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Simultaneous realization of a coherent perfect absorber and laser by zero-index media
with both gain and loss

Ping Bai,1,2 Kun Ding,3 Gang Wang,1 Jie Luo,1 Zhao-Qing Zhang,3 C. T. Chan,3 Ying Wu,2,* and Yun Lai1,†
1College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology,

Soochow University, Suzhou 215006, China
2Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology

(KAUST), Thuwal 23955-6900, Saudi Arabia
3Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay,

Kowloon, Hong Kong, China
(Received 14 September 2016; published 19 December 2016)

We investigate a unique type of zero-index medium with both gain and loss (ZIMGL), whose effective
permittivity and permeability are both purely imaginary but of opposite signs. We analytically show that, by
using a slab of ZIMGL with equal magnitude of loss and gain, simulation realization of a coherent perfect
absorber (CPA) and laser, i.e., the so-called CPA laser, can be achieved. Previously the CPA laser was proposed
in parity-time (PT ) symmetric systems. However, the ZIMGL does not possess the PT symmetry and thus the
underlying physics is distinctly different. By designing a photonic crystal (PC) composed of core-shell rods,
with loss and gain distributed in either the core or the shell, we have realized such a ZIMGL. The CPA-laser
functionality of such a PC is also confirmed in our numerical simulations. Our work provides a different approach
for simultaneous realization of CPA and laser besides PT -symmetric systems.
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I. INTRODUCTION

Very recently, parity-time (PT ) symmetric systems have
attracted intensive research interest. In quantum mechanics,
this new system is described by a non-Hermitian Hamiltonian
with a complex potential of V (x) = V ∗(−x), which shares
the same eigenstates with the PT operator, and thus can
exhibit real eigenvalue spectra. In optics, the PT -symmetric
system is characterized by complex permittivity exhibiting a
symmetric spatial profile of ε(x) = ε∗(−x) [1–4], i.e., with
gain and loss symmetrically distributed in space. Interestingly,
the gain in such optical PT -symmetric systems plays a
far more complicated role than simple loss compensation.
Numerous intriguing optical phenomena have been observed
in optical PT -symmetric systems, such as PT -symmetry
phase transition and exceptional points [5–8], unidirectional
invisibility [9,10], etc. Especially, an optical PT -symmetric
medium can simultaneously behave as a coherent perfect
absorber with 100% absorption [11–14], and as a laser
oscillator [15,16] by simply adjusting the amplitudes and
phases of incoming waves. Such a unique device is denoted as
a CPA laser [17,18].

In this paper, instead of studying spatially distributed loss
and gain, as in PT -symmetric systems, we investigate the
case where loss and gain are both uniformly distributed in
space, but appear in different parameters of a homogeneous
medium [19–21]. More specifically, we consider a unique
zero-index medium characterized by purely imaginary relative
permittivity and relative permeability, i.e., ε = ±|ε|i and
μ = ∓|μ|i, delineating the loss (for positive sign) and gain
(for negative sign), respectively. It is interesting to note the
fact that the refractive index n = √|ε||μ| is a real number,
which implies the existence of plane-wave solutions for both
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electric and magnetic fields. However, as will be demonstrated
later, such plane waves do not transport energy because the
electric field and magnetic field always differ by a phase
of ±π/2, leading to a zero time-averaged Poynting vector.
We show explicitly that when a slab of such a medium is
embedded in air, the CPA and laser can occur due to the uneven
spatial distribution of electric and magnetic fields caused by
the boundary condition.

Since the real parts of both ε and μ are zero [22–26], we call
such a unique type of electromagnetic medium as a zero-index
medium with both gain and loss (ZIMGL). Interestingly, we
find that the CPA laser can be achieved when |ε| = |μ|. Since
the ZIMGL considered here possesses no PT symmetry, thus
our work demonstrates that PT symmetry is not the necessary
requirement for the realization of a CPA laser.

To demonstrate the feasibility of our proposal, we design a
photonic crystal (PC) which behaves effectively as a ZIMGL.
The PC is composed of a square lattice of core-shell dielectric
rods, with loss and gain distributed in the permittivities of
the cores and shells, respectively. Interestingly, the effective
medium of such a PC exhibits a positive purely imaginary
permittivity and a negative purely imaginary permeability,
which are of the same magnitudes. Therefore, such a PC
is an effective ZIMGL. Furthermore, we have numerically
demonstrated its functionality as a CPA laser. We have
observed the switching between the CPA state with 100%
absorption and the lasing state of stimulated emission, by
simply tuning the symmetry of incident waves. These results
show that realization of a CPA laser based on ZIMGL is a
feasible and promising approach.

II. THEORETICAL ANALYSIS ON CPA AND LASER
BY ZIMGL

We start our theoretical analysis by considering two
counterpropagating plane waves of the same frequency, which
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FIG. 1. (a) Schematic graph of the ZIMGL which is homogeneous and symmetric about x = 0. (b) Schematic graph of the transmission
and reflection of plane waves normally incident on a semi-infinite ZIMGL. (c–e) Values of smaller(|λ±|) (black line) and 1/larger(|λ±|) (dotted
blue line) which are used to determine the poles and zeros of the S matrix are plotted as functions of η. The frequency of the incident wave is
set to be f = 100 THz. The complex permittivity and permeability of the media are set as (c) ε = 1.2i,μ = −0.5i; (d) ε = 1.2i,μ = −1.2i;
(e) ε = 0.6 + 1.0392i,μ = 0.25 − 0.433i, respectively.

are both incident onto a slab of medium. The schematic graph
is shown in Fig. 1(a). For simplicity, we have chosen our
system to be symmetric about x = 0. The electric fields in the
background (air) and slab can be written as

E1 = a1e
ik0x + b1e

−ik0x (x � −d/2),

E2 = a2e
−ik0x + b2e

ik0x (x � d/2), (1)

E3 = ceikx + de−ikx (−d/2 � x � d/2),

where k0 = ω/c0, k = k0n. ai , bi , c, and d are the coefficients
of the right and left propagating waves. By matching the
standard boundary conditions, it is easy to obtain the following
transfer matrix:

(
b2

a2

)
= M

(
a1

b1

)
, (2)

with M = (M11 M12
M21 M22

) and

M11 = e−idk0

[
cos (η) + i

n2 + μ2

2nμ
sin (η)

]
, (3)

M22 = eidk0

[
cos (η) − i

n2 + μ2

2nμ
sin (η)

]
, (4)

M12 = i
n2 − μ2

2nμ
sin (η), (5)

M21 = −M12, (6)

where η = nk0d. From Eqs. (3)–(6), it is straightforward to
show that det(M) = 1.

In terms of scattering matrix S, Eq. (2) can be rewritten as(
b2

b1

)
= S

(
a1

a2

)
=

(
t1 r2

r1 t2

)(
a1

a2

)
, (7)

where t1, t2 and r1, r2 represent the transmission and reflection
coefficients of the slab for a plane wave normally incident
from the left and right, respectively. By using the condition
det(M) = 1, we find

t1 = t2 = t = 1/M22 and r1 = r2 = r = M12/M22. (8)

The equalities of t1 = t2 and r1 = r2 are expected due to
reciprocity and parity symmetry of our system, respectively.
In the presence of gain and loss, the system does not have
time-reversal symmetry. Here the S matrix has the following
simple form:

S =
(

t r

r t

)
= 1

M22

(
1 M12

M12 1

)
, (9)

with eigenvalues λ± = t ± r = (1 ± M12)/M22 and eigen-
states ϕT

± = (1,±1). The two outgoing beams can be obtained
from Eqs. (7) and (9) as(

b2

b1

)
= 1

2
[(a1 + a2)(t + r)ϕ+ + (a1 − a2)(t − r)ϕ−]. (10)

In order to obtain CPA, the right-hand side of Eq. (10)
has to vanish. This can be achieved either by setting a1 = a2
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(in-phase excitation) and finding the condition for t + r = 0,
or by setting a1 = −a2 (out-of-phase excitation) and finding
the condition for t − r = 0. For lasers the conditions can be
determined from the divergence condition of t + r or t − r in
the cases of a1 = a2 or a1 = −a2, respectively.

Next, we shall focus on the special case of ZIMGL with
purely imaginary permittivity and permeability of opposite
signs. Such a ZIMGL can be represented by effective
parameters of ε = iα and μ = −iβ with α > 0,β > 0 or
α < 0,β < 0. Since the case of α < 0,β < 0 only represents
a switch between gain and loss (as well as CPA and lasing
modes) from the case of α > 0,β > 0, we will only consider
the case of α > 0,β > 0 in the discussions below.

When α > 0,β > 0, the condition of 1 + M12 = 0 is

α + β

2
√

αβ
sin(η) = 1,η =

√
αβk0d. (11)

Since α + β > 2
√

αβ, Eq. (11) has two solutions within the re-
gion of 0 < η < π . When α > β > 0, the solution of Eq. (11)
with 0 < η < π/2 satisfies M22 = cos(η) + α−β

2
√

αβ
sin(η) �= 0.

Therefore, we obtain a CPA mode for the in-phase excitation
(a1 = a2); i.e., t + r = (1 + M12)/M22 = 0. The other solu-
tion of Eq. (11) appearing in the region of π/2 < η < π ,
however, simultaneously satisfies

M22 = cos (η) + α − β

2
√

αβ
sin (η) = 0. (12)

At this solution, we find

t + r = lim
1+M12

M22
= e−ik0d

α2 − β2

(α − β)2 − 4αβ
, (13)

which is nonzero when α �= β.
It is interesting to point out that the second solution with

M22 = 0 and 1 − M12 �= 0 actually corresponds to the lasing
mode with two divergent out-of-phase output beams (b1 =
−b2) as long as the input beams are not in phase (a1 �= a2). This
can be seen from Eq. (10) with t − r = (1 − M12)/M22 = ∞.
In short, the condition of 1 + M12 = 0 gives one CPA mode
for two in-phase input beams (a1 = a2) and one lasing mode
for other input beams, with two out-of-phase output beams
(b1 = −b2). The condition of 1 − M12 = 0 can also be derived
similarly, which leads to another set of CPA solutions for
the out-of-phase excitation (a1 = −a2), and lasing solutions
with two divergent in-phase output beams (b1 = b2) as long as
the two input beams are not out of phase (a1 �= −a2). These
CPA and laser modes appear at a different thickness d with
a difference 
(d) = π

k0
√

αβ
away from the thickness d for the

corresponding modes derived earlier from the condition of
1 + M12 = 0. Thus, by varying the thickness d, both CPA and
lasing modes repeat themselves with a period of 
(d) = π

k0
√

αβ
.

However, the phases of the two input beams for CPA mode as
well as the phases of the two output beams for lasing mode
will switch between in phase and out of phase alternatively.

When β > α > 0, the CPA mode occurs in the region of
π/2 < η < π and the lasing mode occurs in the region of
0 < η < π/2 instead. Their solutions can be obtained from
those of the case of α > β > 0 by switching between CPA
and laser modes.

For the cases of α �= β discussed so far, CPA and lasing
modes cannot occur simultaneously in a single slab. A
numerical demonstration is shown in Fig. 1(c) for the case
of ε = 1.2i and μ = −0.5i. In Fig. 1(c), we fix the frequency
at f = 100 THz and calculate the two eigenvalues of the S
matrix, λ±, as a function of η. The absolute value of the
smaller eigenvalue is plotted by a black line and the inverse of
the larger eigenvalue by a dotted blue line. The CPA (lasing)
mode is achieved when the black (dotted blue) line touches
the η axis. Two CPA modes with η=0.367π,1.367π and two
lasing modes with sample thicknesses η = 0.632π,1.632π are
shown in Fig. 1(c). The first and second CPA modes correspond
to the in-phase and out-of-phase input beams, respectively.

However, when α = β, interesting things happen. From
Eqs. (11) and (12), the conditions of CPA and lasing modes
obtained from 1 + M12 = 0 both turn into η = π/2 [sin(η) = 1
and cos(η) = 0] within the region of 0 < η < π . Interestingly,
from Eq. (13), it can be seen that when α = β, we have
t + r = 0 even though M22 = 0, indicating the realization of
CPA. Therefore, CPA and lasing modes can be simultaneously
realized, i.e., the so-called CPA laser.

The coexistence of CPA and laser can also be easily seen
from the determinant of the S matrix, i.e.,

|det(S)| = |λ+λ−| =
∣∣∣∣2inμ cos η − (n2 + μ2) sin η

2inμ cos η + (n2 + μ2) sin η

∣∣∣∣. (14)

When α = β, we have n2 + μ2 = 0 and |det(S)| = 1. The
CPA laser occurs when cos(η) = 0 at which both numerator
and denominator of S become zero, giving rise to the CPA
and laser simultaneously. When α �= β, |det(S)|has different
expressions for the numerator and denominator and the zeros
(CPA) and poles (lasing) occur at different sample thicknesses.
As a demonstration of this case, in Fig. 1(d), we plot only the
absolute value of the smaller eigenvalue of the S matrix as
a function of sample thickness for the case of ε = 1.2i,μ =
−1.2i. The inverse of the larger eigenvalue follows the same
curve because |λ+λ−| = 1. The overlap of poles and zeros in
this case implies that the CPA and laser can be simultaneously
achieved in a single slab. However, at each CPA-laser solution,
the phase relation between two input CPA beams will switch
alternately from in phase to out of phase or vice versa when the
next solution is reached. At the same time, the phase relation
between two output laser beams will switch from out of phase
to in phase or vice versa.

Finally, we consider the general case of complex ε and
μ with a real refractive index, e.g., ε = 0.6 + 1.0392i and
μ = 0.25–0.433i. Here the refractive index is a real number
n = 0.7746. The results in Fig. 1(e) show that neither CPA
nor laser can occur at any sample thickness. This can also
be understood from Eq. (14). For such a medium with a real
refractive index, both the numerator and denominator of det(S)
are complex functions of frequency and they do not vanish for
any real frequency.

Now, we study the behaviors and properties of various wave
functions in ZIMGL. We should first point out that the lasing
mechanism in our system is very different from that of ordinary
laser systems. To see this, we consider a plane wave normally
incident on a semi-infinite ZIMGL from one side, as illustrated
in Fig. 1(b). The electric and magnetic fields in region I can
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be written as

EI = eik0x + r ′e−ik0x,
(15)

HI = eik0x − r ′e−ik0x.

Here r ′ is the reflection coefficient. Here we have assumed
that the polarizations of electric and magnetic fields are along
the y and z directions, respectively. The electric and magnetic
fields in the ZIMGL are obtained as

EII = t ′eikx,
(16)

HII = t ′
k

k0μ
eikx,

where t ′ is the transmission coefficient. By matching the
boundary conditions, we obtain

1 + r ′ = t ′,
(17)

1 − r ′ = −it ′
1

ξ
,

where ξ =
√

|μ|
|ε| . We further find that the reflection coefficient

can be simplified as

r ′ = −1 + iξ

1 + iξ
. (18)

An interesting conclusion drawn from Eq. (18) is that |r ′| =
1, indicating total reflection of the waves. Therefore, there is
no flux going into the ZIMGL. This is different from ordinary
laser systems, which always have some nonzero transmission;
i.e., |t ′| �= 0. The absence of energy flux in ZIMGL can also be
seen from the vanishing time-averaged Poynting vector; i.e.,

〈S(x)〉t = 1

2
Re(EIIH

∗
II ŷ × ẑ)x = Re

(
i

2ξ
|t ′|2

)
= 0, (19)

due to π/2 phase difference between the electric and magnetic
fields as shown in Eq. (16).

Now we show the field patterns of CPA modes. For the
case of two in-phase input beams, the condition of CPA modes
is nk0d = π

2 + 2Mπ . The normalized electric and magnetic
fields in each region have the following forms:

EI = eik0x, HI = eik0x,

EII =
√

2 cos (nk0x), HII= −
√

2 sin (nk0x), (20)

EIII = e−ik0x, HIII = −e−ik0x.

The corresponding time-averaged Poynting vector has the
following pattern:

〈S(x)〉t =

⎧⎪⎨
⎪⎩

1
2 x ∈ I

− 1
2 sin(2nk0x) x ∈ II

− 1
2 x ∈ III

. (21)

A typical curve of Eq. (21) is shown in Fig. 2(a) for M = 0.
It is clearly shown that the energy that flows in ZIMGL from
the background is totally absorbed.

For the lasing mode, the electric and magnetic fields in each
region are

EI = rt e
−ik0x, HI = −rt e

−ik0x,

EII = −
√

2rt sin(nk0x), HII = −
√

2rt cos(nk0x), (22)

EIII = −rt e
ik0x, HIII = −rt e

ik0x,

FIG. 2. The time-averaged Poynting vector distribution for
ZIMGL in one-dimensional structure [see Fig. 1(a)] (a) in CPA mode
and (b) in lasing mode.

where rt denotes the amplitude of the output beams. Since rt

diverges at the lasing mode, we have ignored the source term
in Eq. (22). The corresponding time-averaged Poynting vector
now becomes

〈S(x)〉t =

⎧⎪⎨
⎪⎩

− 1
2 |rt |2 x ∈ I

1
2 sin (2nk0x)|rt |2 x ∈ II
1
2 |rt |2 x ∈ III

. (23)

A typical curve for the normalized Poynting vector
〈S(x)〉t /|rt |2 for M = 0 is shown in Fig. 2(b). It is interesting
to show that Eqs. (20)–(23) satisfy the following steady-state
Poynting theorem for harmonic fields:

d

dx
〈S(x)〉t = −k0

2
[Imε|E|2 + Imμ|H |2]. (24)

In the case of CPA, by taking Imε = − Imμ = α = n and
using Eqs. (20) and (21) in Eq. (24), it is easy to show that both
sides of Eq. (24) give αk0 cos(2nk0). A similar case is obtained
for the laser. Equations (22) and (23) give αk0 cos(2nk0)|rt |2
on both sides of Eq. (24). The generation of the Poynting
vector in ZIMGL is due to the uneven spatial distributions of
the electric and magnetic fields inside ZIMGL, which in turn
acts as a net source or sink of the Poynting vector at every
point. At the CPA laser, the behaviors of 〈S(x)〉t are identical
for CPA and laser except opposite in sign.

Now we show the field patterns for the other set of CPA-
laser modes at nk0d = 3π

2 + 2Mπ . The electric and magnetic
fields now become

EI = eik0x, HI = eik0x,

EII =
√

2 sin (nk0x), HII= −
√

2cos(nk0x), (25)

EIII = − e−ik0x, HIII = e−ik0x,

and

EI = rt e
−ik0x, HI = −rt e

−ik0x,

EII =
√

2rt cos (nk0x), HII=
√

2rt sin (nk0x), (26)

EIII = rt e
ik0x, HIII = rt e

ik0x,

respectively. Although the field patterns of the two CPA-laser
modes are different, the Poynting vector distributions are
unchanged and are described by Fig. 2.

III. DESIGN OF ZIMGL

The theoretical analysis in Sec. II shows that a slab of
ZIMGL with the same magnitude for ε and μ can realize
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FIG. 3. (a,b) The real (black square line) and imaginary (blue
triangle line) parts of effective permittivity εeff and permeability μeff

of the designed PC structure as functions of frequency, respectively.
The core-shell structure with inner and outer radii of r1 = 0.16a,r2 =
0.48a is designed, where a is the lattice constant of the square lattice.
The permittivities of the core and shell are set to be ε1 = 1.133 +
0.11i,ε2 = 1.07 − 0.054i, respectively. The dashed lines indicate the
CPA-laser point of f a/c = 1.04, εeff = 0.02i, and μeff = −0.02i.
The insets in (a,b) show the field distributions of the electric fields
(absolute value) under the excitation of monopolar and dipolar waves,
respectively. (c) The analytical outgoing spectra |r + t |2 as a function
of the varying thicknesses d of the ZIMGL (black line), and the
designed PC structure (red square), under in-phase incidence from
both sides.

both CPA and laser simultaneously. However, no naturally
occurring material can satisfy such a stringent requirement on
the material parameters. In this section, we propose a design
method, guided by an effective medium approximation that
has been generally applied to metamaterials and PCs [27–32],
to realize a ZIMGL by using a PC composed of an array of
core-shell structures. A schematic is shown in the inset of
Fig. 3; a lossy core material with radius r1 is coated by a layer
of gain material with radius r2 and arranged in a square lattice
structure. The permittivities of the core and shell are denoted
by the complex dielectric constants ε1 and ε2, respectively. In
order to obtain the appropriate parameters of ε1, ε2 as well
as the corresponding radii r1, r2 for the effective ZIMGL,
we apply a systematic inverse design method based on an

effective medium theory [33]. The details can be found in
Appendix A.

We set the working frequency as f = 100 THz, at which
the medium exhibits effective parameters of εeff = 0.02i and
μeff = −0.02i. According to the previous analysis, such a
medium with the thickness d = 43.673 μm can act as a CPA
laser, i.e., the simultaneous realization of CPA and laser. The
lattice constant is obtained by assuming there are 14 periods
along the propagation direction, i.e., a = d/14 = 3.119 μm,
and the inner and outer radii of the core-shell cylinder are set to
be r1 = 0.16a, r2 = 0.48a, respectively. Based on the effective
medium theory, we can obtain the complex permittivities
for the core and shell of cylinders: ε1 = 1.33 + 0.11i and
ε2 = 1.07 − 0.054i (see Appendix A for details). In Fig. 3 we
plot the real (black square line) and imaginary (blue triangle
line) parts of permittivity and permeability in a frequency
range according to the following effective medium formulas
(see Ref. [33]):

εeff + 2ε0
J ′

0(k0r0)
k0r0J0(k0r0)

εeff + 2ε0
Y ′

0(k0r0)
k0r0Y0(k0r0)

= Y0(k0r0)

iJ0(k0r0)

(
D0

1 + D0

)
, (27)

μeff − μ0
J1(k0r0)

k0r0J ′
1(k0r0)

μeff − μ0
Y1(k0r0)

k0r0Y ′
1(k0r0)

= Y ′
1(k0r0)

iJ ′
1(k0r0)

(
D1

1 + D1

)
, (28)

where Jm(x) and Ym(x) (m = 0,1) are the Bessel function
of the first and second kind, respectively. Dm represent the
Mie scattering coefficients of the core-shell cylinder. As
shown in Figs. 3(a) and 3(b), the real parts of εeff and μeff

vanish simultaneously at frequency f a/c = 1.04, where their
imaginary parts are close to Im(εeff) = 0.02i and Im(μeff) =
−0.02i. Such a combination of effective medium parameters
satisfies the condition of CPA laser. The field distributions
(absolute value of EZ) of the core-shell cylinder under the
excitation of monopolar and dipolar waves are displayed in
the insets of Figs. 3(a) and 3(b), where dark red represents
the maximum value and dark blue represents zero. They
correspond to the eigenstates of the structure. It is clearly seen
that under the monopolar excitation (m = 0), the fields are
concentrated in the lossy core, and therefore the majority of the
incident wave energy is absorbed by the core; while under the
dipolar excitation, the fields are concentrated in the shell with
gain medium, thus implying energy enhancement by the gain
medium in the shell. In order to further improve the accuracy of
the effective parameters beyond the limitation of the effective
medium theory, we have performed band structure calculations
based on a finite element software, COMSOL MULTIPHYSICS,
and plotted the results in Appendix B. By fine-tuning the
parameters of the core and shell, we finally obtain an effective
medium which almost exactly satisfies the requirement of CPA
laser at a real frequency. The final values of the parameters are
ε1 = 1.154 + 0.11i and ε2 = 1.07 − 0.054i, which give rise
to effective permittivity and permeability of εeff = 0.018 38i

and μeff = −0.018 38i at the real frequency of f a/c = 0.972.
In the next section, we will conduct numerical simulations
to verify the functionality of the designed PC as the required
effective ZIMGL.
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FIG. 4. (a,c) show the field distributions of electric field Ez in a
slab of the effective medium and the real structure of the ZIMGL in
the case of 
ϕ = 0, respectively. The arrows represent the power flow
in the background. (b,d) show the normalized amplitude of electric
field |Ez/E0| for the cases of (a,c), respectively.

IV. NUMERICAL SIMULATIONS OF CPA LASER

The scattering property of a slab of the core-shell cylinder
structures proposed in Sec. III is simulated by COMSOL.
Figure 3(c) shows the outgoing spectra |r + t |2 with varying
thicknesses d of the effective medium of ZIMGL (Black line)
and the real structure (Red square) under the excitation of two
counter-propagating coherent waves with the same phase. It is
seen that the two sets of results agree with each other, which
verifies the functionality of the designed PC as an effective
ZIMGL in terms of transmission properties. From Fig. 3(c),
we found that when the thickness of the slab is around 14a,
the outgoing waves vanish, indicating CPA.

The effects of the CPA and laser by using the real PC
structure is demonstrated in Figs. 4(c) and 5(c), which show
the field distributions of electromagnetic wave Ez, when two
coherent counter-propagating incoming waves are normally
incident on the structure with phase difference 
ϕ = 0 (CPA)
and 
ϕ = π (laser), respectively. The corresponding results
obtained from the effective medium of ZIMGL are shown
in Figs. 4(a) and 5(a). In the case of 
ϕ = 0, nearly all the
incident waves are absorbed by such a slab of ZIMGL, as
indicated by the total power flow (denoted by the arrows) in
Figs. 4(a) and 4(c). In Figs. 4(b) and 4(d), we also plot the
amplitudes (normalized to the incident wave) of the electric
field for the cases corresponding to Figs. 4(a) and 4(c),
respectively. It is clearly seen that for both cases, the electric
field in the background is nearly unity, meaning there is
no reflection and that almost all of the incident energy is
absorbed.

FIG. 5. (a,c) show, respectively, the field distributions of electric
field Ez in a slab of the effective medium and the real structures of the
ZIMGL in the case of 
ϕ = π . The arrows represent the power flow
in the background. (b,d) show the normalized amplitude of electric
field |Ez/E0| for the cases of (a,c), respectively. (e) Transmission as
a function of the frequency for a model with the schematic graph
shown in the inset in (e).

In the case of 
ϕ = π , however, the power flows are
completely reversed, as illustrated in Figs. 5(a) and 5(c). The
normalized amplitudes of the electric field in the background
shown in Figs. 5(b) and 5(d) are found to be about 3 × 103

(in effective medium of ZIMGL) and 15 (in real structure
of ZIMGL) times of the incident waves, indicating a lasing
phenomenon. On the other hand, in order to further confirm
the lasing mode in photonic structure, we put a row of
point sources with line current at the edge of the PC.
The structure is displayed in the insets of Fig. 5(e). The
transmission is significantly amplified in the lasing mode
and verifies energy enhancement. Figure 5(e) show the
transmission as a function of frequency. A narrow peak is
observed in the frequency spectrum with 
(f a/c) = 0.021,
at the frequency f a/c = 0.972 for the ideal lasing mode.
Through Figs. 4 and 5, the functionality of CPA-laser is
verified.
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V. DISCUSSION AND CONCLUSION

In above paragraphs, we have proposed a PC composed
of core-shell structures with gain in shell and loss in core to
realize the unique material of ZIMGL. Since the magnitude
of loss and gain are both small, they can be realized by
using conventional materials that has been generally applied to
fabricate the PT -symmetric structures. For instance, the lossy
core may be fabricated by metals with loss in permittivity.
The shell with weak gain can be achieved by using the con-
ventional complementary meta-oxide-semiconductor silicon
technology [9]. Or, the gain or loss in PC may be introduced
by introducing Cr or Ge material [34] into the shell or core.
We note that the amount of loss or gain should be controlled
precisely so as to realize ZIMGL with balanced loss and gain,
just like PT -symmetric systems.

In conclusion, we introduce a unique concept of ZIM
with its permittivity and permeability being purely imagi-
nary, but exhibiting opposite signs. We demonstrate, through
rigorous derivations, that such a ZIM can achieve CPA and
laser effect. Especially, when the loss and gain have the
same magnitude, the so-called CPA laser, i.e., simultaneous
realization of CPA and laser which was previously only
observed in PT -symmetric systems or non-PT -symmetric
bilayer materials [35], can be realized in our system, which
exhibits no PT symmetry. The functionalities of CPA and
laser have been studied in Ref. [36] and they can be chosen
by the way of excitation, e.g., the symmetry of incident waves
hereby. Interestingly, our system exhibits the cross-matched
PT symmetry, i.e., ε(x) = μ∗(−x) [37].

We also propose a practical scheme to design a ZIMGL
by using PC structures. By employing the effective medium
theory in an inverse manner, and we have successfully
designed a square lattice of core-shell dielectric cylinders
whose effective medium parameters meet the requirements of
the CPA-laser. Numerical simulations verify the fascinating
functionality of switching between a CPA and a laser by
changing the symmetry of the excitations, which is consistent
with analytical results. Our work demonstrates intriguing
possibilities in non-Hermitian optic systems with gain and
loss distributed in different parameters.
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APPENDIX A: THE INVERSE DESIGN TO REALIZE
THE ZIMGL

In this part, we give the derivation of the inverse design
to realize the ZIMGL based on effective medium theory in
two dimensions. The system considered here is a composite
consisting of a periodic array of core-shell cylinders pos-
sessing complex dielectric permittivities ε1,ε2 and magnetic

FIG. 6. The microstructure of the composite.

permeabilities μ1 = μ2 = 1 with radii r1,r2, embedded in air.
The microstructure of the composite as shown in Fig. 6.We
consider only the case of transverse electric (TE) waves, the
electric field is parallel to the cylinder and its solutions in each
region can be written as

Ee(r) =
∑
m

[
aemJm(ker) + bemH (1)

m (ker)
]
eimθ (r � r0),

E0(r) =
∑
m

[
a0mJm(k0r) + b0mH (1)

m (k0r)
]
eimθ (r2 � r � r0),

E1(r) =
∑
m

[
a1mJm(k1r) + b1mH (1)

m (k1r)
]
eimθ (r1 � r � r2),

E2(r) =
∑
m

a2mJm(k2r)eimθ (r � r1), (A1)

where k0 = ω/c0,k1 = k0
√

ε1,k2 = k0
√

ε2,ke = k0
√

εe
√

μe.
Here Jm(x) and H (1)

m (x) are the Bessel function and Hankel
function of the first kind, respectively. By matching the
standard boundary conditions on the interfaces r = r1,r2, we
can obtain

b0m

a0m

= Dm(ε1,ε2), (A2)

where Dm(ε1,ε2) represent the Mie scattering coefficients of
the core-shell cylinder. Based on the effective medium theory
as bem = 0 and standard boundary conditions on the interface
r = r0, we can get

b0m

a0m

= Sm(εe,μe). (A3)

Obviously, from Eqs. (A2) and (A3),

Dm(ε1,ε2) = Sm(εe,εe), (m = 0,1,2, . . .). (A4)

Here we determine the effective parameters we want to
achieve are εe = 0.02i, μe = −0.02i and the incident waves
with frequency f = 100 THz; thus the effective wave number
in the medium is a real value as ke = 0.042 rad/m which likely
is without gain or loss. According to conditions of CPA and
laser as shown in our paper, this material with sample thickness
d = 43.673 m can act as a CPA laser. Then we might as well
make this thickness equal to 14 times the lattice constant of
the photonic crystal; i.e., a = d/14 = 3.1195 m. When the
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FIG. 7. The band structure of the designed photonic crystal with a square lattice before tuning. (a, b) the real and imaginary part of
eigenfrequency in third (black square) and fourth (red triangle) bands near the 
 point for a core-shell PC constructed of core cylinders with
radius r1 = 0.16a, relative permittivity ε1 = 1.33 + 0.11i, and shell cylinders with radius r2 = 0.48a, permittivity ε2 = 1.07–0.054i. The
permeabilities of core and shell are both μ = 1. (c,d) show the real (black square line) and imaginary (blue triangle line) parts of effective
permittivities and permeabilities corresponding to the eigenvalues.

radii of the cylinders are given as r1 = 0.16a, r2 = 0.48a,
then we achieved the permittivities of the cylinders as ε1 =
1.33 + 0.11i, ε2 = 1.07 − 0.054i with both gain and loss from
Eq. (A4) with m = 0 and m = 1.

APPENDIX B: THE BAND STRUCTURE OF OUR
DESIGNED PHOTONIC CRYSTAL

In case of TE waves with electric fields polarized in the z

direction, the interface of the PC and air is in the yz plane.

FIG. 8. The band structure of the fine-tuned photonic crystal. (a,b) the real and imaginary part of eigenfrequency in third (black square)
and fourth (red triangle) bands near the 
 point for a core-shell PC constructed of core cylinders with radius r1 = 0.16a, relative permittivity
ε1 = 1.154 + 0.11i, and shell cylinders with radius r2 = 0.48a, permittivity ε2 = 1.07 − 0.054i. The permeabilities of core and shell are
both μ = 1. (c,d) show the real (black square line) and imaginary (blue triangle line) parts of effective permittivities and permeabilities
corresponding to the eigenvalues. The dotted line indicates the real eigenvalue point with purely imaginary permittivity and permeability
εe = 0.018 38i,μe = −0.018 38i.
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Therefore the electric field is

E = ẑE0e
i(kxx+kyy)e−iωt . (B1)

Thus the magnetic field will be

H = x̂
kx

ωμx

E0e
i(kxx+k||y)e−iωt − ŷ

kx

ωμy

E0e
i(kxx+k||y)e−iωt .

(B2)

We can define the impedance as Z|| = E·ẑ
H ·ŷ = −ωμy

kx
, so the

effective impedance of the PC is defined as ZPC
|| =

∫
L

EPC·ẑdy∫
L

H PC·ŷdy
.

EPC and H PC are obtained from the eigenfield at the incident
boundary. According to the theory of PC energy band structure
and the definition of the impedance, we can get the effective
permittivity and permeability as

μe = kx

μ0
Z||,

(B3)

εe = kx

ωε0Z||
.

The real and imaginary parts of the eigenfrequency of
our designed PC with a small Bloch wave vector along the

X direction have been shown in Figs. 7(a) and 7(b), and
then the effective permittivity and permeability of PC can be
calculated by Eq. (B3) in Figs. 7(c) and 7(d). However, the
effective parameters are not purely imaginary at the point of
real eigenvalue. In order to accurately obtain the effective
purely imaginary parameters, we fine-tune the permittivities
of the PC from ε1 = 1.33 + 0.11i, ε2 = 1.07 − 0.054i to
ε1 = 1.154 + 0.11i,ε2 = 1.07 − 0.054i. After tuning, the

band structure and the effective medium have been shown
in Fig. 8, with almost purely imaginary effective parame-
ters at the real eigenfrequency point, i.e., εe = 0.018 38i,
μe = −0.018 38i. More interesting, the purely imaginary
permittivity and permeability with the same absolute values
but opposite signs, are the ZIMGL. Therefore, the ZIMGL
has been achieved by the designed core-shell PC and the
coherent perfect absorption and lasing can be demonstrated
with in-phase (a1 = a2) and out-of-phase (a1 = −a2) incident
waves.
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