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Storage efficiency of probe pulses in an electromagnetically-induced-transparency medium
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We have studied light storage in an electromagnetically-induced-transparency medium. The total storage
efficiency for the probe pulse has been presented, with and without adiabatic approximation. Storage with
different control parameters has been discussed and the influences on storage efficiency have been addressed. We
have found that good efficiency can be achieved by using easily controlled wave shapes for the control field.
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I. INTRODUCTION

As one of the fundamental building blocks in quantum
networks, quantum memory (storage and retrieval of a photon
pulse) plays a crucial role in quantum-information process-
ing [1–3]. Motivated by this, a lot of theoretical and exper-
imental research has been conducted in recent years [4–10].
In the study of quantum memory, one common realization
for the storage and retrieval of a photon pulse is a cold
atomic ensemble. By using the electromagnetically-induced-
transparency (EIT) effect, high-quality storage and retrieval of
a photon pulse can be achieved. For example, in the experiment
of Ref. [11], the photon polarization state can be stored in
the cold atomic medium as two magnetic-field-insensitive
spin waves. For another example, by applying the spin echo
technique, one can realize long-lived quantum memory at the
single-photon level [12].

As we know, compared with a long pulse, a short pulse
is much easier to produce in practice and its energy is more
concentrated [13–16]. So there are many advantages to use
short probe pulses in quantum computation and quantum
communication. Encouraged by this, the utilization of EIT
systems with short probe pulses have attracted wide attention in
the implementation of both quantum gates and quantum mem-
ories. In Ref. [17], Lene Hau et al. first completed the slow-
light experiment based on the EIT effect, and reported the first
measurement of giant Kerr nonlinearities produced by EIT.
Thus, one can make use of this strong nonlinear interaction
to achieve logic gates, and also use it in gate-based quantum
computation. One proposal is to realize the quantum gates
with optical fields acquiring a π rad cross-phase shift [18,19].
To achieve high fidelity and large conditional phase shift si-
multaneously (there is a tradeoff between these two quantities
in the stationary regime), in their papers [18,19], the authors
applied the nonlinear properties of the EIT systems. In the full
quantum limit and transient regime, a two-qubit quantum phase
gate with high fidelity and fast operation has been addressed
first. In another proposal, the nonlinear phase shift in the probe
field has been detected [20]. Such a phase shift is related to
a short pulse at the single-photon level. Moreover, recently,
many researchers have made use of the concentrated energy in
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a short pulse to realize the giant cross-phase modulation, see
Refs. [13,14,20]. In Ref. [15], the authors realized the quantum
memory for a subnanosecond short light pulse. Utilization of
a temporal short pulse can achieve a higher data rate, which
is very important in quantum communication, and enable the
quantum information to be processed at a high speed [15].

In Ref. [21], Ottaviani et al. theoretically studied the
atom-light interaction in the spontaneous Raman process
(SRP) beyond the adiabatic approximation. Compared with the
SRP in the adiabatic approximation, the detuning between the
frequency of the light and the atom is smaller in SRP beyond
the adiabatic approximation. Due to this smaller detuning, the
unwanted excitation among nearby levels can be avoided. The
problem with or without adiabatic approximation emerges in
the study of an EIT system [22,23]. In most previous studies on
quantum memory based on EIT, the key assumption has been
adiabatic approximation, which requests the atomic medium to
be optically dense, and sets a limit to the switching time of the
control field. It is assumed that the adiabaticity conditions are
satisfied, the dark-state polariton is shape preserving during
its propagation, and thus the retrieved photons resemble the
probe photons [24,25]. However, the adiabaticity conditions
cannot always be fulfilled in practice [11,22,26–28]. For
example, in the very important case of short probe pulse
memory [11,26,29], the adiabaticity conditions can hardly hold
due to the restrictions of the EIT bandwidth, and geometrical
size of an atomic medium. Therefore, to achieve high-quality
storage in such a case, we actually need a nonadiabatic theory
especially for the goal of efficiency optimization through set-
ting appropriately experimental parameters. Excellent results
for such a goal were presented in [30,31]. In particular, to
optimize the quantum memory efficiency, one can use the
theoretical method in [31], through using a carefully designed
control field. To make it technically easier for practical
application, it is very desirable to study the problem on how to
achieve the same efficiency by applying easily shaped control
fields. In this paper, we study this problem.

We shall study the total storage efficiency in an EIT
medium, with and without adiabatic approximation, and derive
analytical expressions for that total storage efficiency. Accord-
ing to these formulas, we perform numerical simulations with
an easily shaped control field which has been widely applied
in existing experiments. Our maximum value of storage
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FIG. 1. (a) �-type EIT system coupled resonantly to a strong
classical control field � and a weak probe field Ê . The decay rate of
excited state |a〉 is �. (b) Process of quantum memory. The strength
of the control field changes with time, t̃ represents the switching time
and �0 is the maximum Rabi frequency. The storage time of a probe
pulse in the process is Tr − T .

efficiency is quite close to the optimal results in literature [31],
but we do not need any complicated-design control field. Our
numerical simulation results are in good agreement with the
existing experiments [11,32]. Furthermore, we find that the dif-
ference between adiabatic and nonadiabatic storage efficiency
is quite evident when we store short probe pulses; hence, the
nonadiabatic corrections cannot be neglected. Then, by intro-
ducing a quasiparticle picture [24,25], we study how the nona-
diabatic corrections change with experimental parameters.

The rest of this paper is organized as follows. In Sec. II,
combining with the Maxwell-Bloch equations for the quantum
probe field and classical control field in an atomic EIT medium,
we derive the analytical expression for the total number of
retrieved probe photons. Then, in Sec. III, the total storage
efficiency is achieved with and without adiabatic approxima-
tion. By numerical simulation in Sec. IV, we analyze how
the adiabatic and nonadiabatic storage efficiencies change
with different system parameters. Moreover, in Sec. V, we
also discuss the difference between adiabatic and nonadiabatic
storage efficiency under various strengths and switching times
of the control field. Finally, we give a conclusion in Sec. VI.

II. THEORETICAL MODEL

Following [31], we begin our study with a typical EIT
system as illustrated in Fig. 1. A beam of weak probe field
and a beam of strong control field propagate through an
atomic ensemble in the z direction. The atomic ensemble
contains N �-type atoms with two lower metastable states
|b〉 and |c〉, and one excited state |a〉, whose decay rate is
�. The probe field described by the operator Ê(z,t) in the
slowly varying envelope approximation, couples resonantly
the transition between state |b〉 and |a〉. The excited state |a〉
is furthermore coupled to state |c〉 via the strong control field
with slowly varying, real Rabi frequency �(t − z/c). Here,
we assume that the probe field and control field are uniform
in the transverse direction. In the Heisenberg picture, the
equations of motion can be written as [31]

(∂t + c∂z)Ê(z,t) = igNσ̂ba(z,t), (1)

∂t σ̂ba(z,t) = −γbaσ̂ba(z,t) +igÊ(z,t) + i�σ̂bc(z,t), (2)

∂t σ̂bc(z,t) = i�∗σ̂ba(z,t), (3)

where σ̂μν = 1
Nz

∑Nz

j=1 σ̂
(j )
μν e−iωμν t+i

ωμν

c
z (μ,ν = a,b,c) is the

slowly varying, collective atomic operator, Nz is the number
of atoms in a small region at position z, g denotes the
coupling strength between the probe field and an atom, and c

is the speed of light in the vacuum. Dephasing rate of σ̂ba is
described by γba , and γba = �/2. We disregard γbc because the
transition between |b〉 and |c〉 is not dipole allowed [10,31].

In the process of optical quantum memory based on EIT, all
atoms are initially in the ground state |b〉, a probe pulse whose
duration is T enters the atomic ensemble at time t = 0, and is
fully stored at time T, as the intensity of control field decreases
to zero. At any time t = Tr (Tr > T ), corresponding to the
storage time Tr − T , with the control field being switched
on, the probe pulse is released from the atomic ensemble,
and we can retrieve the information we have stored. To
describe the process mathematically, we write the following
initial and boundary conditions, Êin(t) = Ê(0,t)(0 � t � T ),
Ê(0,t) = 0(t > T ), Êout(t) = Ê(l,t) (l is the length of an atomic
ensemble in the z direction), and σ̂ba(z,0) = 0, σ̂bc(z,0) = 0.
The total storage efficiency is defined as [10,31]

η = number of retrieved photons

number of incoming photons
= nout

nin

=
∫ ∞
Tr

〈Ê+
outÊout〉dt∫ T

0 〈Ê+
in Êin〉dt

. (4)

For our interests in studying the storage efficiency, it is quite
important to get the analytical expression of nout given nin.
Referring to the computation method in [22] and [31], we
transform our system into a comoving frame by changing
the variables t ′ = t − z/c and ξ = z/l, and make the Laplace
transformation to map ξ space to s space, Ê(ξ,t ′) → Ê(s,t ′),
σ̂ba(ξ,t ′) → P̂ (s,t ′), and σ̂bc(ξ,t ′) → Ŝ(s,t ′). We find∫ ∞

Tr− l
c

〈Ê+(s ′∗,t ′)Ê(s,t ′)〉dt ′

= − l

c

d

2

2N

2ss ′∗ + s ′∗d + sd
[〈P̂ +(s ′∗,t ′)P̂ (s,t ′)〉

+ 〈Ŝ+(s ′∗,t ′)Ŝ(s,t ′)〉]∞
Tr− l

c

. (5)

Here, d = g2Nl/γbac is the optical depth of the medium.
Combining this with limt ′→∞ P̂ (s,t ′) = 0, limt ′→∞ Ŝ(s,t ′) =
0, and taking inverse Laplace transformation for Eq. (5), we
get

nout =
∫ ∞

T r

dt〈Ê+
outÊout〉

=
∫ ∞

Tr− l
c

dt ′〈Ê+(1,t ′)Ê(1,t ′)〉

=
∫ 1

0
dξ

∫ 1

0
dξ ′ Nl

c

d

2
e−de

d
2 (ξ+ξ ′)I0[d

√
(1 − ξ )(1 − ξ ′)]

×
〈
σ̂cb

(
ξ ′,Tr − l

c

)
σ̂bc

(
ξ,Tr − l

c

)〉
, (6)

where I0 is a zeroth-order modified Bessel function. From
Eq. (6), we note that the photon number of the retrieved
probe pulse only depends on σ̂bc(ξ,Tr − l

c
), which describes

the collective atomic coherence at the moment of switching
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on the control field. And it also shows coincidence with the
physical mechanism of EIT quantum memory, as the dark
state provides a probability to transfer the photonic state to the
collective atomic state mutually, by changing the intensity of
the control field.

III. STORAGE EFFICIENCY

In the previous section, we found that the total storage
efficiency is dependent on the collective atomic coherence
at the moment of retrieving. Here we will first study their
relationship both adiabatically and nonadiabatically. And then,
we will present the analytical expressions of the storage
efficiency in both cases.

A. Adiabatic storage efficiency

Under the adiabatic approximation, we can eliminate σ̂ba

in Eq. (2) and obtain the relation σ̂bc = −gÊ/�. By using
Laplace transformation as before, we get the equation for
Ŝ(σ̂bc) in s space:

∂t ′ Ŝ(s,t ′) + M(t ′)Ŝ(s,t ′) = N (t ′), (7)

M(t ′) = c�2(t ′)s
g2Nl

, (8)

N (t ′) = −c�(t ′)
gNl

Ê(0,t ′). (9)

Equation (7) is a first-order nonhomogeneous nonlinear dif-
ferential equation, and we can solve it analytically and find its
solution,

Ŝ(s,t ′) = − g

γbad

∫ t ′

0
e

s
d
κ(t ′′,t ′)�(t ′′)Ê(0,t ′′)dt ′′, (10)

κ(t ′′,t ′) = 1

γba

∫ t ′′

t ′
�2(τ )dτ. (11)

After taking the inverse Laplace transformation, the analytical
expression of σ̂bc is

σ̂bc(ξ,t ′) = − g

�(t ′p)
Ê(0,t ′p), (12)

where t ′p satisfies the relation
∫ t ′p

0 �2(τ )dτ = ∫ t ′

0 �2(τ )dτ −
γbadξ . When a probe pulse starts to propagate in the medium
with a reduced group velocity vg ∼ c�2(τ )

g2N
, at time t ′p, it will

arrive at position ξ at time t ′. Substituting Eq. (12) into Eq. (6),
we can write the photon number of the retrieved probe pulse
as

nout =
∫ 1

0
dξ

∫ 1

0
dξ ′kd (ξ,ξ ′)

γbad

�(t ′p)�(t ′′p)
〈Ê+(0,t ′′p)Ê(0,t ′p)〉,

(13)

kd (ξ,ξ ′) = d

2
e−de

d
2 (ξ+ξ ′)I0[d

√
(1 − ξ )(1 − ξ ′)]. (14)

Given the widely employed temporal Gaussian probe
pulse [15,32], the total storage efficiency with the adiabatic

approximation can be furthermore expressed as

ηa = 2

�t

√
ln2

π

∫ 1

0
dξ

∫ 1

0
dξ ′kd (ξ,ξ ′)

γbad

�(t ′p)�(t ′′p)

× e
− 2ln2(t ′′p−t0)2

�t2 e
− 2ln2(t ′p−t0)2

�t2 . (15)

Here �t is the FWHM temporal duration of the probe pulse,
t0 is the position of the probe pulse peak.

B. Nonadiabatic storage efficiency

In the nonadiabatic case, the photon number of a probe pulse
is much smaller than the number of atoms. Almost all the atoms
are in the ground state |b〉, and furthermore, the excitation rate
of the atoms stimulated to state |a〉 is much smaller than the
decay rate γba . Consequently, the time derivative term ∂t σ̂ba in
Eq. (2) can be neglected. Then, by adopting the same procedure
used in the last section, we obtain

Ŝ(s,t ′) = −
√

dc

γbalN

∫ t ′

0

1

s + d
e

s
s+d

κ(t ′′,t ′)�(t ′′)Ê(0,t ′′)dt ′′.

(16)

Note that in the perfect adiabaticity condition d → ∞, as
mentioned below, one may easily find that the expression
in Eq. (16) can change to Eq. (10). After taking the inverse
Laplace transformation, we get

σ̂bc(ξ,t ′) = −
√

dc

γbalN

∫ t ′

0
eκ(t ′′,t ′)�(t ′′)e−dξ

× I0[
√

4dκ(t ′,t ′′)ξ ]Ê(0,t ′′)dt ′′. (17)

Substituting the above equation into Eq. (6), the nonadiabatic
result for the number of retrieved photons is

nout =
∫ 1

0
dξ

∫ 1

0
dξ ′kdd (ξ,ξ ′)

∫ Tr− l
c

0
dt ′

∫ Tr− l
c

0
dt ′′

×e−κ(Tr− l
c
,t ′)e−κ(Tr− l

c
,t ′′)�(t ′)�(t ′′)

×I0

[√
4dκ

(
Tr − l

c
,t ′

)
ξ ′

]
I0

[√
4dκ

(
Tr − l

c
,t ′′

)
ξ

]

×〈Ê+(0,t ′)Ê(0,t ′′)〉, (18)

kdd (ξ,ξ ′) = d2

2γba

e−de− d
2 (ξ+ξ ′)I0[d

√
(1 − ξ )(1 − ξ ′)]. (19)

Considering a temporal Gaussian probe pulse as in the last
section, we can also write the total storage efficiency without
adiabatic approximation as

ηna = 2

�t

√
ln2

π

∫ 1

0
dξ

∫ 1

0
dξ ′kdd (ξ,ξ ′)

∫ Tr− l
c

0
dt ′

×
∫ Tr− l

c

0
dt ′′e−κ(Tr− l

c
,t ′)e−κ(Tr− l

c
,t ′′)�(t ′)�(t ′′)

× I0

[√
4dκ

(
Tr − l

c
,t ′

)
ξ ′

]
I0

[√
4dκ

(
Tr − l

c
,t ′′

)
ξ

]

× e
− 2ln2(t ′−t0)2

�t2 e
− 2ln2(t ′′−t0)2

�t2 . (20)
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TABLE I. Theoretical and experimental storage efficiencies.
Ref. [11] shows the storage experiment for a 100-ns short probe pulse,
while Ref. [32] shows the experiment for a 4.5-μs long probe pulse.
The optical depths of the atomic media in these two experiments are
4 and 156, respectively. η: the experimental results reported in the
literature. ηa and ηna: the theoretical simulation results with or without
adiabatic approximation, respectively.

Expt. η ηa ηna

Ref. [11] 8.3% 6.75% 9.03%
Ref. [32] 69% 71.9% 70.58%

IV. MEMORY EFFICIENCY OPTIMIZATION

Referring to the research on optical storage experiments
in [11] and [32], we apply our results in earlier sections.
The good agreement between our theory and experiments
can be found in Table I. We also show how they change
when we store a short and a long temporal Gaussian probe
pulse under the parameters set as follows. The corresponding
duration of the short and long probe pulses are 100 ns and
4.5 μs, respectively. And the switching time of control field
is 30 ns. Simulation results are shown in Figs. 2(a)–2(f)
for three different intensities of control field, i.e., �0 =
0.8�,1.1�,1.3�.

Under different strengths of control field, we can always
find an optimum optical depth to achieve a maximum storage
efficiency. Moreover, as the control field gets stronger, both the
maximum storage efficiency and the corresponding optimum

η
η

η

η
η

η

FIG. 2. Numerical results for the total storage efficiency. Dashed
line: adiabatic result. Dash-dotted line: nonadiabatic result. η: total
storage efficiency. d: optical depth. (a), (c), and (e): results for short
probe pulse of duration T = 100 ns and FWHM �t = 30 ns; (b), (d),
and (f): results of long probe pulse T = 4.5 μs, FWHM �t = 1.5 μs.
The strengths of control fields are (a) and (b) �0 = 0.8�, (c) and (d)
�0 = 1.1�, (e) and (f) �0 = 1.3�, the switching time is 30 ns. The
decay rate γba is set as π × 6 × 106 Hz.

TABLE II. Maximum storage efficiencies and the corresponding
optimum optical depths for different intensities of control field in
Fig. 2. �0: the strength of control field. da

o and dna
o : the optimum

optical depths with or without adiabatic approximation. ηa
max and

ηna
max: the corresponding maximum storage efficiencies with or without

adiabatic approximation, respectively.

�0 da
o ηa

max dna
o ηna

max

0.8� 2.6 49.07% 4.2 24.3%
1.1� 5 60.59% 7 35.46%
1.3� 7 65.93% 9 42.23%

optical depth get larger. In the range of our chosen parameters,
this phenomenon can be shown more evidently from the
simulation results in the short probe pulse case, which are listed
in Table II, and explained as follows. On the one hand, the EIT
bandwidth is proportional to |�|2/√d , so a larger d results in
a narrower EIT window, while a larger � makes it wider. On
the other hand, d is the absorbance of the atomic ensemble,
therefore a larger d can lead to the storage efficiency rising.
These two contributions generate the above phenomenon.

By changing the intensity of the control field, the transfor-
mation between photonic states and collective atomic states
can be achieved. Thus, the switching time, which determines
how the control-field intensity changes, can also affect the
storage efficiency. The simulation results, which correspond
to the case when we store a 100-ns short probe pulse, are
shown in Figs. 3(a)–3(c). The control-field intensities are
0.8�, 1.1�, and 1.3�, respectively. And the optical depths
are the same as the optimum optical depths in Table II. Under
different strengths of control field and optical depths, one can
also find an optimum switching time and a corresponding
maximum storage efficiency, see Table III. The maximum
storage efficiencies are close to the efficiencies in Table II,
as we have already utilized an excellent switching time to
achieve the results in Table II.

Comparing our simulation results with the storage effi-
ciency, which is less than 10% [11,26,29], obtained by the
current experiments for a short probe pulse, we find that our
simulated maximum storage efficiency is quite good. And it is
noteworthy that we adopt the control field whose shape is as

t̃(ns)

η

t̃(ns)

η

t̃(ns)

η

FIG. 3. Numerical results for the total storage efficiency. Dashed
line: adiabatic result. Dash-dotted line: nonadiabatic result. η: total
storage efficiency. t̃ : switching time of control field. The strengths of
the control fields are (a) �0 = 0.8�, (b) �0 = 1.1�, and (c) �0 =
1.3�; the optical depths corresponding to the adiabatic results are (a)
d = 2.6, (b) d = 5, and (c) d = 7; optical depths for the nonadiabatic
results are (a) d = 4.2, (b) d = 7, and (c) d = 9. The duration of the
short probe pulse T = 100 ns and FWHM �t = 30 ns. The decay
rate γba is π × 6 × 106 Hz.
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TABLE III. Maximum storage efficiencies and the corresponding
optimum switching times for different control-field intensities and
optimum optical depths in Fig. 3. �0: the strength of control field. da

o

and dna
o : the corresponding optimum optical depths with or without

adiabatic approximation in Table II. t̃ a
0 and t̃na

0 : the optimum switching
time with or without adiabatic approximation, respectively. ηa

max and
ηna

max: the corresponding maximum storage efficiencies with or without
adiabatic approximation.

�0 da
o t̃ a

o (ns) ηa
max dna

o t̃na
o (ns) ηna

max

0.8� 2.6 25 49.1% 4.2 30 24.3%
1.1� 5 25 61.49% 7 25 35.52%
1.3� 7 25 66.98% 9 30 42.23%

illustrated in Fig. 1(b) to complete the above simulation. This
kind of operation about the control field is easy in manipulation
and widely applied in experiments [32,33]. Though our
proposed control field is very simple, our results are close
to the theoretical results obtained from the optimal control
pulses presented in [30,31]. For example, when dna

o = 9,
the maximum nonadiabatic storage efficiency ηna

max = 42.23%,
while the corresponding maximum efficiency reported in the
literature equals 46%.

By comparing the results shown in Figs. 2(a)–2(f), we can
also find that the optimum d for the storage of a 4.5- μs probe
pulse is much larger than that for the storage of a 100-ns probe
pulse. There are two requirements in EIT optical storage: (i)
the spectrum of the probe pulse must fit within the transparency
window; (ii) the probe pulse must fit geometrically within the
EIT medium, since the spatial extent of the probe pulse can
be compressed as a result of the low group velocity [3]. One
can conclude that with the aim of accomplishing high storage
efficiency under the general strength of the control field, the
optimum d needed for storing short probe pulses is much
lower than that for long probe pulses. As shown in Figs. 2(a)–
2(f), the difference between adiabatic and nonadiabatic storage
efficiency is much evident when we store a short probe pulse,
but microsized for the long probe pulse case. Considering the
adiabaticity condition addressed in Ref. [25], the storage and
retrieval process of the photon pulse can work adiabatically
with two requirements satisfied simultaneously:

l 

√

dLp,t̃ >
γba�

02

g2N (g2N + �02)
, (21)

where Lp denotes the initial spatial pulse length in the medium.
Since the spatial pulse length is smaller or comparable to the
size of the atomic medium, the first inequality in Eq. (21)
can be satisfied when d � 1. In other words, it is hard to be
adiabatic when the atomic medium is not optically dense [25].
Given our chosen parameters in Figs. 2 and 3, when we store
a short probe pulse, the first inequality in Eq. (21) does not
hold. For example, in the short-pulse memory, the length of
the atomic medium l is 3 × 10−4 m [17], but

√
dLp is just

5.8 × 10−4 m, when the optical depth d is 5 and �0 equals
0.8�. Thus, the nonadiabatic terms cannot be neglected in this
nonadiabatic case, therefore the EIT quantum memory beyond
adiabatic approximation is deserved to be studied much
further.

V. NONADIABATIC CORRECTIONS

In this section, we shall study quantum memory without
adiabatic approximation. The difference in the storage effi-
ciency between the adiabatic and nonadiabatic cases will be
presented below. The quasiparticle picture is used and two new
quantum operators �̂(z,t) and �̂(z,t) [24,25] are applied,

�̂ = cos θ Ê − sin θ
√

Nσ̂bc, (22)

�̂ = sin θ Ê + cos θ
√

Nσ̂bc, (23)

where tan θ = g
√

N/�. By substituting the relations above
into Eq. (1)–(3), one can obtain the equations of motion for
the two operators �̂ and �̂,

∂t �̂ + ccos2θ∂z�̂ = −θ̇ �̂ − c sin θ cos θ∂z�̂, (24)

�̂ = γba cos θ

�2
(cos θ θ̇�̂ + sin θ∂t �̂ + sin θ θ̇�̂ − cos θ∂t �̂).

(25)

By applying the Fourier transforms as �̂(z,t) =∫
�̂(k,t)e−ikzdk and �̂(z,t) = ∫

�̂(k,t)e−ikzdk in the
adiabatic limit, one can find �̂ = 0 and ∂t �̂(k,t) =
ikc cos2 θ�̂(k,t). However, in the nonadiabatic limit,
considering the lowest order nonadiabatic corrections, we can
obtain Eqs. (24) and (25) in the k space as

∂t �̂(k,t) − ikc cos2 θ�̂(k,t)

= −θ̇ �̂(k,t) + ikc sin θ cos θ�̂(k,t), (26)

�̂(k,t) = γba cos θ

�2
[cos θ θ̇�̂(k, t) + ikc sin θ cos2 θ�̂(k,t)].

(27)

By substituting Eq. (27) into Eq. (26), we finally obtain the dark
state polariton beyond adiabatic approximation as follows:

�̂(k,t) = �̂(k,0)e
∫ t

0 ikvg(t ′)dt ′e− ∫ t

0 [A(t ′)+B(t ′)]dt ′ . (28)

Here, vg = c cos2 θ is the group velocity of a probe pulse
in an atomic medium, A(t) = γba cos2 θ θ̇2/�2, and B(t) =
γbak

2c2 cos4 θ sin2 θ/�2. From Eq. (28), we find that the
integral term

∫ t

0 [A(t ′) + B(t ′)]dt ′ brings about the nonadia-
batic correction. When it equals zero or is small compared
to unity (adiabatic approximation), the dark state polariton
�̂(k,t) = �̂(k,0)e

∫ t

0 ikvg(t ′)dt ′ . However, if the integral term is
not small enough, one cannot neglect it, and the nonadiabatic
correction needs to be considered in this scenario. Moreover,
it is easy to find that the integral term can be determined
by the control field �; different control fields yield different
nonadiabatic corrections. Considering the control field as
illustrated in Fig. 1(b), we just need to calculate the integral∫ t

0 [A(t ′) + B(t ′)]dt ′ with the upper limit t as T . Hence, we get
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the nonadiabatic correction function

f (�0,t̃) =
∫ T

0
[A(t ′) + B(t ′)]dt ′

= γba�
02

g2N (T − t̃)

4T 2(g2N + �02)3
+ γba�

02

4t̃(g2N + �02)2
+ 3γba�

02

8t̃g2N (g2N + �02)
+ 3γba�

0

8t̃g2Ng
√

N
arctan

(
�0

g
√

N

)

+ g2N�04
t̃

4γbad

[
1

(g2N + �02)2
− 5g2N

(
− 1

�02(g2N + �02)2
+ 3g2N

�02

{
1

4g2N (g2N + �02)2
+ 1

4g2N

×
[
− 1

2�02(g2N + �02)
+ 1

2�03
g
√

N
arctan

(
�0

g
√

N

)]})]
. (29)

From the simulation results in Fig. 4, we find that with a
larger intensity and a shorter switching time of the control
field, a larger nonadiabatic correction f can be obtained. In
our discussion, the optical depth of the medium is set as 7.
Considering the adiabaticity condition of Eq. (21) addressed
in the last section, for our case, the first requirement is broken,
and the second one can be satisfied. So in our discussion,
the storage and retrieval process of the photon pulse is
nonadiabatic. However, in comparison, we also study for the
4.5-μs long probe pulse. The optical depth is 156, and thus
the adiabaticity condition l 
 √

dLp is satisfied. In this case,
the nonadiabatic corrections are always smaller than unity,
no matter how fast the control field is switched, as shown
in Fig. 4. This point has been carefully studied in Ref. [23].
And our results with the 4.5-μs long probe pulse show good
agreement with the results reported in Ref. [23].

To illustrate the difference in the storage with or without
adiabatic approximation, we define �η = ηa − ηna , which
denotes the difference in the storage efficiency of quantum
memory with or without adiabatic approximation. The relation
between �η and f has been addressed in Fig. 5. For our

t̃(ns)

f

0.7Γ
0.6Γ

0.8Γ

1Γ
0.9Γ

FIG. 4. Numerical results for the nonadiabatic correction func-
tion f . Dashed lines: results for 100-ns short probe pulse, under
different strengths of control field �0 = 0.6�,0.7�,0.8�,0.9�, and
1�, respectively. The optical depth d is 7. The point on the dashed line
corresponds to the adiabaticity condition t̃ > γba�

02
/g2N (g2N +

�02). Solid line: result for 4.5-μs long probe pulse. The intensity of
control field �0 is 1.1� and the optical depth d is 156.

chosen parameters, the simulation results show the positive
relation between �η and f . Thus, �η can be used to reflect
the difference between the adiabatic and nonadiabatic cases.

In Fig. 6, we show how �η changes with switching time
t̃ . The control fields with different strengths are provided.
In our scenario, when the switching time is larger, �η

always converges to the value which is much smaller than
unity. As mentioned before, storage and retrieval of a photon
pulse can be seen as an adiabatic process when the two
requirements are satisfied. When we store a 100-ns probe
pulse, the first adiabaticity condition l 
 √

dLp is broken,
and this process cannot be seen as an adiabatic process.
However, when t̃ > 80 ns is chosen in our simulation, the
nonadiabatic storage efficiency is much closer to the adiabatic
storage efficiency, i.e., �η ∼ 1%. This result reflects that
although the first adiabaticity condition is broken, the effect of
adiabatic approximation can be nearly achieved by increasing
the switching time of the control field.

VI. CONCLUSIONS

In conclusion, in this article, we have presented a detailed
analysis of light storage efficiency in an EIT-driven �-type
atomic ensemble. We have derived the analytical expressions
of the total storage efficiency with and without adiabatic

f

Δ
η

1Γ

0.9Γ

0.8Γ

0.7Γ

0.6Γ

FIG. 5. Numerical results for the relation between �η and f for
different control-field strengths �0. The optical depth d is set as 7,
and the duration of probe pulse is 100 ns, FWHM is 30 ns.
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t̃(ns)

η

1Γ

0.9Γ

0.6Γ

0.8Γ

0.7Γ

Δ

FIG. 6. Difference between adiabatic and nonadiabatic storage
efficiency �η as a function of switching time t̃ for different control-
field strengths �0. The point on the solid line corresponds to the
adiabaticity condition. We set the optical depth d of the medium as
7, the duration T of the Gaussian probe pulse as 100 ns and FWHM
as 30 ns.

approximation. The influence of systematic parameters on the
storage efficiency has been also studied in detail. In particular,
we adopt an easily shaped control field in this work. This

kind of control field is easier to realize and widely applied
in experiments [32,33]. We further optimize the storage
efficiency by finding optimum parameters in the very important
case of short-pulse memory, which mostly corresponds to
a nonadiabatic regime. Our achieved maximum efficiency
is rather close to the theoretical limit in Ref. [30,31]. The
presented optimization can substantially increase the memory
efficiency of ongoing experiments on short-pulse memory.

In addition to atomic ensembles, there are many other
systems for light storage, such as a rare-earth-metal ion-doped
crystal [34]. We expect our work can be applicable to these
solid-state memory experiments. In this paper, we only study
the light storage in three-level �-type atomic ensembles. It is
possible to extend to other systems, e.g., a five-level atomic
medium [35]. Fidelity may also be studied in the nonadiabatic
regime, because it is an important character of memory in
addition to efficiency. We also expect our efforts regarding
short-pulse memory can be applied to studies of multimode
memory [36,37].
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