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Quantum dynamics of a driven two-level molecule with variable dephasing
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The longitudinal (I'y) and transverse (I';) decay rates of a two-level quantum system have a profound influence
on its evolution. Atomic systems with ['; = %I‘ 1 have been studied extensively, but with the rise of solid-state
quantum devices it is also important to consider the effect of stronger transverse relaxation due to interactions
with the solid environment. Here we study the quantum dynamics of a single organic dye molecule driven by a
laser. We measure the variation of I, with temperature and determine the activation energy for thermal dephasing
of the optical dipole. Then we measure the second-order correlation function g® () of the light emitted by the
molecule for various ratios I';/ I'; and saturation parameters S. We show that the general solution to the optical
Bloch equations accurately describes the observed quantum dynamics over a wide range of these parameters,
and we discuss the limitations of the various approximate expressions for g®(z) that appear in the literature.
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I. INTRODUCTION

The two-level atom driven by light is a paradigm for much
of quantum physics, producing key quantum phenomena,
such as Rabi oscillation between the levels, antibunching of
the emitted light, and entanglement between the atom and the
light. The system is damped by the loss of photons to the
environment and by dephasing of the transition dipole through
off-resonant coupling to environmental fluctuations. Popula-
tion damping can assist in preparing a quantum state, which is
important, for example, in quantum memories [ 1] and quantum
gates [2,3], while dephasing influences quantum effects such as
photon-photon interference [4] and can lead to new quantum
correlations in solid-state cavity QED [5]. Damping clearly
has an important role to play in the development of quantum
technologies.

The focus of this article is on the quantum dynamics of
a driven two-level system retaining a complete description
that includes the effect of damping. Here we probe these
dynamics by measuring g‘®(z)—the intensity correlation of
the scattered photons—of a single molecule over a very broad
range of population damping and dephasing. We show that the
system can be well described over a large parameter space,
which is not the case for a number of expressions for g?(z)
in the literature. Early studies of two-level quantum systems
used two-level atoms [6] or ions [7] isolated in high vacuum.
The upper-state population decays at a rate 1/7; = '}, while
the transition dipole in these systems decays at half the rate:
1/, =T, = %Fl. Here T is the upper-state lifetime and 7,
the coherence time of the system. Such an atom or ion prepared
in the excited state subsequently emits a photon of spectral
width I'}, and these photons are indistinguishable—a desirable
feature for quantum information processing. In seeking to

“alex.clark @imperial.ac.uk
ted.hinds @imperial.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2469-9926/2016/94(6)/063839(6) 063839-1

make simpler, more practical, single photon sources there has
been a great effort to develop solid-state emitters including
quantum dots [8], color centers in diamond [9] or silicon
carbide [10], and our system of choice, organic molecules [11].

Unlike isolated atomic systems, solid-state emitters are cou-
pled to the phonon bath of the solid, which dephases the optical
dipole and gives a very large transverse decay rate I, at room
temperature. Even at 4 K, self-assembled quantum dots and
defect centers, being intrinsically bonded to the surrounding
crystal, are dephased by lattice phonons [12,13] that are not
fully suppressed. Cavities have been used with quantum dots to
increase I'| and compensate for this dephasing [14—17]. Defect
centers in bulk diamond have approached a lifetime-limited
linewidth at a temperature of 1.8 K [9].

In contrast, organic molecules can be hosted as impurities
in a molecular crystal held together by van der Waals forces.
These emitters are often somewhat protected from the lattice
phonons and dephase mainly through a local libration of the
molecule itself [18,19]. Consequently, a number of them have
exhibited fully suppressed dephasing [20-22]. In the case of
dibenzoterrylene (DBT) molecules embedded in an anthracene
crystal the dephasing can be frozen out at temperatures as
high as 4 K [23]. These molecules then produce a high
yield of indistinguishable photons in a 30—40-MHz-wide line
at ~785 nm [24,25] and could be used to deliver photons
very efficiently into a nearby waveguide [26,27]. In recent
experiments we have been able to grow DBT-doped anthracene
crystals with an adjustable DBT concentration [28] and to
make very thin doped crystals [29], suitable for coupling the
molecules to integrated optical structures. We find that some
of these molecules can be excited over a trillion times without
photobleaching [29].

In this work we cool the doped crystal in a cryostat
and image a single DBT molecule to investigate its optical
properties. We scan the frequency of a pump laser and detect
the fluorescence to determine the width of the scattering reso-
nance. By repeating this over a range of sample temperatures
we measure the temperature-dependent transverse damping
rate ['»(T), and are able to quantify the thermodynamic
behavior of the phonon bath responsible for dephasing the
optical dipole. Next we measure g®(t) over a wide range
of pump intensities and dephasing rates. In order to interpret
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FIG. 1. (a) Relevant energy levels for a DBT molecule in
anthracene. A laser drives the zero-phonon line, which is also the
main decay branch. Some decays go to vibrationally excited levels of
the ground electronic state. (b) Schematic diagram of the apparatus.
A confocal microscope images of fluorescence from a single DBT
molecule in the anthracene crystal. PMF: polarization-maintaining
fiber; P: linear polarizer; HWP: half-wave plate; BF: bandpass filter;
DM: dichroic mirror; SM: steering mirrors; APD: silicon avalanche
photodiode; LP: long-pass filter.

our data we solve the optical Bloch equations to find g (7)
and compare this with our measurements. We show that this
molecule does indeed operate as an ideal two-level quantum
system when it is driven by resonant light. Although g®(7)
has been measured for many types of quantum emitters, we
are not aware of any previous study to investigate the system
dynamics as a function of I';. Various formulas can be found
in the literature, each with some range of validity depending
on the particular experiment under discussion. Here we show
how those formulas relate to the general expression and we
specify the approximations that must be valid in each case. We
test these using our molecule.

II. EXPERIMENT AND RESULTS

The DBT molecule is prepared, as described in [28], in
a single crystal of anthracene where the energy levels are as
illustrated in Fig. 1(a). The first electronic excitation, Sy — Sj,
is driven with Rabi frequency €2 by resonant laser light at
783.73 nm. The spontaneous decay goes directly to the ground
state ~40% of the time (the zero-phonon line or ZPL), with
the remainder going to vibrationally exited states that relax
very rapidly to the ground state.

The apparatus is shown schematically in Fig. 1(b). The
crystal is placed on a silicon substrate, which sits on the
movable cold platform of a cryostat (Montana Cryostation) and
is thermally connected to it by silver paint. We use integrated
heaters to set a sample temperature between 4.0 and 10.6 K.
A room-temperature microscope objective sits 300 um above
the crystal, which it views through a small hole in a thermal
radiation shield.

The excitation light is provided by a distributed feedback
diode laser, actively locked to a stable, tunable reference cavity.
The light is spatially filtered by a single-mode fiber (PMF
in Fig. 1), then collimated, polarized, and spectrally filtered
to remove the background of laser spontaneous emission.
The microscope objective lens focuses the beam to a spot
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FIG. 2. (a) Weakly excited scattering resonances of DBT in
anthracene, illustrating the increase of linewidth with temperature.
(b) Linewidth-squared versus laser intensity for the three lowest
temperatures. The intercept gives I';, while the slope gives I. (c)
Measured temperature dependence of I'; (circles, left ordinate) and
Iy, (triangles, right ordinate). Upright triangles are from measure-
ments of I',, while inverted triangles are from measurements of
the peak fluorescence rate. Symbol sizes represent error bars. Zero
temperature is uncertain by £0.25 K, our uncertainty in temperature
difference between the sensor and the molecule.

of width (FWHM) 550 nm. Two steering mirrors center this
light on the molecule, while its polarization is aligned with
the molecular optical dipole using a half-wave plate. The
molecular fluorescence is collected by the same objective
and returns along the same path until a dichroic mirror sep-
arates the redshifted vibrational sidebands from the ZPL and
backscattered excitation light. These are further suppressed
by a long-pass filter cutting off at 792 nm—between the
ZPL and the first sideband. The light is then split into two
beams which are detected by silicon avalanche photodiode
detectors. The total fluorescence is recorded by summing
the two detector signals. A time-correlated counting card,
started by one detector and stopped by the other, records the
distribution of counting times, which is proportional to g (7)
(see Appendix A).
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FIG. 3. Exploration of g®(t) over a range of the parameters S and I';/ T';. (a)—(c) S is varied, with fixed I,/ I"; = 0.94(2). (d)—~(f) I,/ T,
is varied with § ~ 5. Circles: measured g® values. The spread in points is the Poissonian counting noise. Lines: in (b) the line shows the
least-squares fit to Eq. (2) with 7} = 3.70(6) ns as the only fitting parameter. In the other panels the line shows Eq. (2) plotted without any free

parameters.

First, we measure the mean fluorescence rate, proportional
to the excited state probability py;:

1
)

=2 1
82/T3+1+4S M

022
where § is the angular frequency detuning of the excitation
light from resonance and S = Q?/(I'|T';) is the saturation
parameter [see Eq. (A2)]. It is convenient to write S = I/,
but we cannot measure [ at the site of the molecule. Instead we
monitor the power P incident on the surface of the anthracene
and take I = 2P /(mw w?), where w = 467 nm is the Gaussian
width parameter. Figure 2(a) shows the fluorescence rate
varying as we tune § through the resonance, and shows that
the line has a larger width at higher temperature. According to
Eq. (1), the width (inHz)is Av = (I',/7)+/1 + S. We measure
this width at each temperature as a function of laser intensity
and extrapolate to zero intensity, as shown in Fig. 2(b) for the
three lowest temperatures. The intercepts yield a set of values
for I',(T), while the slopes give Iy (T). A separate measure
of I(T) is given by the peak scattering rates, which are
proportional to S/(1 4 S). The two methods of determining
Iy give virtually identical results.

The circles in Fig. 2(c) show our results for I',(7T"). These
data are well described by the simple temperature dependence
['2(T) = I'»(0) + Ae~T0/T | corresponding to thermal activa-
tion of a single local phonon mode at energy kpTp. The line
shows the best fit, for which 7Ty = 39(1) K. The triangular data
points show our values of I,(7T). When these are described
by the same model, I(T) = I (0) + Be~ /T for which we
plot the best fit, we find Ty = 41(3) K. Since Iy o< ',
this common value of Tj indicates that I'; does not vary
significantly over this temperature range, and that the increase

in Igy is just due to the increase of I',. Our value for Tj is
consistent with the lower bound of 35 K reported in [23]. We
looked for a spectral feature at that energy (1.7 nm to the red
of the ZPL) in the dispersed fluorescence spectrum, but could
not see anything above the background.

Next, we investigate the intensity correlation g®(t) over a
wide range of the parameters S and I';. The top row of Fig. 3
shows three g@ curves taken at I’y = 27 x 40.5(1) MHz, with
S adjusted by changing the laser intensity. Panel (a) represents
small S where there is a simple dip, (b) shows § >~ 1, where the
dip is narrower and g lifts slightly above unity, and (c) shows
S > 1, where there is a clear Rabi oscillation. The bottom row
of Fig. 3 shows curves at § >~ 5 for a range of I';. In panel (d),
I';, is increased but the Rabi oscillations are still visible. In (e),
a small overshoot remains in the wings of the dip, then in (f)
we see a simple dip for very large I',.

All this complexity is contained in the general solution for
the two-level system, which we derive in Appendix A from
the optical Bloch equations:

ey =1- we*%(pfq)r + uef%(pﬂz)r’ )
2q 2q
where
p=T1+T,,
q =) —Ty)? —4Q2. 3)

To compare our data with this theory, we convolve Eq. (2) with
the measured temporal response function of our apparatus,
a Gaussian with 455 ps standard deviation. Since all the
parameters are known except for I';, we make a least-squares
fit to the data in Fig. 3(b), which yields 7; = 3.70(6) ns. This
is consistent with other values in the literature: 3.3-5.7 ns [30]
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FIG. 4. Space of parameters {I';/I";,S} that determine the be-
havior of g®(t). Shaded areas show parameter ranges where each
of the equations (4)—(8) gives a reliable description of the system
dynamics. Points (a)—(f) correspond to the measurements in Fig. 3,
which explore the parameter region and establish that Eq. (2) fully
describes the system.

and 3.1-3.5 ns [28]. There are then no more free parameters so
the lines in the other plots represent Eq. (2) without any fitting.
The agreement is excellent throughout. We are not aware of
any other experiment that tests the ability of the optical Bloch
equations to describe a real system that is resonantly pumped
over a wide range of both § and T';.

III. DISCUSSION

Many experiments in the literature have investigated g (1)
over a restricted range of parameters, and those papers cite a
variety of expressions for g (t) that differ from Eq. (2). In
the absence of dephasing, ', = I'1/2, and Eq. (2) becomes

lim [gP()]=1—e i
—>1iT1

3r
X <cosh(®r) + 4—01 sinh(@r)), 4

where ©® = +/T'7/16 — Q2. This is the formula derived by
Carmichael and Walls [31]. The low power limit of Eq. (4),

lim [g@(0)] = (1—e i), )

I, — 5Tl

QI

is given by Loudon [32]. In the presence of dephasing, Flagg
et al. [33] propose the expression

g(2>(f)Flagg =1- e—%(l‘1+[‘2)r

r+1In

X (cos(,ur) + sin(ur)), (6)

PHYSICAL REVIEW A 94, 063839 (2016)

where u = /Q2 4 (I'; — I')2. This is not a limit of Eq. (2),
but the two do coincide when I'y = I';. A similar formula is
proposed by Batalov et al. [34]:

g(Z)(T)Batalov =1- e—%(l"1+1"2)r
r+r
2Q2

X <cos(§21) + 2 sin(Qr)). 7

This too agrees with Eq. (2) at ', = I'y, but is again not a
limit of it. In the strong dephasing limit, where I'}/ T, < 1
and Q/TI'; « 1, expansion in these small quantities gives
p+q =2y, and p — g ~ 2I"; +2Q?/T',. With the further
approximation that I',7 > 1, i.e., that the coherence time is
much shorter than the measurement time, the third term in
Eq. (2) damps away to leave

lim  [gP(r)] =1 — e N7 (8)
o>y, Q, v 1}

showing the single exponential rise common in room temper-
ature measurements of g () [28,30].

Figure 4 illustrates the {I";/I';,S} parameter space and
plots the regions where Egs. (4)—(8) provide good approxima-
tions to Eq. (2) (see Appendix B). There is a slender region
on the left where Eq. (4) is reliable. Equation (5) works over
an even smaller region shown in the inset. Equation (6) works
adequately when close to the condition I', = I';, while Eq. (7)
has a slightly wider range of validity, also centered on this
condition. The region of validity for Eq. (8) is on the right of
Fig. 4. Over much of the parameter space, Eqgs. (4)—(8) all fail
and the full expression of Eq. (2) must be used. Also shown
in Fig. 4 are the points corresponding to the measurements of
2@(7) in Fig. 3. We see that measurements (a)—(c) lie in the
region where Eqs. (6) and (7) are good approximations, while
(d) is described by Eq. (7). Measurements (e) and (f) are not
well described by any of the approximations but correspond
closely to Eq. (2), as shown in Fig. 3. It is clear one must
be careful to consider what regime of illumination intensity
is being used and what level of dephasing is present when
choosing any approximate expressions for g (7).

IV. CONCLUSION

In summary, we have investigated the quantum dynamics
of a resonantly driven DBT molecule over a wide range of the
parameters [/ I'; and S. By measuring how the dephasing rate
increases with temperature, we have determined the charac-
teristic energy gap for excitation of the relevant local phonon
mode, and we have seen that this mode is not significantly
excited in the fluorescence spectrum. We have mapped the
evolution of the internal state dynamics by recording g®(z)
and have shown that this is very well described over the broad
parameter range by Eq. (2). We also make contact with a
variety of other formulas in the literature and show how they
relate to the general expression. We conclude that the molecule
operates as an ideal two-level quantum system across a wide
parameter space. This establishes its suitability for use in
photonic circuits, as proposed in [26].

All of the data from this work can be found at [35].
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APPENDIX A: DERIVATION OF EQ. (2) FOR g@(1)

The evolution of a damped two-level system, driven at
resonance by a coherent field E(cos(wt), can be described
by the optical Bloch equations

Q
Pn(t) = iE[,Olz(f) — p21(1)] = T p2(1),

Q
pa(0) = i [on () = p(0)] = (2 = i8)px (),

p12(t) = p(1)",

p11(1) = —poa(0). (AD
Here p;;(t) are the density matrix elements, with p;; being
the population of the stable lower level, while the upper
level population p;; has spontaneous decay rate I'y, and
the total population p;; + p2; is conserved. The strength of
the excitation is characterized by hQ2 = d E, where d is the
electric dipole transition matrix element. The off-diagonal
density matrix elements are damped at rate I', and § is the
detuning of the optical frequency from the resonant frequency.
The time dependence of the interaction has been eliminated
by making the rotating wave approximation and transforming
to an appropriate interaction picture.

The steady-state solution of these equations gives the

excited-state population as

1/ 92
(o) = 20
-8 @\’
2 + 1+ (ﬁ)
Since Q7 is proportional to the intensity / of the light that drives

the excitation, one normally defines a “saturation intensity” Igy
such that

(A2)

Q2 I
= =3§. (A3)

r 1 FZ I sat
This ratio S is known as the saturation parameter. When a laser
is scanned across the scattering resonance, the scattering rate
is proportional to p,;, and hence the peak of the resonance

signal is proportional to 1%5’ while the width of the resonance

(FWHM) is 2I"2+/1 + S.

We turn now to the time dependence of the density matrix,
which we evaluate here for the special case of resonant exci-
tation, § = 0. Writing p1, as %(u —iv), Egs. (A1) simplify to

. Q
p22(t) = EU(I) — I 22(2),

v(t) = Qe () — p22(®)] — Tav(2),

pr1(t) = —paa(1). (A4)
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The real part of py, i.e., u, separates from these equations
because the light is resonant, and therefore the driven dipole
is in quadrature with the driving field. We are interested in
solving these equations to find py;(t), with the initial condition
that 05,(0) = 0. This solution is found by taking the Laplace
transform of Eq. (A4):

. Q_ .
§P2(s) = EU(S) — I'1022(s),
sO(s) = QA1 (s) — Pra(s)] — Tad(s),

sp1(s) — 1 = —5pn(s). (A5)
On solving these equations, we obtain
102
) = ST, +2s(1“1 Ty B
With the substitutions
p=r1+Ty,
g =1 -T2’ — 42, (A7)
we rewrite Eq. (A6) as
)= T ek (AY
where
2Q? Q? Q?
terezes) = {P2 - qp—9) a(p+q) }
(51,82.55) = {o,—%@—q),—%(pm)}. (A9)
The inverse transform then gives the desired solution,
022(t) = ¢1 + 28" + c3e™. (A10)

At long times, the second and third terms damp away, leaving
the steady-state solution

102
5 €2

p22(00) = ¢y

This is, of course, the § = 0 case of Eq. (A2).
The second-order correlation function of the radiation field
is defined as [36]

IO+ 1))

@y — !
$TO= " Ty

(A12)

where 1(¢) is the intensity operator, and the whole function
is expressed in normal ordering. This is the normalized joint
probability of detecting a photon at time ¢ + 7, given that
another photon was detected at time ¢. Because the probability
of detecting a photon is directly proportional to the probability
o2 of the system being excited, and because the first detection
projects the system into the lower level, Eq. (A10) provides

063839-5



SAMUELE GRANDI et al.

exactly what we need to evaluate 2@ ()

022(7)
022(00)

g9 =

=1- —pz—;qe—%(zﬂ—qﬁ 4 pz_q_q e—%(p-%q)r' (A13)

This is the result we quote in Eq. (2) in the main text. We note
that Eqgs. (6) and (7) of the main text agree with Eq. (A13)
when ' = I', as in this case the substitutions ¢ and p all
reduce to €2, the bare Rabi frequency.

It is possible to rearrange Eq. (A13) to arrive at an expres-
sion similar to Eqgs. (6) and (7) of the main text. By writing
q = i\/4Q2 — ('} — )%, we can write the exponentials as
the sum of periodic functions

P =1- et |:cos (21—) + L sin <C—Ir>:|. (A14)
2 q 2
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Recalling that sinh(ix) =i sin(x) and cosh(ix) = cos(x),
Eq. (4) of the main text can also be written in this form.

APPENDIX B: COMPARISON WITH OTHER
g% (1) FORMULAS

To compare Eq. (A13) with the various approximate
formulas in the literature we consider the normalized mean-
square difference

12 [¢?) - g@@)]dr
D, L/ T') =
a(S, 2/ l) ffooo[l — g(z)(T)]sz

where g@(7) is the function given in Eq. (A13), and g@(7)
is the formula under consideration. If D, > 1073, we find
typically that the two functions disagree noticeably when
plotted. We therefore take the area of agreement to be the
region that satisfies D, < 1073, and those are the areas that
we plot in Fig. 4 of the main text.
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