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Near-field measurements of the even-order harmonics undetectable in far-field measurements
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Even-order harmonics (EOHs) are generated for oriented molecules and for atoms under specific conditions.
Here, we focus on the most common situations where EOHs are not observed in far-field measurements. We
propose an experiment to show that the EOHs are produced close to the nucleus but are not detected in the far-field
measurements due to destructive interferences of the propagated EOHs of the emitted radiation. However, Rydberg
gas atoms (e.g., rubidium), which are out of the focus of the laser beam, are expected to be ionized due to their
weak interaction with a specific EOH of helium, which is not observed by the far-field detector. The ionization
energy of the Rydberg gas atoms should be in resonance with the single-photon energy of a specific EOH.
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I. INTRODUCTION

Experimental measurements of the harmonic generation
spectra (HGS) of atoms in strong linear polarized light consist
of odd-order harmonics only: see, for example, Refs. [1–6]
and references therein. There are situations where even-order
harmonics are also produced, even when rare-gas atoms
interact with continuous-wave (CW) linear polarized light.
Another possibility to produce even-order harmonics is when
rare-gas atoms interact with bichromatic lasers. The even
and odd harmonics are produced when the fundamental laser
frequency couples field-free states of different symmetries;
see, for example, Refs. [7,8]. We might note in passing that
even-order harmonics are generated for oriented (but not for
aligned) molecules (see, for example, a theoretical explanation
in Ref. [9] and experimental results presented in Ref. [10]).
However, this situation is not considered here. Here, we focus
on situations where even-order harmonics are not observed
and only odd-order harmonics are detected.

The reason for the fact that only odd-order harmonics are
observed when atoms interact with linearly polarized laser
fields when the duration of the laser pulse is sufficiently long
is well understood [11]. In these cases, besides the generation
of high-frequency radiation, the atoms in the strong laser fields
are ionized. Consequently, the single Floquet quasienergy
(QE) solution that dictates the photoinduced dynamics is a
metastable state. This metastable Floquet state is a complex
pole of the scattering matrix, which can be computed when
outgoing boundary conditions are imposed on the eigenfunc-
tions of the Floquet operator [12]. It has already been shown
that the HGS as observed in experiments can be obtained from
the calculations of a single-resonance metastable QE-Floquet
solution [13]. In Ref. [13], the numerically exact single-
resonance QE-Floquet state for a helium atom in a strong
linear polarized laser field was calculated by using a uniform
complex scaling transformation. The uniform complex scaling
transformation of the electronic Hamiltonian enables the
calculation of QE-Floquet states, using computational methods
that were originally developed for the calculation of bound
QE-Floquet states.

*nimrod@technion.ac.il

II. CALCULATIONS OF THE LOCAL AMPLITUDE OF
THE EMITTED RADIATION

To calculate the amplitude of the emitted radiation with the
frequency � > ω (either by far- or near-field measurement),
we need to define the time-dependent local operator A(x,�),
which is given by

Ax(x,y,z,�,t) ≡ ei�tax(x,y,z), (1)

where the electron acceleration along the polarization direction
x is defined as usual as

ax(x,y,z) = − 1

me

dV

dx
, (2)

where me is the mass of the electron and V (x,y,z) stands
for the three-dimensional (3D) effective field-free electronic
potential. The complex amplitude of the radiation measured
by far-field or near-field detectors is given by

E(�,F (σ )) =
∫ +∞

−∞
dxdydz

1

T

×
∫ T

0
dtAx(x,y,z,�,t)ρ(x,y,z,t ; F ), (3)

where

T = 2π

ω
(4)

and the parameter 1 � F � 0 is the far-to-near measurement
parameter, and gets a continuous value from 1 (measurement
of the far-field radiation, which consists of odd-order har-
monics) to 0 (near-field measurements of even- and odd-order
harmonics). More specifically,

F (σ ) ≡ 1 − 〈�(t)|Ô(σ )|�(t)〉, (5)

where σ is the controlled parameter, 0 < |σ | � ∞, and Ô is
defined as

Ô(F (σ )) ≡ W(x,σ ). (6)

The function W(x,σ ) gets values close to unity when F (σ ) �
1 and only far-field measurements of the HGS are taken. The
near-field measurements of the HGS are taken when F (σ ) � 1
and W(x,σ ) is not a uniform function of x. x = x0 stands for
the distance of the Rydberg atom from the rare-gas atoms that
are embedded in the focus of the laser beam. x0 must get a
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sufficiently large value to ensure the negligible effect of the
Rydberg atom (e.g., rubidium) on the HGS.

The time-dependent density functions in Eq. (3) are given
by

ρ(x,y,z,t ; F (σ )) = [Ô(σ )�(x,y,z, − t)]�(x,y,z,t). (7)

Then, for bound quasienergy (Floquet) solutions of
the time-dependent Schrödinger equation (TDSE),
�(x,y,z, − t) = �∗(x,y,z,t), and in far-field measurements,
ρ(x,y,z,t ; F (σ ) = 1) = |�(x,y,z,t)|2. When the quasienergy
solutions of the TDSE are metastable states, then
�(x,y,z, − t) 	= �∗(x,y,z,t) (see the c product as defined
in the textbook on non-Hermitian quantum mechanics [12]).
The intensity of the emitted radiation with frequency � is
given by

I0(�,F (σ )) = |E(�,F (σ ))|2. (8)

The far-field detector shows that I0(�,F (σ ) → 1) gets large
values when �/ω = 3,5,7, . . . ,2n + 1, . . . .. The near-field
detector (F � 0) is located out of the focus of the laser
that interacts with the noble gas atom that generates the
high harmonics. The Rydberg state is a diffuse function
which features a tail that reaches the nucleus of the rare-gas
atom that emits the high-frequency radiation. The effect of
this diffuse function on the symmetric properties of the
Floquet Hamiltonian that describes the dressed rare-gas atom is
negligible. Therefore, in the far-field measurements, only odd-
order harmonics would be observed as before, even when the
near-field measurements are taken. It is important to emphasize
that the Rydberg atom will only be ionized on resonance
conditions, that is, when I · ERydberg/� = � = ωn0, where
I · ERydberg is the ionization energy of the Rydberg atom and
� = ωn0 is a specific emitted high-frequency radiation that
satisfies the resonance condition which is stated above. The
experiment should be designed such that n0 gets a specific
even value. The fact that the Rydberg atom is ionized is a
proof that even-order harmonics, which are not observed by
the far-field detector, are generated with a quite large local
intensity.

By using Eq. (7), the following is obtained from Eq. (3):

E(�,F (σ )) = 1

T

∫ T

0
dt〈�(t)|W(x,σ )Ax(x,y,z,�,t)|�(t)〉.

(9)

By changing the order of the integration over time and space,
one gets that

E(�,F (σ )) =
∫ +∞

−∞
dzW(x,σ )Alocal(x,�), (10)

where the local amplitude of the radiation generated by the
atom that interacts with the linear polarized laser field, as a
function of the polarization direction, is given by

Alocal(x,�) = 1

T

∫ T

0
dt

∫ +∞

−∞
dydzAx(x,y,z,�,t)

×�(x,y,z, − t)�(x,y,z,t). (11)

For bound systems, �(x,y,z, − t)�(x,y,z,t) =
|�(x,y,z,t)|2. Here, we take the photoinduced ionization

phenomenon into consideration and therefore prefer to use a
more general definition for the inner product (see Ref. [12]).
When the duration of the laser pulse is sufficiently long and
supports more than 5–10 optical cycles, the dynamics of the
photoinduced system can be described by the Floquet theory
[11]. Namely, the field-free bound ground state becomes
a quasienergy Floquet state, which is the eigenfunction of
the Floquet operator, which has the largest overlap with the
field-free bound ground state. Consequently,

�(r,t) ∝ �(r,t), �(r,t) =
∑

n=0,±1,±2,...

ϕn(r)eiωnt , (12)

where the overlap of ϕ0(x) with the field-free ground state
is large (usually >0.9). For atoms in a linear polarized
laser field, �(x,y,z,t) = ±�(−x,y,z,t + T/2), and there-
fore, ϕn(x,y,z) = ±(−1)nϕn(−x,y,z) [14]. Consequently,

Alocal(x,�)

= 1

T

∫ T

0
dt〈�(r,t)|Âx,�(t)|�(r,t)〉y,z

=
〈(

− 1

me

dV

dx

)∣∣∣∣ 1

T

∑
n,n′

∫ T

0
dtei((n−n′)ω+�t)ϕnϕn′

〉
y,z

=
〈(

− 1

me

dV

dx

)∣∣∣∣δ�,Nω

∑
n

ϕn(r)ϕn′=n+N (r)

〉
y,z

≡
〈(

− 1

me

dV

dx

)∣∣∣∣δ�,Nωχ (x,y,z; N )

〉
y,z

. (13)

The near-field emitted radiation (so-called local field)
consists of N -order harmonics, where N is an integer
number (even or odd). Therefore, the emitted local (near-
field) radiation consists of odd- and even-order harmonics,
N = 2,3,4,5, . . .. Due to the symmetric properties of the
quasienergy (Floquet) solutions mentioned above, when N

is an even number, then ϕn(x) and ϕn+N (x) have the same
symmetric properties (both are either even or odd functions).
Therefore, χ (x,y,z; N ) = ∑

n ϕn(x,y,z)ϕn′=n+N (x,y,z) is an
even function of x when N = 2,4,6, . . .. When N = 3,5,7, . . .

(odd numbers), then χ (x,y,z; N ) is an odd function and
χ (−x,y,z; N ) = −χ (x,y,z; N ). Since the atomic field-free
potential V (x) is an even function, and dV/dx is an odd
function, it is clear that the integral of Alocal(x,� = Nω) ∝
〈(dV/dx)χ (x,y,z; N )〉y,z over x is zero when N gets even
values. This is the reason that only odd-order harmonics are
emitted in far-field measurements while the local amplitude
of the even-order harmonics is not equal to zero. When the
pointer of the detector is a delta function, as first proposed by
Berry [15], then even-order harmonics are obtained in weak
measurements whenever a local measurement of the emitted
radiation is taken. Figures 1–3 show the local amplitude
of even- and odd-order harmonics that were obtained for a
simple model of Xe in a linear polarized laser field. The
results presented in Figs. 1–3 show that Alocal(x,� = Nω) ∝
〈(dV/dx)χ (x,y,z; N )〉y,z is an odd function of x when N gets
even values, and it is an even function when N gets odd values.
Consequently, in the far-field measurements where the local
(near-field) amplitudes are integrated over the entire space (i.e.,
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FIG. 1. The complex amplitude of the emitted radiation (black
color for real values and red color for the imaginary values) with a
photon energy ��, where � = 2ω as a function of the polarization
coordinate (a.u.). The laser frequency is ω = 0.07 au (1.9 eV) and
the maximum field amplitude ε0 = 0.0735 a.u. (I0 = |ε0|2 = 1.9 ×
1014 W/cm2). As one can see from this plot, the local amplitude of the
second-order harmonic is an odd function of x (the polarization axis).
Therefore, in a far-field measurement where the detector measures the
integral overall emitted local radiation, no second-order harmonics
are emitted.

the polarization direction x), only odd-order harmonics will be
detected (see Ref. [14] for the derivation of dynamical selection
rules for HHG). The numerical results provide an illustrative
example of the analytical properties of the local amplitude of
the emitted radiation, as explained above. The model potential
of Ar in the linear polarized light and the numerical methods
used for calculations of the Floquet solution are given in
Ref. [11]. Outgoing boundary conditions were introduced by
applying the complex scaling transformation, which enables
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FIG. 2. The amplitude of the emitted radiation with a photon
energy ��, where � = 3ω, as a function of the polarization
coordinate (a.u.). The laser frequency and intensity are as given in the
caption of Fig. 1. Since the local amplitude of the third-order harmonic
is an even function and therefore in a far-field measurement where
the detector measures the integral over all emitted local radiation, the
third-order harmonics are emitted.
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FIG. 3. The amplitude of the emitted radiation with a photon
energy ��, where � = 4ω, as a function of the polarization
coordinate (a.u.). The laser frequency and intensity are as given in
the caption of Fig. 1.

the calculations of resonance metastable quasienergy (Floquet)
states by using algorithm methods which were originally
developed for the calculations of square integrable bound states
(see Ref. [12]).

III. MEASUREMENTS OF THE RADIATION EMITTED
FROM A SUBATOMIC SPATIAL REGION

The problem is that the detector should be able to measure
the radiation emitted from a subatomic spatial region. For
illustration reasons only, the detector which measures the near-
field-emitted radiation is a super-Gaussian which enables us to
control the detection of the high-harmonic-generation spectra
from far-field detection to near-field detection by varying the
parameter σ ,

W(x,σ ) = exp

[
−

(
x − x0

σ

)8
]
. (14)

The transition from far-field measurement to near-field
measurements is given by the parameter PF , which is defined
by

PF (σ ) = 1 − lim
L→∞

1

L

∫ +L/2

−L/2
W(x,σ )dx, (15)

such that

0 � PF � 1, (16)

as σ is varied from 0 to ∞. L stands for the size of the box
where the entire system (i.e., rare-gas atom and Rydberg atom)
is localized. Note that the parameter F = 1 implies that no
even-order harmonics are measured and, therefore, PF=1 = 0.

In our illustrative numerical calculations for the high-
frequency radiation which is emitted from Ar that interacts
with a linear polarized laser field, we chose x0 to be “outside”
of the atom in the sense that Alocal(x0,N ) = 0 for any value
of N. Note that � = Nω is the frequency of the emitted
high-frequency radiation, where N = 2,3,4, . . .. Since in our
illustrative numerical example Alocal(x,N ) 	= 0 when |x| �
L/2 = 6 is the active atomic region where the even- and
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FIG. 4. The intensity, as defined in Eq. (17), of the emitted fourth-
order harmonics from Xe, as a function of the far-to-near transition
strength parameter. By definition, F is a transition from a far-field
measurement (PF = 0) to a near-field measurement (PF

∼= 1). The
laser frequency and intensity are as given in the caption of Fig. 1.

odd-order harmonics are emitted, we define PF (σ ) in our
numerical calculations as in Eq. (15), when L = 12 a.u. and
x0 = 10, where 0 < σ � 20.

Thus, PF → 1 as σ → 0 and PF → 0 as σ → 20, includ-
ing a continuous change from far-field measurements of the
HHG spectra (λ = 1 for σ → 0) to near-field measurements
(λ = 0 for σ → 20) in our simulations.

The amplitude of the measured N -order harmonics as a
function of PF is obtained from Eq. (10) by substituting
� = Nω,

AN (PF (σ )) = E(� = Nω,F (σ )). (17)

Note that due to the fact that the pointer of the detector is
located at the region where Alocal(x = x0,N ) = 0, for any
value of N, we will not get any emitted high-frequency
radiation for the weakest possible perturbation which breaks
the dynamical symmetry of the Floquet operator which is
associated with PF = 1. Therefore, we expect to observe
a nonmonotonic behavior of the intensity of the emitted
even-order harmonics as PF varies from far- to near-field
measurement. The results presented in Fig. 4 confirm our
analysis. That is, the even-order harmonics, which are not
allowed by the dynamical symmetry rule [14], are detected in a
measurement where the postselected state is almost orthogonal
to the preselected state. The preselected state is, in our case,
a photoionizing resonance eigenstate of the Floquet operator.
The postselected state is solely dependent on the location of
the detector. It should be emphasized here that x0 is measured
from the origin, where the nucleus of the atom, which serves
as a detector (see below), is located.

The calculations we perform will be chronologically
presented to show that the pointer does not significantly
break the dynamical selection rules which result in far-field
measurements of odd-order harmonics only. The pointer
couples two resonance Floquet solutions which have different
dynamical symmetry. It implies that the solution of the TDSE
is now given by

�WP (r,t) = e−iEres1t/��res1(r,t)

+Cpointere
−iEres2t/��res2(r,t), (18)
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FIG. 5. A low probability to populate the exited Floquet state
is required to guarantee the suppression of even-order harmonics in
the far-field measurements while the Rydberg atom is ionized due
to the local generation of even-order harmonics. By definition, F

is a transition from a far-field measurement (PF = 0) to a near-field
measurement (PF

∼= 1). The laser frequency and intensity are as given
in the caption of Fig. 1.

where Eres1 and �res1(r,t) are, correspondingly, the resonance
eigenvalue and eigenfunction of the Floquet operator that are
associated with the preselected state as defined in Eq. (12), and
the other Floquet solution is the solution that is most strongly
coupled to the preselected state by the “pointer.” To guarantee
that the pointer does not break down the dynamical symmetry
of the preselected state, we must confirm that |Cpointer|2 ≈ 0.
On the basis of standard first-order perturbation theory, Cpointer

is given by

Cpointer = 〈〈�res1(r,t)|W(x,σ )|�res2(r,t)〉x,y,z〉t
Eres1 − Eres2

. (19)

In Fig. 5, we show, for our model system, the value of
POPexc = |Cpointer|2, which indicates the probability to popu-
late an excited Floquet state due to the near-field measurement.
As one can see from the results presented in this figure, the
population of another resonance Floquet solution is negligible
when the near-field measurement is taken. This is an important
result since the near-field measurement is taken only when a
single Floquet resonance solution controls the photoinduced
dynamics and only odd-order harmonics are observed by the
standard far-field measurement. Note that in our calculations,
we selected the largest possible coupling parameter Cpointer. A
low value of the population of another Floquet solution due to
the near-field measurement is expected since the nominator in
the expression of Cpointer gets small values and the dominator
gets large values, yielding an extremely small ratio, with a
negligible effect on the far-field measurements.

IV. VISUALIZATION OF THE PERFORMANCE OF A
NEAR-FIELD MEASUREMENT WHERE THE
EVEN-ORDER HARMONICS ARE DETECTED

Let us visualize the performance of a near-field measure-
ment where the even-order harmonics are detected. In the
proposed measurement, a comparison between two different
types of experiments will be taken. In one type of experiment,
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using an absorption or fluorescence imaging technique, the
fraction of ionized rubidium will be measured in the absence
of Ar atoms. In this type of experiments, Rb atoms are ionized
because of multiphoton absorption. However, multiphoton
ionization in this case will be small because of the low
penetration of the rubidium orbitals (even at n = 10 Rydberg
state) to the focus of the laser. In the second type of
experiments, the number of Rb ions will be measured in
the presence of Ar atoms. Therefore, in the second type of
experiments, the rubidium atoms in the n = 10 Rydberg state
will be ionized not only by a sequential absorption of two
6400 nm photons but also by a single (second harmonic)
3200 nm photon. In order to reach conditions in which the
multiphoton ionization of rubidium is negligible in comparison
to the single-photon absorption, the single-photon energy ��,
where � = 2ω, must be as close as possible to the ionization
energy of the highly excited rubidium atoms (n = 10 Rydberg
p-type orbital). The main contribution to the signal-to-noise
ratio is the fluctuation in the power of the harmonic generation
laser.

V. CONCLUDING REMARKS

Breakage of the spherical symmetry ground-state reso-
nance Floquet eigenfunction of a noble gas atom due to

the penetration of the tail rubidium is negligible and, in
far-field measurements, only the odd-order harmonics emitted
by the rare-gas atoms will be observed. However, due to the
penetration of the tail of the Rydberg orbital of rubidium
to the trap where the noble gas atoms interact with the
strong laser field, we expect to ionize significant parts of
the rubidium atoms due to the near field of the emitted
second-order harmonics. A detailed description of such an
experiment is beyond the scope of this work. We leave to the
experimentalists, who might be motivated by this paper, to
find other means of carrying out the near-field measurements,
while only odd-order harmonics are observed in the far-field
measurements.
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