
PHYSICAL REVIEW A 94, 063852 (2016)

One qubit and one photon: The simplest polaritonic heat engine
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Hybrid quantum systems can often be described in terms of polaritons. These are quasiparticles formed
of superpositions of their constituents, with relative weights depending on some control parameter in their
interaction. In many cases, these constituents are coupled to reservoirs at different temperatures. This suggests
a general approach to the realization of polaritonic heat engines where a thermodynamic cycle is realized by
tuning this control parameter. Here we discuss what is arguably the simplest such engine, a single qubit coupled
to a single photon. We show that this system can extract work from feeble thermal microwave fields. We also
propose a quantum measurement scheme of the work and evaluate its backaction on the operation of the engine.
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I. INTRODUCTION

Experimental advances in single-atom and ion manipula-
tion and in nanofabrication have led to an increased interest in
quantum thermodynamics, and more specifically in quantum
heat engines (QHE) [1]. Abah and coworkers proposed [2,3]
and demonstrated [4] a scheme to realize a nanoscale QHE
with a single ion. A trapped-ion system was also recently
used [5] to carry out an experimental test of the quantum
Jarzynski equality [6,7]. Other approaches and related fun-
damental questions in quantum thermodynamics have been
considered in systems ranging from quantum degenerate
bosonic atoms [8] to superconducting quantum circuits [9]
and from macroscopically separated quantum-dot conductors
coupled to a microwave cavity [10] to atomic [11,12] or photon
gases [13] in optical resonators.

Many hybrid quantum systems can be conveniently de-
scribed in terms of polaritons. These quasiparticles are quan-
tum superpositions of the system constituents with relative
weights that depend on some coupling parameter. The fact
that these constituents are typically coupled to reservoirs at
different temperatures suggests a general approach to the
realization of quantum heat engines where a thermodynamic
cycle is realized by periodically varying the control parameter.
To an excellent approximation the nature of the quasiparticles
is then changed from one to the other of their constituents, so
that they are alternatively coupled to one or the other reservoir.

In previous work [14,15] we exploited this feature in a
phonon polariton-based optomechanical QHE [16]. Here we
expand the same idea to what is arguably the simplest such
engine, a single two-state atom or artificial atom (e.g., a
superconducting qubit) coupled to a single photon. In this case
the polariton modes are the familiar dressed states of quantum
optics [17]. This system could be demonstrated experimentally
in a circuit QED environment [18,19].
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The paper is organized as follows. Section II establishes
our notation and outlines the quantum model of coupled
qubit-photon system, including dissipation due to the the
coupling of the qubit and the photon to cold and warm
reservoirs, respectively. Section III describes a quantum Otto
cycle based on that qubit-photon system first for the simplest
single-photon case, and then the multiphoton and the two-qubit
cases. It also derives expressions for the work of the heat
engine. Section IV discusses the parameter requirements
of the engine working and designs a specific experimental
realization based on the circuit QED system. Section V turns
to measurement protocols of the work output. It compares
explicitly the quantum backaction of dispersive and absorptive
measurements on the statistics of the measured results. Finally,
Sec. VI is a summary and outlook.

II. THE CQED SYSTEM

We consider a single qubit, which could be either an
atom or an artificial atom, trapped inside a high-Q single-
mode resonator in a standard cavity QED or circuit QED
geometry [18,19]. In the absence of dissipation and driving
and under the rotating-wave approximation it is described by
the Jaynes-Cummings Hamiltonian

H = 1
2 �ω(σ̂z + 1) + �ωLâ†â + �g(âσ̂+ + σ̂−â†) (1)

with eigenstates

|2,n〉 = cos θn|e,n〉 − sin θn|g,n + 1〉,
(2)

|1,n〉 = sin θn|e,n〉 + cos θn|g,n + 1〉,
and eigenenergies

E2,n = �
[
ω + nωL − 1

2 (�n + �)
]
,

E1,n = �
[
(n + 1)ωL + 1

2 (�n + �)
]
. (3)

Here |e〉 and |g〉 are the excited and ground states of the
qubit, with energy separation ω, |n〉 are Fock states of the
field mode of frequency ωL, σ̂i are Pauli matrices, â and â† are

2469-9926/2016/94(6)/063852(8) 063852-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevA.94.063852


SONG, SINGH, ZHANG, ZHANG, AND MEYSTRE PHYSICAL REVIEW A 94, 063852 (2016)

|2, 0

|1, 0

|2, 1

|1, 1

|2, 2

|g, 0

|g, 1

|g, 2

|e, 0

|e,
1

|e,
2

Δ1 Δ2

FIG. 1. Solid lines: dressed qubit energy levels as a function of the
qubit-field detuning � = ω − ωL with ω being the qubit transition
frequency and ωL being the cavity field frequency for g = 0.1ωL.
Dashed lines: corresponding energy eigenvalues in the absence of
interaction, g = 0. The dressed and bare states are labeled beside the
lines. �1,2 denote the working frequency range of the quantum heat
engine.

bosonic annihilation and creation operators, g is the vacuum
Rabi frequency, � = ω − ωL is the qubit-field detuning, �n

is the quantized generalized Rabi frequency

�n =
√

�2 + 4g2(n + 1), (4)

and

cos θn = �n − �√
(�n − �)2 + 4g2(n + 1)

,

sin θn = 2g
√

n + 1√
(�n − �)2 + 4g2(n + 1)

. (5)

Figure 1 shows the first few eigenenergies, illustrating the
avoided crossing resulting from the dipole coupling between
the qubit and the field at � = 0. Importantly for our discussion,
the dressed states (qubit-photon polaritons), |2,n〉 are photon-
like for large positive detunings and qubitlike for large negative
detunings, and the opposite for the dressed states |1,n〉.

The qubit and optical mode are also coupled to thermal
reservoirs at temperatures Ta and Tf , respectively. In the
following we consider the situation where Ta ≈ 0 and Tf > 0,
a situation that would be characteristic of qubits confined in
a cryogenic environment typical of circuit QED experiments
and driven by a feeble thermal microwave field. The qubit-field
system density operator ρ is therefore governed by the master
equation

dρ

dt
= − i

�
[H,ρ] + γLσ̂−ρ + κ(n̄ + 1)Lâρ + κn̄Lâ†ρ, (6)

where the Lindblad superoperators are Lx̂[ρ] = x̂ρx̂† −
1
2 x̂†x̂ρ − 1

2ρx̂†x̂, κ is the cavity mode decay rate, γ is the

qubit spontaneous decay rate, and n̄ is the mean number of
thermal photons within the resonator bandwidth.

III. HEAT ENGINE

The difference in temperatures of thermal reservoirs for the
qubit and the photon field allows one to operate a quantum
Otto cycle. The following section discusses the operation of a
single atom-single photon heat engine that exploits that cycle
by varying the detuning �.

A. Single-photon case

The lowest state |g,0〉 of the qubit-field system corresponds
to the vacuum field state |0〉 and is therefore qubitlike. The
simplest way to operate the qubit-photon heat engine is to
limit its operation to the ground state |g,0〉 and the lowest
energy dressed state (lowest polariton branch) |2,0〉. By
varying the detuning � from a negative to a positive value
that state changes its nature from qubitlike to photonlike,
thereby changing the thermal coupling from being to a bath at
temperature Ta to a bath at Tf . Ideally, in the polariton picture
the engine is then effectively a two-state system, while in the
bare-mode picture it actually consist of two coupled qubits like
the quantum engine proposed in Ref. [20].

The operation of the engine relies on a four-stroke quantum
Otto cycle [21]. The starting point of the cycle is the
ground state |g,0〉 with transition frequency ω = ω1 < ωL

and corresponding detuning �1 = ω1 − ωL < 0, in thermal
equilibrium at the qubit reservoir temperature Ta ≈ 0. The
first, isentropic stroke consists of changing ω to a new value
ω2 > ωL and detuning �2 > 0. This step can be carried out
relatively quickly since it does not involve the approach of an
avoided crossing where nonadiabatic transitions could be an
issue. The second, isochoric stroke is the thermalization of the
system with the two thermal reservoirs. Since Ta ≈ 0 nothing
much happens to the qubit constituent of the system, but the
field part acquires a finite probability to be excited to Fock
states |n〉 with n = 1,2, . . . For thermal microwave fields in
the 100-GHz range and at temperatures Tf around 1 K the
only state that becomes significantly populated is the Fock
state |n = 1〉, with small probability p1. At the end of that step
the qubit-field system is then left to a good approximation in
the mixed state

ρ ≈ (1 − p1)|g,0〉〈g,0| + p1|2,0〉〈2,0|. (7)

The ground-state component (1 − p1)|g,0〉〈g,0| of ρ plays
no active role in the following third, isentropic stroke, so
we concentrate of the state |2,0〉 for now. In that stroke
ω is changed back to its initial value ω1, and the nature
of the dressed state |2,0〉 changes adiabatically from its
approximate photonlike nature, |2,0〉 ≈ |g,1〉, to its qubitlike
form, |2,0〉 ≈ |e,0〉. This step must be carried out slowly
enough that nonadiabatic transitions between the dressed states
|2,0〉 and |1,0〉 remain negligible at the avoided crossing.
Finally the last stroke is the spontaneous decay of the qubitlike
state |2,0〉 to the ground state |g,0〉 at rate γ .

The thermalization strokes 2 and 4 are isochoric. Ideally
no work is performed on the control field used to change ω(t)
during stroke 1 either, due to the vanishing population on the
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excited state |e〉. The only work contribution occurs during
stroke 3, a result of the reduction in energy of the excited-state
population. The average work associated with a full Otto cycle
is therefore

W = p1[E2,0(ω1) − E2,0(ω2)] . (8)

It is always negative, i.e., work is produced by the engine.
Noting that E2,0(ω2) � �ωL and E2,0(ω1) � �ω1 we have

|W | � p1�|�1| = p1�(ωL − ω1). (9)

We note for completeness that this system can also be
operated as a heat pump, provided that Ta > Tf , and that the
cycle is reversed, with the initial state |g,0〉 associated with
a positive detuning �, which is then changed to a negative
value in the first stroke. The thermalization of the qubit at
Ta > 0 leads then to a population p1 on the state |e,0〉. After
an adiabatic change of the detuning back to a positive value, the
photonlike polariton |2,0〉 ≈ |g,1〉 decays back to the ground
state |g,0〉 at rate κ . In that mode of operation the average
work is equal to −W , which is positive, indicating that work
is done on the system. This shows that in case where the qubit
thermalization dominates the system can operate as a heat
pump, but if the thermalization of the field dominates it is a
heat engine.

B. Multiphoton case

For Tf ≈ 0 only the lowest polariton branch |2,0〉 and the
ground state |g,0〉 are involved in the Otto cycle. In that limit
the engine operation is formally identical with that of the
optomechanical heat engine [14]. For larger Tf , however,
higher polariton branches come into play. Specifically, at
the end of the thermalization stroke 2 the branches |2,n〉
with n � 1 are populated with thermal probabilities pn ≈
n̄n+1/(n̄ + 1)n+2, where n̄ is the average photon number. The
result is the appearance of the superposition of several Otto
cycles. The average work output Wn produced in stroke 3 by
the cycle associated with the polariton mode |2,n − 1〉 is

|Wn| � �(ωL − ω1)pn. (10)

Following the thermalization stroke 4 the dressed state |2,n〉
has relaxed to |1,n − 1〉, n � 1. But in contrast to the situation
for the |2,0〉 polariton, which is thermalized to the ground state
|g,0〉, the first stroke of the next cycle now costs work. For the
symmetric case |�1| = �2 and perfect adiabaticity that work
is precisely equal to the work output of stroke 3 of the previous
cycle, and the cycles associated with higher polaritonic modes
produce no net work. As shown below the situation is slightly
more favorable for the asymmetric situation |�1| > |�2|, in
which case some additional work can be extracted from the
engine. For the opposite case |�1| < �2, in contrast, stroke 1
costs more work than extracted during stroke 3.

As illustrated in Fig. 1, during the second, isochoric stroke
of the engine, the dressed state |2,n〉 is approximately identical
with the bare state |g,n + 1〉 while |1,n〉 ≈ |e,n〉 provided
that ω2 − ωL � g. Then at the end of the stroke, owing to
the thermalization by an effectively zero-temperature qubit
reservoir and a hot microwave reservoir, the state |1,n〉 is
essentially empty, while the ground state |g,0〉 and the state
|2,n〉 are populated with an approximate microwave thermal

distribution, resulting in an average energy

〈HA〉 ≈
∞∑

n=0

n�ωLpn, (11)

where pn = n̄n/(n̄ + 1)n+1 and n̄ = 1/[exp(�ωL/kBTf ) − 1]
is the mean thermal photon number of the microwave field.
During the third, isentropic stroke, ω is adiabatically changed
back to ω1. Then the dressed states |2,n〉 and |1,n〉 approach
qubit-excited states |e,n〉 and photon-excited states |g,n + 1〉,
respectively, with their population unchanged, so the average
energy at the end is

〈HB〉 ≈
∞∑

n=1

�[(n − 1)ωL + ω1]pn. (12)

The cooling of the heat engine takes place in the fourth,
isochoric stroke by coupling it to the qubit reservoir at Ta ≈ 0.
During that stroke the heating from the microwave reservoir
remains negligible for γ � κ . This results in the transfer of
population from the states |e,n〉 to states |g,n〉, resulting in the
occupation of dressed states |1,n〉. At the end of that stroke
the average energy of the system is therefore

〈HC〉 ≈
∞∑

n=1

n�ωLpn+1. (13)

Finally, during the following isentropic stroke that brings the
qubit frequency back from ω1 to ω2 the mean energy becomes

〈HD〉 ≈
∞∑

n=1

�[(n − 1)ωL + ω2]pn+1. (14)

The work output is therefore

W = 〈HB〉 − 〈HA〉 ≈
∑
n=1

�(ω1 − ωL)pn, (15)

where the sum
∑∞

n=1 pn increases with the raising of temper-
ature Tf with the upper limit 1 for Tf → ∞. The maximum
work output is therefore equal to the difference between the
energy of a single photon and a single qubit,

|Wmax| = �(ωL − ω1). (16)

The work input, on the other hand, is

W ′ = 〈HD〉 − 〈HC〉 ≈
∞∑

n=1

�(ω2 − ωL)pn+1, (17)

so the total work reads

Wtot = W + W ′

≈ �(ω1 − ωL)p1 + �(ω1 + ω2 − 2ωL)(1 − p0 − p1),

(18)

from which we can find that if ω1 and ω2 are chosen to be
symmetrically detuned from ωL, �2 ≡ ω2 − ωL = −�1 ≡
ωL − ω1, the last term in Eq. (18) vanishes and the total
work is precisely equal to the work output in the case of
low-temperature microwave reservoir [see Eq. (9)]. This is
because except for the lowest two dressed states |g,0〉 and
|2,0〉, the work output and input that arise from the population
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of the higher dressed states cancel out each other in the Otto
cycle, attributing to the symmetric structure of the energy
spectrum of the states |1,n〉 and |2,n + 1〉. Then the total work
reaches its maximum value at the precise temperature Tf such
that n̄ = 1 and p1 = 0.25. It then decreases when Tf is raised
past that point.

There is, however, nothing fundamental about this result.
This upper limit can easily be broken when the condition �1 =
−�2 is no longer imposed. Specifically, for |�1| > �2 the last
term becomes negative so the total work increases (the work
output is negative, corresponding to an energy produce by the
heat engine), while for the opposite case |�1| < �2, the total
work decreases.

Finally we note the unique role of p1 in the work performed
of the engine. Interestingly, this implies that for some nonequi-
librium quantum reservoirs with lowered probability p1, e.g.,
a squeezed vacuum reservoir with ρ = ∑∞

n=0 p2n|2n〉〈2n|, the
total work can be significantly reduced; see Eq. (18).

C. Two-qubit case

One can gain some intuition on the origin of the work
generated by the engine by observing that provided there
is at most one photon in the system the average work
W is independent of the number of qubits. Consider for
concreteness the case of two qubits. The total qubit-field
Hamiltonian is then

H2 = 1
2 �ω(Ŝz + 2) + �ωLâ†â + �g(âŜ+ + Ŝ−â†), (19)

where we have introduced the collective spin operators
Ŝi = σ̂1i + σ̂2i , i ∈ {z,±}. Much like for a single qubit, the
Hamiltonian can be decomposed into invariant subspaces Hn

with n excitations. The subspace H0 is characterized by the
ground state |gg,0〉, and the one excitation subspace spanned
by the two dressed states [22]

|φ(+)
0 〉 = sin

θ

2
|1,−1〉 + cos

θ

2
|0,0〉, (20)

|φ(−)
0 〉 = cos

θ

2
|1,−1〉 − sin θ2|0,0〉. (21)

Here

|1,−1〉 = |gg,1〉, (22)

|0,0〉 = |ge,0〉 + |eg,0〉√
2

, (23)

cos
θ

2
=

√
�1 + �

2�1
, (24)

sin
θ

2
=

√
�1 − �

2�1
, (25)

�1 =
√

�2 + 8g2. (26)

The corresponding energies are

E
φ

(±)
0

= �(ω + ωL ± �1)

2
, (27)

|φ(+)
0

|φ(−)
0

|gg, 0

|gg, 1

|eg
, 0

+
|ge

, 0

√ 2

FIG. 2. Dressed states picture for the two-qubit case. See the text
for the definitions of the states |φ(+)

0 〉 and |φ(−)
0 〉. Other parameters as

in Fig. 1.

with energy gap at the avoided crossing between |φ(+)
0 〉 and

|φ(−)
0 〉 increased to 2

√
2g; see Fig. 2. Then for an Otto cycle

involving the same sequence of strokes as in the single-qubit
case the average work is

W = p1
[
E

φ
(−)
0

(ω1) − E
φ

(−)
0

(ω2)
]
, (28)

which is same as Eq. (8) with E2,0 replaced by E
φ

(−)
0

, and is
again bounded by Eq. (9). Having more than one qubit but only
one photon does not allow one to extract more work from the
heat engine, demonstrating that it originates from the photon
field. The generalization to N qubits is straightforward, with
the energy gap at the avoided crossing increasing to 2

√
Ng.

This larger gap relaxes the time constraints associated with
suppression of nonadiabatic transitions.

IV. EXPERIMENTAL CONSIDERATIONS

In the following sections we focus for concreteness on the
simplest case of a single qubit coupled to a single photon.
Maintaining quantum adiabaticity in the isentropic stroke 3
requires that changes in the qubit frequency ω(t) should be
slow enough to avoid transitions to the dressed state |1,0〉, yet
faster than the qubit and cavity field decays. Also, |ω2 − ω1|
must be much larger than g to guarantee a full photonlike
to qubitlike conversion of the nature of the polariton, but the
detuning must remain sufficiently small, |�|1,2 � ω,ωL, for
the rotating-wave approximation and two-level approximation
implicit in the Jaynes-Cummings Hamiltonian to remain valid.
Turning to the two isochoric thermalization strokes, we note
that stroke 2 only necessitates a time long compared to κ−1,
while stroke 4 needs to occur in a time long compared to γ −1

but short compared to κ−1 to avoid a significant excitation
of |1,0〉. Denoting the duration of the ith stoke as τi the
hierarchies of system parameters required for the operation
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of the heat engine are therefore

ω(t),ωL � |�1,2| � g, (29)

τ2 � κ−1 � τ4 � γ −1 � τ3 � g−1. (30)

Although these conditions are challenging for traditional
cavity QED experiments, they should be realizable in circuit
QED devices [23]. For a resonator frequency ωL ≈ 2π ×
15 GHz [24] the mean photon number n̄ for a thermal
black-body spectrum at 0.3K is about 0.1, the single photon
probability p1 ≈ 0.08, and the occupation probability of the
|n = 2〉 state is a negligible p2 ≈ 0.007. The photon decay
rate κ of the resonator and the qubit decay rate γ can
be about 2π × 10 kHz and 2π × 1 MHz, respectively [25],
and the dipole coupling frequency can be as high as g ≈
2π × 200 MHz [26,27], which leaves sufficient time for the
adiabatic strokes.

For a specific experimental design of the engine that
permits us to extract work in an exploitable form, we
consider a superconducting transmon qubit. Its frequency
can be adjusted by controlling the magnetic flux 
, with
ω = ω0

√| cos(π
/
0)| [28]. In the bare-mode picture the
quantum expression for the infinitesimal average work is

dW = Tr[ρ dH ] = �

2
(〈σz〉 + 1)dω. (31)

Because ω is an implicit function of the magnetic field intensity
B Eq. (31) is equivalent to dW = −μdB. This suggests that
the engine can be treated as an artificial magnetic substance
with effective average magnetic moment μ = −[�(〈σz〉 +
1)/2]∂ω/∂B located in a circuit loop. In stroke 1, besides
adjusting ω, the change in B also induces a current in the
circuit according to Faraday’s law, but no work is done by the
magnetic substance since 〈σz〉 = −1 and μ = 0. However, in
the third stroke μ 
= 0 so that even when applying an equal
change in B the induced current is different. The work output
by the magnetic substance, i.e., the engine, is responsible for
the increase in current, which could be further extracted via
coupling to additional elements.

V. WORK MEASUREMENT

A straightforward two-point energy measurement based
on Eq. (8) is unsuitable to measure the work of the po-
lariton engine since polaritons are quasiparticles that cannot
be directly detected [29]. The integral from ω2 to ω1 of
Eq. (31) provides an equivalent expression for the work and
suggests that the average work and its fluctuations can be
measured by monitoring 〈σz〉. However, as should be expected
the statistical properties of the measured work depend on
the measurement protocol, since different schemes result in
general in different measurement backaction. We now compare
the results obtained from two different types of measurement.

A. Dispersive quantum measurements

If we use a secondary probe beam dispersively coupled to
the qubit by the interaction

Vd = �χb̂†b̂ σz, (32)

FIG. 3. Upper plot: Dressed states’ and bare states’ population
dynamics during the isentropic stroke 3 in the absence of mea-
surements (λ = 0), and for measurement strengths λ = 10−4ωL and
λ = 10−3ωL. Here the qubit frequency ω(t) varies linearly in time
from 1.2 ωL to 0.8 ωL and g = 0.013 ωL. Lower plot: Log-scale
probability distribution P (W ) of the measured work obtained from
1000 stochastic quantum trajectories for the same measurement
strengths.

where b̂ and b̂† are the annihilation and creation operators of
the probe [19], then the repeated homodyne detection of the
probe provides a sequence of measurements of 〈σz〉.

Ignoring for now effects due to dissipation during the work-
producing isentropic stroke 3, the time evolution of the system
is described by the stochastic Schrödinger equation [30–32]

d|ψj 〉 =
[
− i

�
H − λ(σ̂z − 〈σ̂z〉)2

]
|ψj 〉dt

+
√

2λ(σ̂z − 〈σ̂z〉)|ψj 〉dw, (33)

where λ characterizes the measurement strength and dw

is an infinitesimal Wiener increment. Repeatedly solving
Eq. (33) with the initial state (7) and a slowly varied ω(t)
generates a set of quantum trajectories |ψj (t)〉. The mean
and variance of the work, as well as the backaction of
the measurements, are readily obtained from the statistical
properties of these trajectories [33,34]. This also means that
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the statistics of the work depends on the quantum measurement
schemes.

Figure 3 summarizes the results of simulations for a set
of parameters within state-of-the-art experimental reach. The
upper part of the figure plots the evolution of the average
populations of the relevant states of the qubit-field system
during the third stroke of the cycle, and the lower part shows
the probability distribution of the work P (W ) extracted in a
single cycle of the engine in the absence of measurements and
for two measurement strengths λ.

In the absence of measurements the bare states |g,1〉 and
|e,0〉 exchange their populations almost perfectly as ω is
decreased slowly from ω2 to ω1 across the avoided crossing.
The occupation probability p1 of the dressed state |2,0〉
remains nearly unchanged, confirming the almost perfect
adiabatic conversion of the polariton from photonlike to
qubitlike. As expected, P (W ) is a double-peaked distribution
with W taking the value W = �(ω1 − ωL) with probability
p1 and W = 0 with probability 1 − p1. That latter dominant
component [35] is due to the population (1 − p1) of the
state |g,0〉, which is not involved into the heat engine
cycle.

Because the dispersive coupling Vd of the qubit to the
probe field does not commute with the Jaynes-Cummings
Hamiltonian (1) it couples the two dressed states |2,0〉 and
|1,0〉 and with an imperfect conversion between the two bare
states |g,1〉 and |e,0〉. This results in a measurement backaction
whereby the peak in P (W ) at W < 0 broadens and spreads
towards the zero, as visible in the upper part of Fig. 3. As
λ increases the adiabatic conversion gradually breaks down
and the populations of states |2,0〉 and |1,0〉 approach equal
values, with the system evolving toward the deterministic
steady-state

ρ = (1 − p1)|g,0〉〈g,0| + p1

2
(|2,0〉〈2,0| + |1,0〉〈1,0|) (34)

with a significantly reduced average work.
In addition to measurement-induced dissipation, the effects

of qubit and cavity dissipation on the average work during
the isentropic stroke 3 can be evaluated quantitatively by
solving Eq. (6). Physically, the spontaneous decay of the
qubit from |e,0〉 ≈ |2,0〉 to |g,0〉 is dominant for ω < ωL,
and results in a reduction of the average work. For ω > ωL the
thermalization of the cavity mode causes transitions from |g,0〉
to |g,1〉 ≈ |2,0〉, increasing the work produced by the QHE.
In contrast, for ω < ωL it induces transitions from |e,0〉 to
|e,1〉, whose population then transfers to the state |g,1〉 ≈ |1,0〉
during the thermalization stroke 4, thereby opening up a
leak in the Otto cycle. That leak is minimized by imposing
κ � γ .

B. Absorptive quantum measurements

To illustrate the dependence of the statistical properties of
the measured work on the measurement protocol we compare
the homodyne detection with large-detuned probe to a resonant
absorption measurement scheme. This can be realized by
resonantly coupling a low-density ground-state beam of probe

FIG. 4. Same plots as Fig. 3 but for the resonant absorptive
measurement.

two-state systems with the qubit through the interaction

Va = �χ (σ̂+σ̂
p
− + σ̂−σ̂

p
+), (35)

where the superscripts p labels the spin operators of the probe
qubits. Ignoring the effects of dissipation during the adiabatic
stroke 3 (same as in the dispersive case), the time evolution
of the system is then described by the stochastic Schrödinger
equation [30],

d|ψj 〉 =
[
− i

�
H + λ

2
(〈σ̂+σ̂−〉 − σ̂+σ̂−)

]
|ψj 〉dt

+
(

σ̂−√〈σ̂+σ̂−〉 − 1

)
|ψj 〉dN, (36)

where λ is a measure of the strength of the measurement and
dN is an infinitesimal Ito increment. The results of simulations
are shown in Fig. 4 with all parameters as in Fig. 3. In the
absence of measurements the evolution of the population of
the relevant states and the statistics of the work output are the
same in the two figures, as should of course be the case, but as
the strength of the measurement increased, the populations of
the states |2,0〉 and |e,0〉 now decay to zero and the populations
of the states |1,0〉 and |g,1〉 remain equal to zero in the end
of stroke 3. This is attributed to the absorption from the
probe, which results in a measurement-induced energy loss.
As a result the average work decreases dramatically, with an
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associated broadening of the distribution of P (W ) towards
zero.

VI. CONCLUSION

To summarize, we have proposed and analyzed what
is arguably the simplest polaritonic QHE, a single qubit
coupled to a single photon that operates by absorbing energy
from feeble thermal microwave fields. Irrespective of its
experimental implementation it offers a straightforward and
pedagogically appealing platform for quantitative studies
of quantum thermodynamics. Circuit QED realizations of
this system seem particularly promising, in which case the

work output is readily controllable and extractable, and the
influence of the quantum measurement can be demonstrated
efficiently.
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