerful partial-order classification of probability distributions depending
only on the spread of the statistics, and not on the actual numerical values of the variable being described.
We propose to apply majorization as a metameasure of quantum polarization fluctuations, this is to say of the
degree of polarization. We compare the polarization fluctuations of the most relevant classes of quantum and
classical-like states. In particular we test Lieb’s conjecture regarding classical-like states as the most polarized
and a complementary conjecture that the most unpolarized pure states are the most nonclassical.
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I. INTRODUCTION

Light fluctuations are relevant both from fundamental as
well as practical perspectives. On the one hand field statistics
are the key feature distinguishing classical from quantum
light [1]. On the other hand, fluctuations and uncertainty
usually limit the performance of optical applications. In this
regard is worth noting that polarization and two-beam linear
interferometry share the same fundamental SU(2) symmetry,
so we may say that they are isomorphic. Deep down, this
equivalence holds because interference and polarization are
the two main manifestations of coherence.

Both in classical and quantum optics, polarization uncer-
tainty is assessed via the degree of polarization [2–4]. The
classic definition in terms of the Stokes parameters involves
just second-order statistics of the field complex amplitudes.
This cannot reflect statistical properties involving higher-order
moments, in particular polarization fluctuations, which are
crucial in quantum optics [4]. For example, there are states
with vanishing degree of polarization that nevertheless cannot
be regarded as being unpolarized, which is usually referred to
as hidden polarization [4,5].

These and similar reasonings have motivated the introduc-
tion of other measures of polarization fluctuations, actually
plenty of them [3,4,6,7]. In this work we go beyond particular
definitions of the degree of polarization by applying the
mathematical idea of majorization to quantum polarization
distributions. Majorization provides a rather powerful partial-
order classification of probability distributions depending only
on the spread of the statistics, and not on the actual numerical
values of the variable being described [8]. This ordering is
respected by the entropic measures. So majorization actually
becomes a kind of metameasure of uncertainty. In our case this
means to go beyond all measures of the degree of polarization
introduced so far.

As a suitable polarization distribution in quantum optics
we focus on the SU(2) Q function because of its good
properties, especially SU(2) invariance [6,9]. We apply this
technique to the most relevant classical and nonclassical
polarization states. In particular we test Lieb’s conjecture
regarding SU(2) coherent states as the most polarized states
in quantum optics [10]. Since SU(2) coherent states are
also regarded as the most classical states [11,12], this
suggests the ensuing complementary conjecture: that the
most quantum states should be the most unpolarized pure

states [13]. This conjecture can readily be tested also via
majorization.

In Sec. II we present the main ingredients such as the
polarization SU(2) Q function, majorization, and the most
relevant classes of states to be compared. This includes the
SU(2) coherent states as the most classical-like, as well
as nonclassical examples such as squeezed states, the so-
called NOON states, the phase states, and finally the most
nonclassical states according to the Hilbert-Schmidt distance.
In Sec. III the polarization distributions of these states are
compared via majorization. Since in principle polarization and
intensity are independent degrees of freedom, we focus mainly
on states with definite total number of photons. Nevertheless,
we consider also more practical and experimentally generable
states with nondefinite total number of photons.

II. PROCEDURE

A. Polarization distribution

A suitable polarization distribution can be introduced via
the SU(2) Q function Q(�) defined by projection of the density
matrix ρ on the SU(2) coherent states as [6,9]

Q(�) =
∞∑

n=0

n + 1

4π
〈n,�|ρ|n,�〉, (1)

where |n,�〉 are the SU(2) coherent states [12]

|n,�〉 =
n∑

m=0

(
n

m

)1/2(
sin

θ

2

)n−m(
cos

θ

2

)m

× e−imφ |m,n − m〉, (2)

and |n1,n2〉 = |n1〉1|n2〉2 denote the product of photon number
states in the corresponding two field modes sustaining the
polarization degree of freedom. The variables � = (θ,φ)
represent points on a unit sphere, the Poincaré sphere,
with polar angle θ , azimuthal angle φ, and surface element
d� = sin θdθdφ.

The SU(2) symmetry reflects the fact that all points on the
sphere are equivalent. This is conveniently respected by the
SU(2) Q function since the Q(�) function for the transformed
state has the same form of the original one, but simply centered
at another point of the Poincaré sphere. SU(2) transformations
are quite simply implemented in practice via phase plates or
beam splitters.
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To simplify the comparison between distributions via
majorization we shall discretize the polarization distribution
by dividing the Poincaré sphere into N surface elements, say
pixels. The key point to maintain the natural SU(2) invariance
is that all pixels should be of the same area. Taking into account
that d� = sin θdθdφ = |d cos θ |dφ, we accomplish this by
dividing the ranges of variation of cos θ and φ into intervals
of the same length, that is,

θ� = arccos

(
2� − 1

Nθ

− 1

)
, � = 1, . . . ,Nθ ,

φk = 2π

Nφ

k − π, k = 1, . . . ,Nφ. (3)

Thus the discretized version of Q(�) is

pj = Q(�j )d�, �j = (θ�,φk),

j = Nφ(� − 1) + k = 1, . . . ,N, (4)

where N = NθNφ and d� = 4π/N . More rigorously we
should integrate the Q(�) distribution to each pixel, but this
approximate form is rather simple and good enough for our
purposes if the sampling is accurate. In the limit of accurate
sampling neither the area nor the shape of the pixels matters.

B. Majorization

Since polarization lives on an sphere, this is a good place to
apply statistical evaluations of uncertainty and fluctuations be-
yond variance and standard first-order moments, for example
confidence intervals or entropylike measures. In this regard,
both lead us to majorization as a kind of metameasure of
fluctuations. Let us show this in more detail: we first present
two equivalent formal definitions of majorization and then we
provide some physical intuition about it.

Denoting by p̃ and p two given probability distributions,
we say that p majorizes p̃, which is expressed as p̃ ≺ p, when
the following relation between the ordered partial sums, or
Lorenz curves, is satisfied for all k (see Fig. 1):

Sk(p̃↓) =
k∑

j=1

p̃j
↓ �

k∑
j=1

p
↓
j = Sk(p↓), (5)

k1 N

S  k

1

0

S  (p)  k

S  (p)  k

FIG. 1. Relation between partial ordered sums Sk as functions of
k when the majorization p̃ ≺ p holds. Although k is discrete, in all
plots the points have been joined by continuous lines as an aid to the
eye.

where k = 1, 2, . . . ,N represents the number of pixels the
probabilities of which are added in the corresponding ordered
partial sum Sk , always with SN = 1. The superscript ↓ denotes
that the pj values are arranged in decreasing order: p↓

1 � p
↓
2 �

· · · � p
↓
N . We will say that two distributions are comparable if

one majorizes the other. Moreover, p̃ ≺ p is equivalent to say
that there exist N -dimensional permutation matrices �j and a
probability distribution {πj } such that

p̃ =
∑

j

πj�jp. (6)

That is, p̃ is majorized by p when p̃ can be obtained from p by
randomly permuting its components, and then averaging over
the permutations.

Majorization is a partial ordering relation, so that not
every two distributions can be compared. Thus we can find
distributions that neither p̃ ≺ p nor p ≺ p̃. This situation will
be represented as p �� p̃. In such a case the Lorenz curves
Sk will intersect.

Roughly speaking, if p majorizes p̃ we may say that p

presents less dispersion or less uncertainty than p̃ regarding
the underlying physical property. This is because the partial
sums (5) indicate that more probability is concentrated in a
lesser number of pixels. This idea that p̃ is more random that
p is also clearly expressed by the randomization procedure in
Eq. (6).

This interpretation can be further illustrated if we consider
the two extremes situations. If there were no uncertainty, all the
distribution should be concentrated in a single pixel, p

↓
1 = 1,

p
↓
j �=1 = 0, and Sk = 1 for all k. This clearly majorizes any

other distribution. On the other hand, the uniform distribution
p

↓
j = 1/N is majorized by any other distribution [14].

This intuition is further confirmed by the deep relation
between majorization and other measures of uncertainty. Let
us present two clear examples: confidence intervals K(α) and
entropies Rq(p).

Confidence intervals K(α) are defined as the minimum
number of pixels K such that the partial sum up to p

↓
K

comprises a given fraction α of the probability [15], that is,

K∑
j=1

p
↓
j � α ←→ K � K(α). (7)

When two distributions are comparable, p̃ ≺ p is equivalent
to saying that all confidence intervals of p̃ are larger than or
equal to those of p (see Fig. 2):

p̃ ≺ p ←→ K̃(α) � K(α) ∀α. (8)

Otherwise, if the distributions are incomparable p �� p̃ we
will have K̃(α) > K(α) and K̃(β) < K(β) for different α

and β.
Regarding the relation between entropylike measures and

majorization we may consider, for example, the Rényi en-
tropies [16]

Rq(p) = 1

1 − q
ln

⎛
⎝ N∑

j=1

p
q

j

⎞
⎠, (9)
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FIG. 2. Relation between partial ordered sums Sk and confidence
intervals when the majorization p̃ ≺ p holds.

where q > 0 is an index labeling different entropies, so we
have that if p̃ ≺ p then Rq(p̃) > Rq(p) for all q. The limiting
case q → 1 is the Shannon entropy R1 = −∑N

j=1 pj ln pj

while q = 2 is essentially the degree of polarization introduced
in Ref. [6]. If the distributions are incomparable p �� p̃

different entropies may provide contradictory conclusions:
Rq(p̃) > Rq(p) while Rr (p̃) < Rr (p) for some r �= q.

We think this reveals the powerfulness of majorization
as a kind of metameasure. When majorization holds there
is unanimity of confidence intervals and entropies regarding
which distribution is more ordered and has less uncertainty.
When there is no majorization the unanimity is lost.

C. Distributions for relevant field states

Let us recall the classes of classical-like and nonclassical
field states the polarization distributions of which will be
compared. We will focus mainly on field states defined within
the subspaces Hn of fixed total photon number n. These
subspaces have dimension n + 1 being spanned by the product
of number states |m,n − m〉,m = 0, . . . ,n. We consider pure
states to focus exclusively on uncertainty with quantum origin.

1. SU(2) coherent states

These are considered as the most classical polarization
states [11]. According to Lieb’s conjecture they should
majorize any other one within Hn [10,11]. After Eq. (6) this
is particularly clear for classical-like states of the form ρ =∫

d�P (�)|n,�〉〈n,�|, with a bona fide classical probability
distribution P (�). This is because all the SU(2) coherent
states are connected by an SU(2) transformation, so the
corresponding discretized Q(�) are just connected by pixel
permutations. Maybe, the surprising result is that this extends
to nonclassical light with highly singular P (�) distributions.

Using the SU(2) symmetry we will consider the Q function
for the SU(2) coherent state C which is just the product of a
number state with n photons and the vacuum state:

|n,C〉 = |n,0〉. (10)

The corresponding Q function is concentrated at the north pole
of the Poincaré sphere. The other SU(2) coherent states |n,�〉
are just SU(2) orbits of this state.

2. Phase states

These are complementary to the number states [17]:

|n,φ〉 = 1√
n + 1

n∑
m=0

e−imφ |m,n − m〉. (11)

Using the SU(2) symmetry we will consider the Q function
for the phase state P with φ = 0, that is, |n,P 〉 = |n,φ = 0〉.

3. Squeezed states

These are quite distinguished states regarding quantum
applications, including metrology as a relevant example.
There are no simple criteria translating the simple quadrature
squeezing into SU(2) squeezing [18]. For our purposes we can
focus on the most squeezed states S regarding metrological
applications, exemplified by the twin-number states

|n,S〉 = |n/2,n/2〉 (12)

for even n [19], and the closets analog for n odd [20]:

|n,S〉 = 1√
2

(∣∣∣∣n + 1

2
,
n − 1

2

〉
+

∣∣∣∣n − 1

2
,
n + 1

2

〉)
. (13)

4. NOON states

Further states with interesting practical applications re-
lying on their strong quantum properties are the NOON or
Schrödinger’s cat states [21], which we shall refer to as N :

|n,N〉 = 1√
2

(|n,0〉 + |0,n〉). (14)

5. Most nonclassical states via Hilbert-Schmidt distance

These are the most nonclassical states according to the
Hilbert-Schmidt distance to the convex set of classical-like
states defined as the incoherent mixture of SU(2) coherent
states [22]. They have no simple general expression and we
will consider just the examples with lower number of photons,
say

|n = 4,H 〉 = 1√
3

(|0,4〉 +
√

2|3,1〉), (15)

and

|n = 5,H 〉 = 1√
2

(|1,4〉 + |4,1〉), (16)

while for n = 2,3 they coincide with the NOON states. It
is worth noting that these states coincide with the so-called
anticoherent states, defined as those with mean value and
variance of Stokes-operators vector invariant under SU(2)
transformations, and some other approaches [13].

III. RESULTS

In this section we present the results obtained for the
lowest photon numbers, that nevertheless clearly illustrate the
situation regarding the mutual relationship between classical-
like and nonclassical states.
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FIG. 3. Ordered partial sums Sk as functions of k for coherent
C, squeezed S, NOON N , most quantum H , and phase states P for
two-photon states n = 2.

A. One-photon states n = 1

The case of a single photon is trivial since all pure states
are SU(2) coherent states, so all pure states have the same
polarization distribution, modulus SU(2) transformations.

B. Two-photon states n = 2

In this case after SU(2) symmetry all the above classes
of states reduce to the comparison of the SU(2) coherent
state |2,C〉 = |2,0〉, the phase state |2,P 〉, and the product
of one-photon states |1,1〉 that is simultaneously NOON,
squeezed, and the most nonclassical state |2,N〉 = |2,S〉 =
|2,H 〉 = |1,1〉. Their ordered partial sums Sk are plotted in
Fig. 3 as functions of k, where it can be appreciated that the
following sequence holds:

N = S = H ≺ P ≺ C, (17)

so that the most polarized is the most classical and the
most unpolarized is the most nonclassical. Note also that
coherent and phase states are so close that they can be hardly
distinguished.

C. Three-photon states n = 3

In this case the identity between nonclassical states holds
only between the NOON and the most nonclassical. Their
ordered partial sums Sk are plotted in Fig. 4 showing the
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FIG. 4. Ordered partial sums Sk as functions of k for coherent C,
squeezed S,NOON, and most quantum N = H , and phase states P

for three-photon states n = 3.
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FIG. 5. Ordered partial sums Sk as functions of k for coherent
C, squeezed S, NOON N , most quantum H , and phase states P for
four-photon states n = 4. For clarity the squeezed case S is plotted
with a dashed line.

following chain of majorizations:

N = H ≺ S ≺ P ≺ C. (18)

D. Four-photon states n = 4

In this case all the above classes of states are represented
by different vectors. Their ordered partial sums Sk are plotted
in Fig. 5 showing the following ordering:

H ≺ S �� N ≺ P ≺ C. (19)

We get the first example of incomparability, that holds between
the NOON N and squeezed S states. We have checked that
exactly the same situation is repeated for six-photon states
n = 6.

E. Five-photon states n = 5

For the cases we have examined with odd n there is no
incomparability between squeezed and NOON states. For
n = 5 we have the chain of majorizations

H ≺ N ≺ S ≺ P ≺ C, (20)

as illustrated in Fig. 6.
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FIG. 6. Ordered partial sums Sk as functions of k for coherent
C, squeezed S, NOON N , most quantum H , and phase states P for
five-photon states n = 5.

063858-4



MAJORIZATION OF QUANTUM POLARIZATION . . . PHYSICAL REVIEW A 94, 063858 (2016)

20 40 60 80 100

0.2

0.4

0.6

0.8

1

Sk

k 

N

 x102

C

FIG. 7. Ordered partial sums Sk as functions of n for the coherent
state with n = 2 photons C and a NOON state N with n = 6 photons
showing that they are incomparable although very similar. For clarity
the NOON case is plotted with a dashed line.

F. Inter-photon-number

For states of the same class we have observed the natural
behavior that states with larger photon numbers majorize states
with lower numbers. In this regard we consider the squeezed
states with even and odd n as different classes. Naturally, the
situation is richer when comparing states of different classes
and different photon numbers, so that incomparability may
appear. A simple example is provided in Fig. 7 showing
incomparability between a coherent state with n = 2 and a
NOON state with n = 6.

G. Nondefinite photon number

In all the above examples we have considered states with
definite total photon number. These examples were addressed
in the spirit that, in principle, intensity and polarization
are independent degrees of freedom. So for simplicity we
considered fixed total number. Nevertheless, such kind of
states are difficult to generate in laboratories, so it would
be also interesting to address the case of states that can be
generated in practice without definite total number. This is the
case of Glauber coherent states and thermal states, as the most
classical examples, and two-mode squeezed vacuum, as a clear
example of nonclassical light. For definiteness all states will
be considered with the same mean total photon number n̄.

Regarding Glauber coherent states, using SU(2) symmetry
we may consider without loss of generality the product of a
coherent state in the first mode and vacuum in the second mode
so that

|C〉 = e−n̄/2
∞∑

n=0

n̄n/2

√
n!

|n,0〉, (21)

with Q function

QC(�) = 1

4π
e−n̄ sin2 θ

2

(
1 + n̄ cos2 θ

2

)
. (22)

For thermal states we consider the most simple example where
the second mode is also in the vacuum state:

ρT = 1

1 + n̄

∞∑
n=0

(
n̄

1 + n̄

)n

|n,0〉〈n,0|, (23)
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FIG. 8. Ordered partial sums Sk as functions of k for coherent C,
thermal T , and two-mode squeezed vacuum S with the same total
mean number n̄ = 10.

with Q function

QT (�) = 1 + n̄

4π

1(
1 + n̄ sin2 θ

2

)2 . (24)

Finally, for the squeezed vacuum state

|S〉 = 1√
1 + n̄/2

∞∑
n=0

(
n̄/2

1 + n̄/2

)n/2

|n,n〉, (25)

we get the Q function

QS(�) =
√

2 + n̄

2π

1

(2 + n̄ cos2 θ )3/2
. (26)

With these explicit expressions it is simple to compute the
ordered partial sums Sk as they are plotted in Fig. 8. This
shows that the conclusions obtained for definite total number
hold also in these most realistic cases, that is,

S ≺ T ≺ C. (27)

IV. CONCLUSIONS

We have developed the application of majorization to quan-
tum polarization as a metameasure of polarization fluctuations
and degree of polarization. For fixed total number we have
confirmed that the SU(2) coherent states are the most polarized
majoring any other state. On the other hand the most nonclas-
sical states according to the Hilbert-Schmidt distance are the
most unpolarized among the pure states. We have shown that
for odd dimension there is incompatibility between squeezed
and NOON states. In general for states of the same class we
have observed that states with larger photon numbers majorize
states with lower numbers. Naturally, the situation is richer
when comparing states of different classes and different photon
numbers, where further cases of incomparability can be found.
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