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Transverse optical forces for manipulating nanoparticles
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We study optical forces acting on a subwavelength particle with anisotropic polarizability and discover an
optomechanical effect that resembles the Hall effect for electrons. While in the classical Hall effect the transverse
Lorentz force and the transverse voltage appear due to the static magnetic field which induces the nondiagonal
components of the electric conductivity tensor; in our case the imaginary parts of the nondiagonal elements of the
polarizability tensor are responsible for the transverse scattering force. We calculate this force for the examples of
the ellipsoidal plasmonic nanoparticles and the spherical particle with gyromagnetic properties, and show that the
transverse force depends on the physical origin of the anisotropy of the polarizability, and on the electromagnetic
wave structure around the particle. Moreover, this force primarily occurs in the inhomogeneous field only.
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I. INTRODUCTION

Mechanical manipulation of nano- and microparticles by
light is one of the most fascinating phenomena studied by
modern nanophotonics, and it is already used in several
applications. Probably the first demonstration of the control
of dielectric microspheres using a laser is presented by Ashkin
in 1970 [1]. Nowadays, the manipulation of particles by
light attracts significant interest, and it is strongly motivated
by applications such as optical tweezers, which are used
for moving biological objects, including cells, DNA, or big
organic molecules [2–5]. Apart from biological and medical
applications, light can be used for sorting, moving, and sepa-
rating dielectric or metal nanoparticles, which is extremely
important for mass and size spectrometry of nanoparticle
mixtures [6–11].

In general, for calculating optical forces one can use
Maxwell’s stress tensor [12], and for complex structures this
can be done only numerically. Purely numerical results are
often quite obscure; therefore analytical models describing
simple problems are very valuable, since they can give a deeper
physical insight. One of the most popular objects of analytical
studies is a spherical particle made of a homogeneous isotropic
material, illuminated by an optical wave of a simple structure,
e.g., a linearly polarized plane wave or a Gaussian beam. In
such simple cases we can calculate all the forces acting on
small particles analytically. It is not surprising then that as a
result of such simplified models a number of new effects for
more complex particles, or for more complex optical beams,
still remain undiscovered.

The optical forces acting on particles can be attributed to
one of the two types—either gradient or scattering [13,14].
The gradient force is proportional to the gradient of the field
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intensity as well as to the real part of the particle polarizability,
and it is a generalization of the static electrophoretic force
[15], though it includes both electric and magnetic parts of
the Lorentz force. This is the force that is used in optical
tweezers for manipulation of nanoparticles, and it requires
structured optical beams. The scattering force is proportional
to the imaginary part of the electric polarizability, and it is
directed along the wave vector of the electromagnetic wave,
because this force appears as a result of the momentum transfer
from the absorbed or scattered photons to the particle.

In this paper, we study the interaction of light with several
types of anisotropic subwavelength nanoparticles. In the sim-
plest dipole approximation we show that the average scattering
force acquires a component in the direction orthogonal to the
wave vector. This force is proportional to the imaginary part of
the nondiagonal component of the polarizability tensor of the
particle and it resembles the electronic Hall effect (see Fig. 1).
Here the role of charged electrons is played by neutral photons,
and instead of transverse voltage induced by Lorentz force
there is a transverse component of the optical scattering force.

We further show that the anisotropy of polarizability
that leads to the transverse force may be caused by various
reasons: it can be an anisotropic nature of the material that
makes up a spherical particle, it can be the shape of the
particle that induces the anisotropy, or the inhomogeneity of
the material that the particle is made of. A similar effect was
recently studied [16] where a lateral recoil force emerges due
to the directional surface plasmon excitation by a nanoparticle
placed near the air/metal interface and illuminated by a
circularly polarized light.

II. OPTICAL FORCES IN THE FIELD OF
INHOMOGENEOUS PLANE WAVES

We start with deriving expressions for the optical forces
acting on a nanoparticle in a TM-polarized inhomogeneous
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FIG. 1. Schematics of the problem. Inhomogeneous plane wave,
e.g., created by interference of two plane waves or just a surface wave,
is incident on a particle that has anizotropic properties. The wave
scatters on the particle and in certain conditions it creates scattering
optical force with a finite component orthogonal to a wave vector.

plane wave. We assume that the incident wave has the
following field structure:

Hy = A(z) exp (−ikx),

Ex = − 1

ik0ε

dA(z)

dz
exp (−ikx), (1)

Ez = − k

k0ε
A(z) exp (−ikx),

where the real function A(z) satisfies the Helmholtz equation,

d2A

dz2
+ (

k2
0ε − k2

)
A = 0, (2)

and describes the transverse field structure, ε is the dielectric
permittivity of the environment, and k0 = ω/c is the wave
number in free space, ω is the angular frequency, and c is
the speed of light. A small dipole particle with anisotropic
polarizability αik placed in such an electromagnetic wave
experiences the ponderomotive force

F =
〈
(p∇)E + 1

c

[
∂p
∂t

× B
]〉

= 1

2
[(p∇)E∗ + [p × curlE∗] + c.c.], (3)

where 〈...〉 stands for time averaging. The expression for the
force can be rewritten as

Fi = 1

2

∑
k

(pk∇iE
∗
k + c.c.), (4)

where pk = ∑
j αkjEj is the dipole moment of the particle,

and the star denotes complex conjugation. In the case of the
TM-polarized wave described by the expressions (1), the force
components (4) can be written explicitly as

F sc
x = − k

(k0ε)2

[
Imαxx

(
dA

dz

)2

+ k2ImαzzA
2

]
, (5)

Fz = F grad
z + F sc

z , (6)

where

F grad
z = 1

2(k0ε)2

[
k2Reαzz − (

k2
0ε − k2)Reαxx

]dA2

dz
, (7)

F sc
z = k

(k0ε)2

[(
k2

0ε − k2
)
ImαxzA

2 + Imαzx

(
dA

dz

)2
]
, (8)

and Re and Im stand for real and imaginary parts, respectively.
We see that the transverse component of the force Fz, in

addition to the usual gradient part, also contains a scattering
force component which is proportional to the imaginary part
of the polarizability tensor. As we mentioned earlier, the
scattering force is caused by the momentum transfer from
absorbed and/or scattered photons to the nanoparticle. From
first glance, one can expect that this force should be parallel to
the wave momentum, i.e., along the wave vector k, since the
nanoparticle scatters as a dipole, and the dipole scattering is
always symmetric, independently of the polarizability tensor.
However, if we can break the cylindrical symmetry of the
scattering pattern, then we can gain net force orthogonal to the
momentum of incoming light.

Below we give particular examples with a clear explanation
of such an asymmetric behavior of an apparently symmetric
system. We consider two cases when the anisotropy has two
different origins: a plasmonic metallic nanoparticle with the
anisotropic shape of an ellipsoid of revolution and a spherical
gyrotropic ferromagnetic nanoparticle.

III. ELLIPTIC PLASMONIC NANOPARTICLES

First, we study plasmonic metallic nanoparticles that have
the shape of an ellipsoid of revolution. The polarizability tensor
for the subwavelength ellipsoids1 are known [17], and the
relevant components can be written in the following form:

αxx = α⊥ + (α(‖) − α(⊥)) × cos2 ϕ sin2 θ, (9)

αzz = α⊥ + (α(‖) − α(⊥)) × cos2 θ, (10)

αxz = αzx = (α(‖) − α(⊥)) × cos ϕ sin θ cos θ, (11)

where the spherical angles ϕ,θ determine orientation of the
ellipsoid in space relative to our coordinate frame. α(‖) and
α(⊥) are longitudinal and transverse parts of the polarizability
tensor in the principal axis of the ellipsoid of revolution, which
are given by [17]

α(⊥) = a2b

3

εm(ω) − ε

ε + 1/2(εm(ω) − ε)(1 − n)
,

α(‖) = a2b

3

εm(ω) − ε

ε + (εm(ω) − ε)n
. (12)

Here a and b represent principal semiaxes of the ellipsoid,
εm(ω) is the frequency-dependent particle permittivity, and n

1We use an electrostatic expression for the polarizability and do not
take into account radiation corrections whose impact in our case is
small compared to that of the dissipation.
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is the depolarization factor

n = 1

2

(
a

b

)2 ∫ ∞

0

dx

(1 + x)[x + (a/b)2]
. (13)

The depolarization factor assumes values in the range 0 < n <

1, with n = 1/3 corresponding to a sphere, while the values
0 < n < 1/3 relate to elongated particles and 1/3 < n < 1
correspond to oblate ellipsoids. The difference α(‖) − α(⊥)

vanishes only in the case of a spherical particle, which leads
to the isotropic polarizability and obvious lack of transverse
scattering force.

As a first particular example, we consider the field created
by two TM-polarized plane waves of the same amplitude
symmetrically converging at an angle 2β, 0 < β < π/2 that,
for example, corresponds to the TM mode structure in a planar
waveguide. The magnetic field of such wave can be represented
in the form given by Eq. (1) with

A(z) = 1
2 (Ame−i
z + Amei
z) = Am cos 
z, (14)

where k = k0
√

ε cos β and 
 = k0
√

ε sin β. This field has
a standing wave pattern in z direction and traveling wave
structure along x, and it is perfectly symmetric with respect
to the z = 0 plane. However, in this case the substitution of
expression (14) into Eq. (8), for the symmetric polarizability
tensor of plasmonic particles (αik = αki), yields

F (sc)
z = k
2

(k0ε)2
A2

mIm(αxz) = const. (15)

This expression describes a nonvanishing transverse scatter-
ing force, which is independent of the z coordinate. This
result can be intuitively explained in terms of the action of
partial plane waves on the anisotropic particle. Due to the
nondiagonal component of polarizability, each plane wave in
expression (14) produces different scattering forces acting on
the nanoparticle along its own wave vector, and this produces
a nonzero component of the scattering force in the z direction.

For further explanation of the effect, we study the scattering
pattern of the nanoparticle. Despite the symmetric scattering
pattern of a dipole in the field of a homogeneous plane wave,
in the case of an incident inhomogeneous plane wave the
interference of the field scattered by the dipole with partial
converging homogeneous plane waves leads to the asymmetry
of the scattering that, in turn, produces the nonzero radiation
reaction force along z.

To further confirm our findings, we use the finite-element
method to numerically calculate the scattering of light by a
small silver elliptic particle. As an example, we analyze the
scattering characteristics of an axially symmetric elongated
particle with the transverse and longitudinal semiaxes a =
15 nm and b = 30 nm, placed in vacuum. The depolarization
factor for this particle is n = 0.1677. Figure 2 shows the
distribution of the electric field (amplitude in log scale) in
the vicinity of this particle, when the particle is placed in
the maximum of the standing wave given by Eqs. (1) and
(14). The wavelength in our calculations is λ = 500 nm, the
angle is β = 54.7◦, and the amplitude Am = 27.46 V/cm.
This amplitude of the field corresponds to the mean power
flow density of 1 W/cm2 in the plane-wave regime (when
β = 0). The field structure is shown for two cases: symmetric,

FIG. 2. Electric field distribution (shown is the amplitude of
electric field in V/m in logarithmic scale for the incident plane wave
with energy flow of 1 W/cm2) on the xz plane in the vicinity of the
elliptic silver particle placed in the origin (a) symmetric case with the
ellipsoid oriented along the z axis and (b) the long axis of the particle
is at 45◦ to the z axis. Parameters of the particle and the incident field
are given in the text.

when the ellipsoid is oriented along the z axis, and a more
general case with broken symmetry when the long axis of the
particle makes the angle θ = 45◦ with the z axis.

The characteristic angular dependence of the optomechan-
ical Hall force can be derived from Eq. (15) as

F (sc)
z ∼ cos β sin2 β cos ϕ sin θ cos θ, (16)

which gives the optimal convergence angle β ≈ 54.7◦
(cos β = 1/

√
3) that provides a maximum of the force.

It is clear that transverse scattering force is absent in a
homogeneous traveling wave (β = 0), or in a purely standing
wave (β = π/2,k = 0). It also vanishes in the case when the
principal axis of the ellipsoid of revolution coincides with the
wave-vector direction, i.e., ϕ = π/2, or θ = 0, or θ = π/2.
Also, F (sc)

z = 0 in the field of crossing TE-polarized electro-
magnetic waves because of the absence of the longitudinal
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FIG. 3. Scattering diagram in the xz plane for four orientations
of the ellipsoidal silver nanoparticle placed in the origin θ = 0◦ (1),
θ = 30◦ (2), θ = 60◦ (3), and θ = 90◦ (4). Other parameters are the
same as in Fig. 2.

(along x) component of the electric field. In the latter case
only a gradient transverse force appears.

Figure 3 shows a scattering diagram in the xz plane for four
different orientations of the particle, θ = 0◦,30◦,60◦,90◦.

The total optical force experienced by a small scatterer can
be calculated using Ref. [18],

〈F〉 = −
√

ε

c

∮
(〈S〉 − 〈Si〉)ds,

where integration is performed over the closed surface in
far field and S, Si are the total Poynting vector and the
Poynting vector of the incident wave, respectively. From
this equation we conclude that an asymmetric scattering
pattern (such as curves 2 and 3 in Fig. 3) corresponds to
a nonzero transverse force experienced by the particle. The
symmetric case of curves 1 and 4 in this figure corresponds
to 〈Fz〉 ≈ 0. We note that the scattering radiation of a chiral
particle can be asymmetric [19], also leading to the appearance
of the transverse force. Direct force calculations based on
the Maxwell’s stress tensor give in our case F (1)

z = 7.23 ×
10−24 N, F (2)

z = −2.29 × 10−20 N, F (3)
z = −2.28 × 10−20 N,

and F (4)
z = 2.19 × 10−23 N (the particle’s volume is v =

2.8 × 10−17 cm3 and field intensity in the maximum of the
standing wave is 0.58 W/cm2).

Ellipsoidal particles have several plasmonic resonances,
described by the zeros of the denominator of Eq. (12). For
our particle, the lower resonance occurs at λ ≈ 448 nm,
while the next resonance is outside the visible frequency
range. At the resonance both real and imaginary parts of the
polarizability grow, thus increasing the total force experienced
by the particle. Figure 4 shows both the longitudinal Fx(ω) and
transverse gradient, F

(grad)
z (ω), and scattering F (sc)

z (ω) forces.
To calculate the gradient force, we have evaluated the total
transverse force at the point of maximum intensity gradient,
z = π/4
, and subtracted the value of F (sc)

z , which is equal
to the total transverse force at z = 0. Figure 4 also shows the

FIG. 4. Frequency dependence of the forces Fx(ω), F (grad)
z (ω),

and F (sc)
z (ω). Red circles, black dotted line, and blue squares show

numerically calculated F (sc)
z , F

(grad)
z , and Fx . Solid red and dashed

blue lines show analytically calculated forces, f (sc)
z and fx .

forces calculated from a simple model theory [17]. Both in
numerical simulations and model calculations the dispersion
characteristics of silver were taken from [20]. Here and in what
follows we present forces per unit volume calculated for the
incident field intensity of 1 W/m2. To obtain full physical force
for arbitrary intensity, the calculated force per unit volume has
to be multiplied by the volume of the particle and by the
intensity of incident light. Both analytical f and numerical
F forces demonstrate qualitatively similar resonant behavior,
with the resonance frequency of full numerical results being
redshifted as compared to the analytical results. This can be
expected, since the analytical model [17] is quasistatic and it
does not take into account the finite size of the particle.

Total transverse force consisting of the sum of the gradient
and scattering forces may cause continuous drift of the particle.
This occurs if the scattering force, which is constant in
the considered field configuration, prevails over the gradient
force, which is periodic along the z axis. According to the
results shown in Fig. 4, this is possible in the wavelength
interval 430 nm < λ < 510 nm, i.e., near the resonance. This
frequency range can be efficiently controlled by an appropriate
choice of the convergence angle of the two plane waves β and
it is shown by shaded areas in Fig. 5 for two different angles θ .

It is interesting to note that the transverse scattering force
strongly depends on the external field structure. A specific
example is the nanoparticle in the plane inhomogeneous wave
with purely exponential transverse structure

A(z) = Am exp (−
z), z > 0, (17)

with 
2 = k2 − k2
0ε. This field structure may correspond to a

surface wave or represent the field beyond the reflecting edge
of the prism at the total internal reflection. Since surface waves
are slower than the speed of light, then 
 in Eq. (17) is purely
real. Using Eq. (8) we derive

F (sc)
z = k

(k0ε)2
Imαxz

[−
2A2
me−2
z + (−
Ame−
z)2

] = 0, (18)
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FIG. 5. Areas of continuous drift (red) in the β-λ plane for θ =
π/4 and θ = π/6. The factor a/b = 1/2 (n = 0.1677).

meaning that the transverse scattering force for plasmonic
nanoparticles does not exist in the field of the evanescent
surface waves.

IV. FORCES ACTING ON GYROTROPIC PARTICLES

As a second example, we examine the spherical gyrotropic
ferromagnetic nanoparticle with the magnetization axis di-
rected parallel to the y axis. Orientation of the magnetization
axis can be controlled by an external static magnetic field. The
polarizability tensor of such a particle can approximately be
written in the optical domain as [21]

α̂ =

⎛
⎜⎝

α 0 iu

0 α 0

−iu 0 α

⎞
⎟⎠, (19)

where α ≈ a3(εm − ε)/(εm + 2ε), u = 3ga3/(εm + 2ε)2, and
g is the gyrotropy parameter, which is proportional to the
magnetization.

We consider the lossless case, so the tensor α̂ is Hermitian.
We also take into account that in the optical frequency
range the diagonal components of the polarizability tensor
are approximately equal. The scattering force, however, can
still appear in certain fields because of the different signs of
the nondiagonal components of the polarizability tensor for
gyrotropic materials. In the field of two converging plane
waves, Eq. (14), the scattering force component, which is

perpendicular to the wave vector, is given by

F (sc)
z = k

(4k0ε)2
A2

m
2u cos 2
z, (20)

and in the case of a surfacelike wave, Eq. (17), the force is also
nonzero and it can be written in the form

F (sc)
z = − 2k

(k0ε)2
A2

mu
2 exp (−2
z). (21)

Since dipole radiation is symmetric, a nonzero transverse
force can be provided only by asymmetric destructive and
constructive interference of scattered and incident waves and
it induces the momentum along z, which, in turn, leads to the
scattering force along z. We note that the optical transverse
force acting on the gyrotropic ferromagnetic nanoparticle in
the optical exponential field is small compared to the gradient
force even at plasmonic resonances, Fcs

z /F
gr
z ∼ 3g/(εm −

ε)(εm + 2ε), due to the small values of gyrotropy parameters
in available materials g ∼ 10−3.

We note that in this work we study time-averaged forces
acting on nanoparticles. However, the incident field can induce
not only force, but also a time-averaged torque which reorients
particles and therefore suppresses the considered effect. In
practice, one can apply a static electric field that will keep
particle orientation via electrophoretic forces.

V. CONCLUSIONS

To conclude, we predict an optomechanical effect which
manifests itself as a transverse electromagnetic scattering
force acting on an anisotropic nanoparticle in the direction
perpendicular to the wave vector of an incident TM-polarized
inhomogeneous plane wave. This force is proportional to
the imaginary part of the nondiagonal component of the
polarizability tensor of the particle. In the case of a gyrotropic
particle, the off-diagonal terms in the polarizability are caused
by the magnetic field, and this creates a close analogy to a
classical electronic Hall effect, when a transverse force can be
induced by a magnetic field perpendicular to electric current.
While in the electronic Hall effect the magnetic field induces
nondiagonal components of the conductivity tensor, in optics
the magnetic field can induce the nondiagonal elements of the
particle polarizability. We also show that the predicted op-
tomechanical effect is more general, and it may occur in other
cases when the particle polarizability has off-diagonal terms.
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