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Phase sensitivity at the Heisenberg limit in an SU(1,1) interferometer via parity detection
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We theoretically investigate the phase sensitivity with parity detection on an SU(1,1) interferometer with
a coherent state combined with a squeezed vacuum state. This interferometer is formed with two parametric
amplifiers for beam splitting and recombination instead of beam splitters. We show that the sensitivity of phase
estimation approaches the Heisenberg limit and give the corresponding optimal condition. Moreover, we derive
the quantum Cramér-Rao bound of the SU(1,1) interferometer.

DOI: 10.1103/PhysRevA.94.063840

I. INTRODUCTION

High-precision metrology has recently been receiving a lot
of attention [1–4] due to the benefits to advanced science and
technology. One common tool for high-precision measurement
is the optical Mach-Zehnder interferometer (MZI), which
typically contains two beam splitters (BS). Usually coherent
light is split by the first BS, then one beam experiences a phase
shift φ while the other is retained as a reference, and the two
beams combine by a second BS. One can detect the output
light to obtain the phase shift information. However the phase
sensitivity �φ is limited by the shot noise limit (SNL), 1/

√
n̄

(n̄ is the total mean photon number). This limit is due to the
classical nature of the coherent state and can be surpassed
by using nonclassical states of light, such as squeezed states
[5] and NOON states [6,7]. With the help of the nonclassical
states, the phase sensitivity can achieve the Heisenberg limit
(HL).

Another possibility for beating the SNL is to use an
interferometer in which the mixing of the optical beams is
done through a nonlinear transformation, such as the SU(1,1)
interferometer as shown in Fig. 1. This type of interferometer,
first proposed by Yurke et al. [8], is described by the group
SU(1,1), as opposed to the SU(2) Mach-Zehnder one, where
nonlinear transformations are optical parametric amplifiers
(OPAs) or four-wave mixers. Yurke et al. [8] pointed out that
this type of interferometer with vacuum inputs has a phase
sensitivity 1/[n̄(n̄ + 2)]1/2, where n̄ is the total mean photon
number inside the interferometer and is equal to 2 sinh2 g, with
g as the OPA strength. However, n̄ is small because the photon
number in this scheme is only related to the OPA strength g,
which is of order of 3 available currently [9,10]. This phase
sensitivity has been also discussed in Refs. [11,12].

Recently, a new theoretical scheme was proposed to inject
strong coherent light to “boost” the photon number in an
SU(1,1) interferometer with intensity detection by Plick et al.
[13]. Their scheme circumvents the small-photon-number
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problem. Jing et al. [14] reported the experimental realization
of such an interferometer. In this nonlinear interferometer,
the maximum output intensity can be much higher than the
input due to the parametric amplification. Marino et al. [15]
investigated the loss effect on phase sensitivity of the SU(1,1)
interferometers with intensity detection. They showed that
although propagation losses degrade the phase sensitivity, it
is still possible to beat the SNL even with a significant amount
of loss. Hudelist et al. [10] observed an improvement of 4.1 dB
in signal-to-noise ratio compared with an SU(2) interferometer
under the same operation conditions. More recently, Li et al.
[16] showed that an SU(1,1) interferometer with coherent and
squeezed input states via homodyne detection can approach
the HL.

All of the SU(1,1) interferometer schemes mentioned above
involve the all-optical nonlinear process as beam splitter. By
contrast, experimental realization of the SU(1,1) all-atomic
[17–21] and atom-light hybrid [22] interferometers have been
also reported, respectively. Gabbrielli et al. [21] presented a
nonlinear three-mode SU(1,1) atomic interferometer realized
with ultracold atoms. Chen et al. [22] reported an SU(1,1)
atom-light hybrid interferometer utilizing the interface be-
tween the light and collective atomic excitation. Furthermore,
the SU(1,1)-type interferometer was also proposed in the
circuit quantum electrodynamics system [23], which provides
a different method for basic measurement.

Heisenberg-limited sensitivity of phase estimation is one
goal of quantum optical metrology. For this purpose, the search
for the optimal detection scheme still continues. Here, we
consider parity measurement as our detection scheme. Parity
detection was first proposed by Bollinger et al. [6] in 1996
to study spectroscopy with a maximally entangled state of
trapped ions. It was later adopted for an optical interferometer
by Gerry [24]. Mathematically, parity detection is described
by a simple single-mode operator �̂ = (−1)N̂ , where N̂ is the
photon-number operator. Hence, parity is simply the evenness
or oddness of the photon number in an output mode. In
experiments, the parity operator can be implemented by using
homodyne techniques [25] for high power, or observing the
photon-number distribution with a photon-number resolving
detector for small photon numbers.
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FIG. 1. The schematic diagram of an SU(1,1) interferometer. Two
OPAs take the place of two beam splitters in the traditional Mach-
Zehnder interferometer. g1 (g2) and θ1 (θ2) describe the strength and
phase shift in the OPA process 1 (2), respectively. ai and bi (i = 0,1,2)
denote two light beams in the different processes. The pump field
between the two OPAs has a π phase difference. φ: phase shift; M:
mirrors.

Here, we still consider input with coherent |α0 = |α0|eiθα 〉
(θα is the initial phase of input coherent state) and squeezed
vacuum light |0,ξ = reiθs 〉 (r and θs are parameters) as in the
previous work [16] which focuses on homodyne detection on
SU(1,1) interferometers. With coherent and squeezed vacuum
light as inputs, one can reduce the required intensity of input
coherent states and obtain the same interferometric sensitivity,
which can eliminate the disadvantages due to using strong
coherent states. Furthermore, as shown in Ref. [16], these input
states in an SU(1,1) interferometer are shown to approach the
HL when the mean photon numbers in the coherent state and
squeezed vacuum state are roughly equal under the condition
of OPA process with a strength g in the limit of e−g → 0.
This optimal condition for SU(1,1) interferometers is similar
to the SU(2) case [26]. For an MZI injected by coherent
and squeezed vacuum light, the phase sensitivity with parity
detection is 1/

√
|α0|2e2r + sinh2 r . When the coherent input

state and squeezed vacuum input state have a roughly equal
intensity, the phase sensitivity reaches the HL.

In this paper, we study parity detection on an SU(1,1)
interferometer with coherent and squeezed vacuum input
states. Compared with homodyne detection and intensity
detection, parity detection has a slightly better phase sensi-
tivity. We also compared the phase sensitivity with another
quantum limit, the quantum Cramér-Rao bound (QCRB)
[1,27], which sets the ultimate limit for a set of probabilities
that originated from measurements on a quantum system. The
QCRB is asymptotically achieved by the maximum likelihood
estimator and gives a detection-independent phase sensitivity
�φQCRB.

This paper is organized as follows: In Sec. II we first
present the propagation of input fields through the SU(1,1)
interferometer. Then we discuss the HL in an SU(1,1)
interferometer and compare the phase sensitivity with the HL
and the QCRB in Sec. III. Last, we conclude with a summary.

II. PARITY DETECTION ON AN SU(1,1)
INTERFEROMETER

A. Model

Figure 1 presents the model of an SU(1,1) interferometer in
which the OPAs replace the 50:50 beam splitters in a traditional
MZI. Here we consider a coherent light mixed with a squeezed
vacuum light as input. â(â†) and b̂ (b̂†) are the annihilation

(creation) operators corresponding to the two modes a and b.
After the first OPA, mode b is retained as a reference, while
mode a experiences a phase shift φ. After the two modes
recombine in the second OPA, the outputs of the two modes
are dependent on the phase difference φ.

Next, we will focus on the evolution of the input state
through an SU(1,1) interferometer in phase space. The Wigner
function of the input state, a product state |α0〉 ⊗ |0,ξ = reiθs 〉,
with coherent light amplitude α0 = |α0|eiθα and squeezed
vacuum with parameters r and θs , is given by

Win(αi,α0; βi,r) = W|α0〉(αi,α0)W|0,ξ〉(βi,r), (1)

where Win(αi,α0; βi,r) plays the role of quasiprobability
density for the complex variables αi and βi corresponding
to the input beams in mode a and b, respectively. The
corresponding Wigner functions of a coherent and squeezed
vacuum state can be described as [28]

W|α0〉(αi,α0) = 2

π
e−2|αi−α0|2 , (2)

W|0,ξ〉(βi,r) = 2

π
e−2|βi |2 cosh 2r+(β2

i +β∗2
i ) sinh 2r , (3)

where β∗
i is the conjugate of βi , and θs has been set to zero by

appropriately fixing the irrelevant absolute phase θα .
After propagation through the SU(1,1) interferometer the

output Wigner function is written as

Wout(αf ,βf ) = Win[αi(αf ,βf ),βi(αf ,βf )], (4)

where αf and βf are the variables related to the output beams in
modes a and b, respectively, and the relation between variables
is described by (

αi

β∗
i

)
= T −1

(
αf

β∗
f

)
, (5)

where β∗
f are the conjugate of βf . Generally, the propagation

through the first OPA, phase shift, and second OPA is described
by

T = TOPA2TφTOPA1, (6)

where

TOPA1 =
(

u1 v1

v∗
1 u1

)
, (7)

Tφ =
(

eiφ 0
0 1

)
, (8)

TOPA2 =
(

u2 v2

v∗
2 u2

)
. (9)

Here uj = cosh gj , vj = eiθj sinh gj , and v∗
j is a conjugate of

vj , where θj and gj are the phase shift and parametric strength
in the OPA process j (j = 1,2), respectively (see, for example,
Ref. [29]). More specifically, we assume that the first OPA and
the second have a π phase difference (particularly θ1 = 0 and
θ2 = π ) and the same parametric strength (g1 = g2 = g). In
such a case, the second OPA will undo what the first one does
(namely, â2 = â0 and b̂2 = b̂0) when phase shift φ = 0, which
we call a balanced situation.
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Combined with Eqs. (5)–(9), the input-output relation of
variables has the following form:

αi → Gαf + Rβ∗
f , (10)

β∗
i → −Rαf + Hβ∗

f , (11)

where G = A − iB cosh(2g),H = A + iB cosh(2g), and
R = −iB sinh(2g) with A = cos(φ/2)e−iφ/2 and B =
sin(φ/2)e−iφ/2. Therefore, the output Wigner function of a
nonlinear interferometer is described by

Wout(αf ,βf ) = 4

π2
e−2|Gαf +Rβ∗

f −α0|2e−2|−Rαf +Hβ∗
f |2 cosh(2r)

× e2 Re[(−Rαf +Hβ∗
f )2] sinh(2r). (12)

B. Phase sensitivity

Parity measurement has been proved to be an efficient
method of detection in interferometer for a wide range of input
states [30–33]. For many input states, parity does as well, or
nearly as well, as state-specific detection schemes [34,35].
Furthermore, as has been reported recently, parity detection
with a two-mode, squeezed vacuum interferometer actually
reaches below the phase sensitivity of 1/n̄ scaling, achieving
the QCRB [11].

In this paper, we consider parity detection as our measuring
method. The parity operator detection on output mode b is
�̂b ≡ (−1)b̂

†
2b̂2 . From the Wigner function, the parity signal is

given by [36]

〈�̂b〉 = π

2

∫
Wout(αf ,0)d2αf . (13)

In our case, 〈�̂b〉 is a series of rather complex and unillumi-
nating expressions which are shown in Appendix A.

The sensitivity of phase estimation based on the outcome
of the parity detection is estimated as

�φ = 〈��̂b〉∣∣ ∂〈�̂b〉
∂φ

∣∣ , (14)

which is a ratio of detection noise to the rate at which signal
changes as a function of phase, 〈��̂b〉 ≡ (〈�̂2

b〉 − 〈�̂b〉2)1/2 =
(1 − 〈�̂b〉2)1/2.

The phase sensitivity with parity detection for an SU(1,1)
interferometer with coherent and squeezed vacuum states is
found to be minimal at φ = 0 and is given by

�φ = 1

{Nα[sinh(2r) cos(2θα) + cosh(2r)] + Ns + 1}1/2

× 1

[NOPA(NOPA + 2)]1/2
, (15)

where Nα = |α0|2 is the intensity of input coherent light,
Ns = sinh2 r is the intensity of the input squeezed vacuum
light, and NOPA = 2 sinh2 g is the spontaneous photon number
emitted from the first OPA, which is related to parametric
strength. When θα = 0, the optimal phase sensitivity is found

to be

�φ = 1

[(Nαe2r + Ns + 1)NOPA(NOPA + 2)]1/2
, (16)

where the factor e2r results from the input squeezed vacuum
beam. If vacuum input is injected (Ns = 0 and Nα = 0),
the phase sensitivity with parity detection is reduced to
�φV = 1/

√
NOPA(NOPA + 2), which is the same as the result

of Yurke’s scheme with intensity detection [8].

III. DISCUSSION

A. Heisenberg limit

In this section, we compare the optimal phase sensitivity
of parity detection with the HL. According to Ref. [15], the

FIG. 2. Sensitivity of phase estimation with parity detection as
a function of (a) g with vacuum input r = 0 and |α0| = 0, (b) g

with r = 2 and |α0| = tanh(2g)er/2, and (c) r with g = 2 and |α0| =
tanh(2g)er/2. The dotted-orange line is for the SNL, the dash-dotted-
blue is for the HL, the dashed-green is for the QCRB, and the solid-red
is for the phase sensitivity with parity detection.
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corresponding HL is related to the total number of photons
NTot(≡ 〈â†

1â1 + b̂
†
1b̂1〉) inside the SU(1,1) interferometer, not

the input photon number as the traditional MZI. This is due to
amplification of the phase-sensing photon number by the first
OPA. Then the HL is given by

�φHL = 1

NTot
, (17)

where the subscript HL represents the Heisenberg limit.
According to Ref. [16], the total inside photon number is

NTot = (NOPA + 1)(Nα + Ns) + NOPA, (18)

where the first term on the right-hand side, (NOPA + 1)(Nα +
Ns), results from the amplification process of the input photon
number and the second one is only related to OPA strength g,
which corresponds to amplification of the vacuum input state
or the so-called spontaneous process. Thus the total inside
photon number NTot corresponds to not only the OPA strength
but also input photon number.

When vacuum input is injected, the Heisenberg limit
is found to be �φHL = 1/NTot = 1/NOPA, while the corre-
sponding phase sensitivity with parity detection is �φV =
1/

√
NOPA(NOPA + 2). Figure 2(a) compares the phase sensi-

tivity �φV with the HL and the SNL, as a function of OPA
strength g, under the condition of vacuum input. It reveals that
parity detection can achieve the HL. With the increase of g,
the phase sensitivity �φ becomes more and more close to the
HL. We notice that the SNL is below the HL when g � 0.6,
which is due to the total inside photon number NTot < 1.

Next, we consider coherent and squeezed vacuum input
states. Comparing Eq. (16) with Eq. (17), the necessary optimal
condition for approaching HL in the limit of e−r → 0 and
e−g → 0 is found to be [37]

|α0| 	 tanh(2g)er

2
. (19)

This expression reveals the requirement for the input coherent
state |α0|, the input squeezed vacuum state r , and the OPA
process g. When tanh(2g) 	 1, Eq. (19) is simplified to Nα 	
e2r/4 	 sinh2 r = Ns . The total photon number of Eq. (18)
simplifies to N Tot 	 2NOPANα . Then under the condition of
tanh(2g) 	 1, the phase sensitivity �φ with parity detection
of Eq. (16) always approaches the HL of Eq. (17), which is

given by

�φ 	 1√
4N2

αN2
OPA

	 1

NTot
. (20)

Similar to the MZI, it requires the photon numbers in two
input ports of the SU(1,1) interferometer to be balanced to
approach the HL [38]. We plot the phase sensitivity �φ as
a function of OPA strength g in Fig. 2(b), which presents the
comparison between �φ and �φHL. Under the condition r = 2
and |α0| = tanh(2g)er/2, the phase sensitivity approaches the
HL when g > 2 [tanh(2g) 	 1]. When g < 1, increasing the
input squeezed parameter r and increasing the input coherent
mean photon number enables the phase sensitivity to beat the
SNL, but it does not approach the HL. Figure 2(c) is a plot
of the phase sensitivity �φ as a function of input squeezed
parameter r . Given g = 2 and |α0| = tanh(2g)er/2, the phase
sensitivity is always below the SNL and close to the HL.

B. Quantum Cramér-Rao bound

So far, we have shown that parity detection can approach
the phase sensitivity of scaling of 1/NTot in the SU(1,1)
interferometer with coherent and squeezed vacuum input
states. In this section we will investigate the QCRB of
an SU(1,1) interferometer and compare the optimal phase
sensitivity by parity detection with the QCRB, which gives an
upper limit to the precision of quantum parameter estimation.
We also compare parity detection with homodyne detection
and intensity detection.

Recently, Gao et al. [39] developed a general formalism for
the QCRB of Gaussian states, in which the QCRB can be fully
expressed in terms of the mean displacement and covariance
matrix of the Gaussian state. Here, we utilize this method to
obtain the QCRB of our interferometric scheme. The QCRB
for an SU(1,1) interferometer with coherent and squeezed
vacuum input is found to be (see Appendix B for details)

�φQCRB = (2Nα(NOPA + 2){NOPA[Ns +
√

Ns(Ns + 1) + 1]}
+NOPA[NOPA(2Ns + 1) + 2](Ns + 1))−1/2, (21)

where the term on the right-hand side shows that �φQCRB is
related to not only the input coherent intensity and the input
squeezed vacuum intensity, but also the optical parametric
strength.

TABLE I. The phase sensitivity with various detections and QCRB of an SU(1,1) interferometer with different input states.

Input states Parity Homodyne Intensity QCRB

|0〉 ⊗ |0〉 1/K1/2 Not available [40] 1/K1/2 1/K1/2

|α0〉 ⊗ |0〉 1/[K(Nα + 1)]1/2 1/[KNα]1/2 [16] �φI,coh
a 1/[K(2Nα + 1) + 2Nα(NOPA + 2)]1/2∣∣ iα0√

2

〉 ⊗ ∣∣ α0√
2

〉
�φcoh

b ≈1/[2KNα]1/2 [16] 1/[KNα]1/2 [13] 1/{2Nα[(NOPA + 1)
√
K + K + 1] + K}1/2

|α0〉 ⊗ |0,ξ〉 1/[K(Nαe
2r + cosh2 r)]1/2 1/[KNαe

2r ]1/2 [16] �φI,coh&sqz
c 1/[2Nα(NOPA + 2) + N 2

OPA sinh2(2r)/2
+K(2Nα cosh rer + cosh2 r)]1/2

K = NOPA(NOPA + 2). Row 1: vacuum input state; row 2: one coherent input state; row 3: two coherent input states; row 4: coherent mixed
with squeezed vacuum input state.
aSee Appendix C.
bSee Appendix D.
cSee Appendix C.
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TABLE II. The QCRB of an MZI with different input states.

Input states Parity QCRB

|α0〉 ⊗ |0〉 1/
√

Nα 1/
√

Nα∣∣i α0√
2

〉 ⊗ ∣∣ α0√
2

〉
Not available [41] 1/

√
Nα

|α0〉 ⊗ |0,ξ = reiθs 〉 1/
√

Nαe2r + sinh2 r [26] 1/
√

Nαe2r + sinh2 r [38]

Nα = |α0|2 is the mean photon number. Row 1: one coherent input state; row 2: two equal coherent input states; row 3: coherent mixed with
squeezed vacuum input state.

Table I shows the QCRB with four different Gaussian
input states. For vacuum input (r = 0, Nα = 0), the QCRB
is reduced to �φQCRB = 1/

√
NOPA(NOPA + 2), and it can be

saturated by parity detection and intensity detection. However,
in this case the phase sensitivity of homodyne detection with
vacuum input is not available due to its measurement signal
being a constant 0 independent of phase shift φ [40]. With
the other three nonvacuum input states, the QCRB can be
approached but not be reached with these three detection
methods, as shown in Table I.

Table II presents the comparison between phase sensitivity
with parity detection and the QCRB in an SU(2) interferometer
with various inputs. For two equal coherent input states,
parity detection has poor statistics [41]. However parity
detection achieves the QCRB with only one coherent state
input or coherent mixed with squeezed vacuum state input.
However, we notice that parity detection on an SU(1,1)
interferometer does not reach the QCRB with the same inputs.
According to Tables I and II, the SU(1,1) interferometer has
a better phase sensitivity than the MZI by roughly a factor
of

√
NOPA(NOPA + 2) with one coherent input |α0〉 ⊗ |0〉 and

coherent mixed with squeezed vacuum input |α0〉 ⊗ |0,ξ 〉 due
to the amplification process.

Next, we compare the optimal phase sensitivities among the
parity detection, homodyne detection, and intensity detection

in the SU(1,1) interferometer. For the coherent
⊗

squeezed
vacuum state input or only one coherent state input, the phase
sensitivities of these three methods have similar results because
the phase sensitivity of the coherent

⊗
squeezed vacuum state

input can reduce to only one coherent state input when r = 0.
The expressions of phase sensitivity with intensity detection
are complex, as shown in Appendix C. Figures 3(a) and
3(b) show the phase sensitivities with intensity detection as
a function of φ with coherent and squeezed vacuum state input
and only one coherent state input, respectively. For these two
cases, the optimal phase points are both very close to zero.
Figures 3(d) and 3(e) plot the corresponding optimal phase
sensitivities as a function of g, in which the optimal phase
sensitivities become better with the increase of g. The optimal
phase sensitivity by parity detection is slightly better than that
of homodyne detection, and the phase sensitivity by intensity
detection is the worst among them.

For two-equal coherent input states |iα0/
√

2〉 ⊗ |α0/
√

2〉,
the expression of the phase sensitivity with parity detection is
very complex, as shown in Appendix D. Figure 3(c) presents
the phase sensitivity with parity detection as a function of φ.
It shows that the optimal phase point is also close to zero.
Figure 3(f) plots the optimal phase sensitivity verse g. In such
a situation, the phase sensitivities by homodyne detection and
by parity detection are the best and the worst, respectively.

FIG. 3. The sensitivity of phase estimation of an SU(1,1) interferometer as a function of (a) φ with intensity detection with coherent and
squeezed vacuum input state with r = 1; (b) φ with intensity detection with only one coherent input state; and (c) φ with parity detection with
two equal coherent input state. The optimal phase sensitivity of an SU(1,1) interferometer versus (d) g with coherent and squeezed vacuum
input state with r = 1; (e) g with only one coherent input state; and (f) g with two equal coherent input states (the blue line is for optimal phase
sensitivity and the dashed-red line is for phase sensitivity at φ = φopt). Parameter: |α0| = 1.

063840-5



LI, GARD, GAO, YUAN, ZHANG, LEE, AND DOWLING PHYSICAL REVIEW A 94, 063840 (2016)

IV. CONCLUSION

In summary, we have investigated the parity detection on
an SU(1,1) interferometer with pure Gaussian states as inputs.
We have presented that parity detection approaches the phase
sensitivity of 1/NTot scaling when the coherent beam and
squeezed vacuum beam have a roughly equal intensity with
a parametric strength in the limit of e−g → 0. Compared with
homodyne detection and intensity detection, parity detection
has a slightly better optimal phase sensitivity with only one
coherent state input or coherent and squeezed vacuum input
states. However, with two equal coherent state inputs, parity
detection cannot give better results than homodyne detection
and intensity detection. We have also shown a brief study
of the QCRB of an SU(1,1) interferometer. With vacuum
input, the QCRB is saturated by parity detection. However,
parity detection does not saturate the QCRB as well as
homodyne detection and intensity detection with the three
nonvacuum inputs in Table I. This motivates us to look for new
optimal detection schemes to approach the QCRB in future
work.
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APPENDIX A: PARITY DETECTION SIGNAL

From Eqs. (12) and (13), the measurement signal 〈�̂b〉 is
found to be

〈�̂b〉 = 1√
T1

e−T2/T3 , (A1)

where

T1 = e−2r (e2r + 1)2{8 sinh4(2g)[cos(2φ) − cos φ]

+ 4 cosh(4g) + 3 cosh(8g) − 7} + 64,

T2 = 4|α0|2 sinh2(2g){8 cosh(4g) cos(2θα) sin4(φ/2)

− 8 cosh(2g) sin(2θα) sin φ(cos φ − 1)

+ 8e4r [cos θα sin φ − 2 cosh(2g) sin θα sin2(φ/2)]2

+ 32e2r sinh2(2g) sin4(φ/2)

+ 8 cosh(4g) sin4(φ/2) − 8 cos2 θα cos φ

+ [3 cos(2θα) − 1] cos(2φ) + cos(2θα) + 5},
T3 = (e2r + 1)2[8 cosh(8g) sin4(φ/2) + 8 cosh(4g) sin2 φ

+ 4 cos φ + 3 cos(2φ) − 7] + 64e2r .

Letting φ = 0, we find that signal is reduced to

〈�̂b〉|φ=0 = 1, (A2)

which matches our prediction. When φ = 0, the second OPA
would undo what the first one does, causing the output
fields to be the same as the inputs. Thus the output in
mode b is the one-mode squeezed vacuum. For the one-
mode squeezed vacuum, parity signal is 1 due to only even
number distribution in the Fock basis with |0,ξ = reiθs 〉 =√

1/ cosh r
∑∞

n=0 [
√

(2n)!/n](1/2)n [exp(iθs) tanh r]n|2n〉
[42].

APPENDIX B: QUANTUM CRAMÉR-RAO BOUND

First we will focus on evolution of mean values and
the covariance matrix of quadrature operators in an SU(1,1)
interferometer. Second we will transform from the quadrature
operator basis to the annihilation (creation) operator basis.
Then according to Ref. [39], the QCRB will be obtained by
mean values and a covariance matrix of annihilation (creation)
operators.

âi (â†
i ) and b̂i (b̂†i ) (i = 0,1,2) are the annihilation (creation)

operators as shown in Fig. 1. We introduce the quadrature
operators

x̂ai
= âi + â

†
i , p̂ai

= −i(âi − â
†
i ),

x̂bi
= b̂i + b̂

†
i , and p̂bi

= −i(b̂i − b̂
†
i ). (B1)

We also define quadrature column vector

Xi = (X̂i,1,X̂i,2,X̂i,3,X̂i,4)ᵀ ≡ (
x̂ai

,p̂ai
,x̂bi

,p̂bi

)ᵀ
. (B2)

Next, we focus on the column vector of expectation values
of the quadratures X̄i and the symmetrized covariance matrix
�i [39,43–45], where

X̄i = (〈X̂i,1〉,〈X̂i,2〉,〈X̂i,3〉,〈X̂i,4〉)ᵀ, (B3)

�kl
i = 1

2 Tr[(X̃i,kX̃i,l + X̃i,lX̃i,k)ρ], (B4)

with X̃i,k = X̂i,k − 〈X̂i,k〉,X̃i,l = X̂i,l − 〈X̂i,l〉 and ρ the den-
sity matrix.

The input-output relation of X̄i and �i can be described as
[46]

X̄2 = SX̄0, (B5)

�2 = S�0S
ᵀ, (B6)

where X̄2 (X̄0) and �2(�0) are column vector of expectation
values of the quadratures and symmetrized covariance matrix
for the output (input) states, respectively, and S is the
transformation matrix. In general, transformation through the
first OPA, phase shift, and the second OPA could be given
by

SOPA1 =

⎛
⎜⎝

cosh g 0 sinh g 0
0 cosh g 0 − sinh g

sinh g 0 cosh g 0
0 − sinh g 0 cosh g

⎞
⎟⎠, (B7)
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Sφ =

⎛
⎜⎝

cos φ − sin φ 0 0
sin φ cos φ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠, (B8)

SOPA2 =

⎛
⎜⎝

cosh g 0 − sinh g 0
0 cosh g 0 sinh g

− sinh g 0 cosh g 0
0 sinh g 0 cosh g

⎞
⎟⎠, (B9)

where we have considered the balanced situation that θ1 =0,
θ2 = π and g1 = g2 = g. Therefore, the matrix can be ob-
tained as S = SOPA2SφSOPA1.

In our case of a coherent and squeezed vacuum input state
(|α0〉 ⊗ |0,ξ = reiθs 〉), the initial mean value of quadrature
vector X̄0 and covariance matrix �0 are

X̄0 = (2|α0| 0 0 0)ᵀ, (B10)

�0 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 e2r 0
0 0 0 e−2r

⎞
⎟⎠, (B11)

respectively, where we have let θα = 0 and θs = 0. According
to Eqs. (B5) and (B6), the final states can be found to be

X̄2 = 2|α0|

⎛
⎜⎜⎜⎝

cosh2 g cos φ − sinh2 g

cosh2 g sin φ

sinh g cosh g(1 − cos φ)
sinh g cosh g sin φ

⎞
⎟⎟⎟⎠, (B12)

�2 =

⎛
⎜⎝

γ11 γ12 γ13 γ14

γ21 γ22 γ23 γ24

γ31 γ32 γ33 γ34

γ41 γ42 γ43 γ44

⎞
⎟⎠, (B13)

where

γ11 = e−2r (e2r cos2 φ cosh4 g + {e2r cosh2 r sin2 φ + [e4r cos2 φ − 2e2r
(
1 + e2r

)
cos φ

+ e4r + sin2 φ] sinh2 g} cosh2 g + e2r sinh4 g), (B14)

γ12 = e−2r cosh g cosh r sin φ[e2r cos φ cosh2 g − e2r cos φ cosh2 r + (−1 + e4r )(cos φ − 1) sinh2 g]

= γ21, (B15)

γ13 = e−2r cosh g sinh g

{
e2r (e2r − cos φ)(cos φ − 1) cosh2 g − e2r cosh2 r sin2 φ

+ 2(1 + e2r )[(−1 + e2r ) cos φ − 1] sin2 φ

2
sinh2 g

}

= γ31, (B16)

γ14 = e−2r cosh g sin φ sinh g{e2r cos φ cosh2 g + (1 − e2r cos φ + e2r ) cosh2 r + (1 + e2r )[(−1 + e2r ) cos φ − e2r ] sinh2 g}
= γ41, (B17)

γ22 = e−2r (e2r cos2 φ cosh4 r + {e2r cosh2 g sin2 φ + [cos2 φ − 2(1 + e2r ) cos φ + e4r sin2 φ+1] sinh2 g} cosh2 r+e2r sinh4 g),

(B18)

γ23 = e−2r cosh r sin φ sinh g{e2r (− cos φ + e2r + 1) cosh2 g + e2r cos φ cosh2 r − (1 + e2r )[(−1 + e2r ) cos φ + 1] sinh2 g}
= γ32, (B19)

γ24 = e−2r cosh r sinh g

{
(cos φ − 1)(e2r cos φ − 1) cosh2 r + e2r cosh2 g sin2 φ

+ 2(1 + e2r )[(−1 + e2r ) cos φ + e2r ] sin2 φ

2
sinh2 g

}

= γ42, (B20)

γ33 = e−2r{e4r cosh4 g − e2r [− cos2 φ + 2(1 + e2r ) cos φ − 1] sinh2 g cosh2 g + (e4r cos2 φ + sin2 φ) sinh4 g

+ e2r cosh2 r sin2 φ sinh2 g}, (B21)

γ34 =−e−2r sin φ sinh2 g[−e2r (− cos φ + e2r + 1) cosh2 g + (−e2r cos φ + e2r + 1) cosh2 r + (−1 + e4r ) cos φ sinh2 g]

= γ43, (B22)

and
γ44 = e−2r{cosh4 r + [e2r cos2 φ − 2(1 + e2r ) cos φ + e2r ] sinh2 g cosh2 r + (cos2 φ + e4r sin2 φ) sinh4 g

+ e2r cosh2 g sin2 φ sinh2 g}. (B23)
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So far, we have obtained the output quadrature vector and its
covariance matrix. Next, we will calculate the corresponding
creation and annihilation operator vector which is defined as

d = (d1,d2,d3,d4)ᵀ ≡ (â2,â
†
2,b̂2,b̂

†
2)ᵀ, (B24)

and its covariance matrix � where each matrix element is
defined as

�u,v = (1/2)Tr[ρ(d̃ud̃v + d̃vd̃u)], (B25)

with d̃u = du − d̄u in terms of d̄u = Tr[ρdu] where ρ is the
density matrix. The corresponding commutation relation is
described as [du,dv] = �u,v , where

� =

⎛
⎜⎝

0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

⎞
⎟⎠. (B26)

Here we define the expectation value of d as

d̄ ≡ (d̄1,d̄2,d̄3,d̄4)ᵀ = (〈â2〉,〈â†
2〉,〈b̂2〉,〈b̂†2〉)ᵀ. (B27)

According to Eqs. (B1)–(B3), X̄2 is found to be

X̄2 = (〈â2 + â
†
2〉,〈−i(â2 − â

†
2)〉,〈b̂2 + b̂

†
2〉,〈−i(b̂2 − b̂

†
2)〉)ᵀ.

(B28)

Combined with Eqs. (B27) and (B28) the relation between d̄
and X̄2 is expressed as

d̄ = H X̄2, (B29)

where

H = 1

2

⎛
⎜⎝

1 i 0 0
1 −i 0 0
0 0 1 i

0 0 1 −i

⎞
⎟⎠. (B30)

Similarly, one can obtain the relation between � and �2 as
follows:

� = H�2H
ᵀ. (B31)

According to Ref. [39], the quantum Fisher information is
given by

F = 1
2 Tr

{
∂φ�

[
�(∂φ�)−1�ᵀ + 1

4�(∂φ�)−1�ᵀ]−1}
+ (∂φ d̄)ᵀ(�)−1(∂φ d̄), (B32)

where ∂φ� = ∂�/∂φ and ∂φ d̄ = ∂d̄/∂φ. Then the corre-
sponding quantum Cramér-Rao bound [1,27] is given by

�φQCRB = 1√
F

. (B33)

Combined with Eqs. (B12), (B13), (B29), (B31), (B32), and
(B33), the QCRB is found to be

�φQCRB = (2Nα(NOPA + 2){NOPA[Ns +
√

Ns(Ns + 1) + 1]}
+NOPA[NOPA(2Ns + 1) + 2](Ns + 1))−1/2.

(B34)

APPENDIX C: COHERENT STATE AND SQUEEZED
VACUUM STATE INPUT WITH INTENSITY DETECTION

The phase sensitivity with intensity detection with coherent
and squeezed vacuum input state in an SU(1,1) interferometer
is given by

�φI,coh&sqz =
(

Q1

Q2

)1/2

, (C1)

where

Q1 = 1
64 |α0|2{32 sinh2(2g) cosh2(2g) cosh(2r) cos(φ) − 128 sinh2(2g) cosh2(2g) sinh(2r) cos(φ)

− 8 sinh4(2g) cosh(2r) cos(2φ) + 16 sinh2(2g)[cosh(4g) + 3] sinh(2r) cos(2φ)

− 4 cosh(4g) cosh(2r) − 3 cosh(8g) cosh(2r) − 16 cosh(4g) sinh(2r) + 12 cosh(8g) sinh(2r)

+ 8 sinh4(2g) cos(2φ) − 208 sinh2(2g) cos(φ) − 16 sinh2(2g) cosh(4g) cos(φ) + 100 cosh(4g)

+ 3 cosh(8g) + 4 sinh(2r) − 57 cosh(2r) + 25} + 1
64 {−64 sinh2(2g) cosh2(2g) cosh(2r) cos(φ)

− 32 sinh2(2g) cosh2(2g) cosh(4r) cos(φ) + 16 sinh4(2g) cosh(2r) cos(2φ) + 8 sinh4(2g) cosh(4r) cos(2φ)

+ 8 cosh(4g) cosh(2r) + 6 cosh(8g) cosh(2r) + 4 cosh(4g) cosh(4r) + 3 cosh(8g) cosh(4r)

− 8 sinh4(2g) cos(2φ) − 48 sinh2(2g) cos(φ) + 16 sinh2(2g) cosh(4g) cos(φ) + 28 cosh(4g) − 3 cosh(8g)

− 14 cosh(2r) + 9 cosh(4r) − 41},
Q2 = 4 sinh4(g) cosh4(g) sin2(φ)

[
2|α0|2 + cosh(2r) + 1

]
2. (C2)

Figure 3(a) plots the behavior of �φI,coh&sqz as a function of φ with |α0| = 1, g = 1, and r = 1. It shows that the optimal phase
point is close to zero. According to Eq. (C1), the corresponding optimal phase point is found to be

φI,sqz,opt = arccot
(√

21/2V1V
−1/2

2

/
8 − 1/2

)
, (C3)
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where

V1 = |−2 cosh(8g) cosh(2r)|α0|2 − 30 cosh(2r)|α0|2 + 8 cosh(8g) sinh(2r)|α0|2 − 8 sinh(2r)|α0|2

+ 14|α0|2 + 16(3|α0|2 + 1) cosh(4g) + 2(|α0|2 − 1) cosh(8g) + 4 cosh(8g) cosh(2r)

− 4 cosh(2r) + 2 cosh(8g) cosh(4r) + 6 cosh(4r) − 22|,
V2 = − 384|α0|4 cosh(4g) cosh(2r) − 48|α0|4 cosh(8g) cosh(2r) + 8|α0|4 cosh(8g) cosh(4r)

+ 128|α0|4 cosh(8g) sinh(2r) − 32|α0|4 cosh(8g) sinh(4r) − 128|α0|4 sinh(2r)

+ 32|α0|4 sinh(4r) − 80|α0|4 cosh(2r) + 56|α0|4 cosh(4r) − 232|α0|4 − 24|α0|2 sinh(8g) sinh(2r)

− 128|α0|2 cosh(4g) cosh(2r) + 74|α0|2 cosh(8g) cosh(2r) + 96|α0|2 cosh(4g) cosh(4r)

+ 20|α0|2 cosh(8g) cosh(4r) − 10|α0|2 cosh(8g) cosh(6r) + 8|α0|2 cosh(8g) sinh(6r)

+ 24|α0|2 sinh(2r) − 8|α0|2 sinh(6r) + 86|α0|2 cosh(2r) + 12|α0|2 cosh(4r) − 22|α0|2 cosh(6r)

− 236|α0|2 + 32(24|α0|4 + 5|α0|2 − 1) cosh(4g) + (40|α0|4 − 52|α0|2 + 6) cosh(8g)

− 4 cosh(8g) cosh(2r) − 8 cosh(8g) cosh(4r) + 4 cosh(8g) cosh(6r) + 2 cosh(8g) cosh(8r)

+ 32 cosh(4g) sinh(4r) + 4 cosh(2r) − 40 cosh(4r) − 4 cosh(6r) + 2 cosh(8r) + 38. (C4)

Inserting r = 0 into Eqs. (C1) and (C3), then one obtain the phase sensitivity with only one coherent input state �φI,coh and
the corresponding optimal phase point, respectively:

�φI,coh = {−16 sinh2(2g) cos(φ)[6|α0|2 + cosh(4g) + 3] + 48|α0|2 cosh(4g) − 16|α0|2 + 8 sinh4(2g) cos(2φ)

+ 20 cosh(4g) + 3 cosh(8g) − 23}|4
√

2(|α0|2 + 1) sinh2 2g sin(φ)|−1,

φI,coh,opt = arccot

[√
4(3|α0|2 + 1) cosh(4g) − 4|α0|2 + cosh(8g) − 5

8|α0|
√

4(3|α0|2 + 1) cosh(4g) − 8|α0|2 + cosh(8g) − 5
− 1

2

]
. (C5)

Figure 3(b) plots the behavior of �φI,coh as a function of φ with |α0| = 1 and g = 1. It shows that the optimal phase point is also
close to zero. And Fig. 3(e) shows the corresponding optimal phase as a function of g with |α0| = 1.

APPENDIX D: TWO EQUAL COHERENT STATE INPUT WITH PARITY DETECTION

The phase sensitivity with two equal coherent state input with parity detection on an SU(1,1) interferometer is given by

�φcoh =
4[cosh2(2g) − sinh2(2g) cos(φ)]2

{
[cosh2(2g) − sinh2(2g) cos(φ)]2 exp

[ 4|α0|2e−2g (sinh(2g) cos(φ)+cosh(2g))
cosh2(2g)−sinh2(2g) cos(φ)

] − 1
}1/2

|sinh(4g) sin(φ)[sinh(4g) − 4|α0|2] − 2 sinh4(2g) sin(2φ)| . (D1)

Figure 3(c) plots the behavior of �φcoh as a function of φ with |α0| = 1 and g = 1. It shows that the optimal phase point is close
to zero. Figure 3(f) compares the optimal phase sensitivity among parity detection, homodyne detection, and intensity detection
with two equal coherent state input.
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[21] M. Gabbrielli, L. Pezzè, and A. Smerzi, Phys. Rev. Lett. 115,
163002 (2015).

[22] B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W.
Zhang, Phys. Rev. Lett. 115, 043602 (2015).

[23] Sh. Barzanjeh, D. P. DiVincenzo, and B. M. Terhal, Phys. Rev.
B 90, 134515 (2014).

[24] C. C. Gerry, Phys. Rev. A 61, 043811 (2000).
[25] W. N. Plick, P. M. Anisimov, J. P. Dowling, H. Lee, and G. S.

Agarwal, New J. Phys. 12, 113025 (2010).
[26] K. P. Seshadreesan, P. M. Anisimov, H. Lee, and J. P. Dowling,

New J. Phys. 13, 083026 (2011).
[27] C. W. Helstrom, Phys. Lett. A 25, 101 (1967).
[28] D. F. Walls and G. J. Milburn, Quantum Optics (Springer Science

& Business Media, New York, 2007).
[29] X. X. Xu and H. C. Yuan, Int. J. Theor. Phys. 53, 1601 (2014).
[30] R. A. Campos, C. C. Gerry, and A. Benmoussa, Phys. Rev. A

68, 023810 (2003).
[31] C. C. Gerry, A. Benmoussa, and R. A. Campos, Phys. Rev. A

72, 053818 (2005).
[32] R. A. Campos and C. C. Gerry, Phys. Rev. A 72, 065803 (2005).
[33] C. C. Gerry, A. Benmoussa, and R. A. Campos, J. Mod. Opt.

54, 2177 (2007).
[34] A. Chiruvelli and H. Lee, J. Mod. Opt. 58, 945 (2011).
[35] C. C. Gerry and J. Mimih, Contemp. Phys. 51, 497 (2010).

[36] A. Royer, Phys. Rev. A 15, 449 (1977).
[37] This optimal condition is necessary but not sufficient.

Assuming that �φ 	 �φHL, one can obtain an equation
l1N

2
α + l2Nα + l3 	 0, where l1 = N 2

OPA + 2NOPA + 1, l2 =
(2NOPA + 1)2Ns + 2NOPA(NOPA + 1) − e2rNOPA(NOPA+2), and
l3 = N 2

s (NOPA + 1)2 + 2NOPA(NOPA + 1)Ns + N 2
OPA − (Ns+1)

NOPA(NOPA + 2). Then the necessary optimal condition is found
that Nα = −l2/(2l1). In the limit of e−g → 0 and e−r → 0, this
necessary optimal condition reduces to Nα 	 tanh(2g)e2r/2.
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