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Nonlinear optical effects provide a natural way of light manipulation and interaction and form the foundation
of applied photonics, from high-speed signal processing and telecommunication to ultrahigh-bandwidth
interconnects and information processing. However, relatively weak nonlinear response at optical frequencies
calls for operation at high optical powers or boosting efficiency of nonlinear parametric processes by enhancing
local-field intensity with high-quality-factor resonators near cavity resonance, resulting in reduced operational
bandwidth and increased loss due to multiphoton absorption. We present an alternative to this conventional
approach, with strong nonlinear optical effects at low local intensities, based on period-doubling bifurcations
near nonlinear cavity antiresonance and apply it to low-power optical frequency comb generation in a silicon chip.
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I. INTRODUCTION

In the never-ending quest for higher signal processing
speeds, optics-based systems represent an attractive research
direction since, in contrast to the well-studied area of elec-
tronics, the optical domain is perfectly suitable for operation
at high frequencies. The basis for any signal processing is
manipulation of signals, or light waves, as in the case of
optics. Medium nonlinearity provides a means of interaction of
different propagating waves with each other and the medium
itself.

Two strategies have been traditionally used to enhance
nonlinear optical effects: (1) targeting materials with high
optical nonlinearities, such as chalcogenide glasses [1,2],
silicon [3,4], and AlGaAs [5,6], and (2) employing resonant
structures to increase local-field intensity. The choice of
material is oftentimes dictated by fabrication limitations and
the overall design compatibility requirements. For example,
due to its lower cost and direct compatibility with the
well-developed complementary metal-oxide semiconductor
industry, silicon-based nonlinear photonics has gained a lot
of interest in the last decade [4]. On the other hand, resonators
offer significant enhancement of local-field intensity at the
resonance regime, which allowed for experimental observation
of nonlinear optical effects in mode-locked lasers [7,8]
and fiber-ring resonators at first [9–11] and then, with
the development of microfabrication, in high-quality-factor
(Q) microresonators [12–28]. However, boosting local-field
intensities with high-Q resonators for enhancing nonlinearity
has its disadvantages. First, high intracavity intensities lead to
significant multiphoton absorption losses, which makes this
resonant approach inapplicable to materials with substantial
nonlinear losses, such as silicon at the telecom wavelength of
1550 nm [29]. Second, ultrahigh-Q microresonators, which
allow for observation of nonlinear effects at the lowest power,
are extremely sensitive to fabrication nonidealities and suffer
from poor scalability and on-chip integrability. Finally, high-Q
microresonators at the resonance are highly susceptible to
external perturbations, up to individual molecules, which
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is advantageous for nanoparticle detection systems [30–32]
but detrimental to many other applications. As we show in
this work, nonlinear effects in microresonators can also be
observed in the near-antiresonance regime, which, in contrast
to the standard resonant approach, naturally implies low
intracavity intensity operation and as such could be less prone
to the aforementioned disadvantages. Here, the antiresonant
operation of a nonlinear cavity excited by continuous-wave
(cw) pumping is defined as the case when the total phase
detuning of the pump frequency from the closest resonant
mode of the cavity is equal to π : |φ + φNL| = π , where φ is
the linear contribution and φNL is the nonlinear contribution
(intensity dependent). The linear detuning φ is calculated in
the conditions of low intensity, such that nonlinear effects are
negligible and the cavity is considered “cold”. The nonlinear
contribution φNL is the extra phase accumulated by the
intracavity field over one round-trip in the cavity due to the
optical Kerr effect.

Effects of nonlinearity on a system dynamics can often
be understood by introducing the concept of modulational
instability (MI). MI caused by the interplay between nonlinear
and dispersive effects has been observed in many areas of
physics [33], including nonlinear optics, where it manifests
itself as the breakup of cw radiation into a train of ultrashort
pulses [34]. When a cw beam propagates through a ho-
mogeneous nonlinear dispersive optical medium, anomalous
dispersion is required for the modulational instability to occur.
However, in the presence of a feedback, as in the case of a
resonator system, modulational instability can arise even at
normal dispersion [35] and occurs either close to the cavity
resonance or close to the cavity antiresonance [36]. Thus,
nonlinear effects in resonators should be expected in both
the resonance and antiresonance regimes. Motivated by the
advantages of low intracavity intensity operation, we study the
effects of nonlinearity in a resonator system in the vicinity of
the cavity antiresonance and apply this approach to low-power
optical frequency comb generation [37,38] in a silicon chip at
the telecom wavelength.

Previous work on frequency comb generation has primarily
focused on the resonant regime of a high-Q nonlinear cav-
ity [37,38]. In this case the mean-field approximation is valid,
and the dynamics can be modeled accurately using either the
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modal expansion theory [39] or the Lugiato-Lefever equation
(LLE) [35,40–42]. In the present work we are interested in the
antiresonant regime of a cavity in which the system exhibits
period-doubling behavior, which has been observed to occur in
fiber-ring resonators [43–46]. The mean-field models cannot
be applied to the kind of period-doubling instabilities whose
origin lies in the inhomogeneity of the pump field and which
cause significant changes in the intracavity field between
consecutive round-trips. For that reason, we resort to using
the Ikeda map [47,48] and solving numerically the nonlinear
Schrödinger (NLS) equation [34,49,50].

II. RESULTS

A. Alternative mechanism (single-resonator system)

In the antiresonant regime, the nonlinear dynamics of
the single-resonator system is affected by period-doubling
instabilities [36]: an increased effective nonlinearity in the
resonator brakes the system integrability, which results in
period-doubling transition to chaos [47,48]. If cw states are
considered stable period-1 states, period-doubling bifurcations
lead to the formation of regions in the system parameter space
with stable states of higher periods, states with multiple wave
amplitude values. The existence of higher-period stable states
leads to switching in the time domain: the system traverses
the set of allowed stable wave amplitude values in sequence
switching between them within the system characteristic time
period (round-trip time in the resonator). Periodic switching
in the time domain translates to the comb spectrum in the
frequency domain. Therefore, frequency comb generation can
be achieved in the antiresonant regime of the cavity owing to
the existence of period-doubling instabilities.

As we pointed out earlier, a cavity is in the antiresonant
regime if the overall phase detuning |φ + φNL| of the pump
frequency from the cavity nearest resonance mode is equal
to π . Therefore, there are two ways to reach the antiresonant
regime. In the first approach, the pump is tuned into one of
the “cold-cavity” resonances (linear phase detuning φ ≈ 0).
Then, the nonlinear phase shift φNL caused by the increased
intracavity intensity pushes the cavity into antiresonance.
This approach requires significant nonlinear phase shift to be
accumulated per every round-trip in the cavity, thus leading to
high intracavity intensities (φNL ≈ γLP ≈ π ) necessary to
reach antiresonance and period-doubling bifurcations [51].

On the other hand, if the pump was initially tuned into one
of the cold-cavity antiresonances (linear phase detuning φ ≈
π ), little nonlinear phase shift and low intracavity intensity
(φNL ≈ γLP � π ) are required for the system to reach the
antiresonant regime. As a result, period-doubling bifurcations
and frequency comb generation in particular, in principle,
could be achieved at close to zero intracavity intensities. For
real applications low intracavity power means low multiphoton
absorption losses. This is the key idea behind the mechanism
we propose.

In order to illustrate the main features of the suggested
mechanism, we first consider a single-resonator system with-
out group-velocity dispersion (GVD), with a microring res-
onator coupled to the waveguide [Fig. 1(a)] used both to pump
the resonator and to direct the output signal. A dispersion-free

(a) (b)

FIG. 1. (a) Schematics of the microring resonator system.
(b) Period-1 stable (solid line) and unstable (dashed line) states of
the intracavity power P at different values of the input power P0

with the highlighted first instability region (black rectangle contour).
The simulation data were obtained for a resonator with ring radius
R = 10 μm, κ2 = 0.1, φ = π − 0.14, α = 0.7 dB/cm, and TPA as
in silicon near λ = 1550 nm.

system allows us to apply a simpler, map-based approach for
its analysis. Then we perform a full spatiotemporal numerical
modeling of the nonlinear dispersive system to study the effects
of finite GVD on the proposed mechanism.

Throughout the analysis, we take two-photon absorption
(TPA) into consideration. However, it is neither essential nor
beneficial for our approach to apply. The motivation behind
including TPA in the model is to provide a quantitative
connection to the experiments with materials where TPA is
present or cannot be neglected, such as silicon at 1550 nm.

The wave propagation over one round-trip of the resonator,
assuming a single spatial mode, is governed by the well-known
NLS equation [34,49,50]

∂A

∂z
= iγ (1 + ir)|A|2A − iβ2

2

∂2A

∂T 2
− α

2
A, (1)

where A = A(z,T ) is the normalized wave-packet amplitude
(|A|2 has units of power), γ is the nonlinearity coefficient,
r is the TPA coefficient (r ≈ 0.1 for silicon at 1550 nm),
β2 is the group-velocity-dispersion coefficient, α is the
power attenuation constant, and T ≡ t − z/vg is time in the
frame of reference moving with the wave packet along the
circumference of the ring at the group velocity vg . Without
GVD, Eq. (1) is reduced to

∂A

∂z
= iγ (1 + ir)|A|2A − α

2
A (2)

and has an analytic solution [49]

A(L,T ) = A(0,T )
exp

(−α
2 L

)
√

1 + 2rγ L̃|A(0,T )|2
× exp{i ln[1 + 2rγ L̃|A(0,T )|2]/(2r)}, (3)

where

L̃ = 1 − exp(−αL)

α
. (4)

The coupling of the resonator to the waveguide can be
modeled by the matrix equation [52][

b(t)
d(t)

]
=

[
τ κ

−κ∗ τ ∗

][
a(t)
c(t)

]
, (5)
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where τ and κ are, respectively, the amplitude transmission and
coupling coefficients for the coupler between the microring
and the waveguide, a ≡ A(z = L) (L is the circumference
of the resonator) and b ≡ A(z = 0), while the amplitudes
c and d correspond to the field amplitudes at the “input”
and “through” ports of the waveguide. The coupling matrix
is unitary, so that |τ |2 + |κ|2 = 1. For the single-resonator
system [Fig. 1(a)], the cw driving field c(t) ≡ c = const from
the pump is coherently added through the coupler every
round-trip to the wave circulating in the ring. From Eq. (5)
we find that the intracavity field b(n+1)(t) at the beginning of
(n + 1)th round-trip can be related to the field a(n)(t) at the
end of the nth round-trip as

b(n+1) = τa(n) exp(iφ) + κc, (6)

where φ is the linear phase detuning of the pump frequency
from the cavity nearest resonant mode.

The evolution of the intracavity field through one round-
trip in the resonator is described by Eq. (3) and in terms of
round-trip variables takes the form

a(n) = b(n) exp
(−α

2 L
)

√
1 + 2rγ L̃|b(n)|2

× exp[i ln(1 + 2rγ L̃|b(n)|2)/(2r)]. (7)

The initial condition (6) together with the intracavity
evolution equation (7) constitutes a finite-dimensional Ikeda
map [47,48], which describes the dynamics of a ring resonator
at zero GVD. Stability analysis of the map reveals that the
system has multiple regions of period-1 stable and unstable
states [Fig. 1(b)]. However, it is the very first instability
region that allows for period-1 unstable states to exist at both
the lowest intracavity power P and the lowest input power
P0, which is achieved when the resonator is tuned into the
vicinity of antiresonance. At the point where the period-1
state loses stability, the system undergoes a period-doubling
bifurcation which leads to the formation of period-2 stable
state. This dynamics is illustrated in Fig. 2(a), which depicts the
lowest-power period-2 bubble. The originally stable period-1
mode corresponding to the time-independent power inside the
ring [solid blue line in Fig. 2(a)] eventually loses stability with
increasing power, and the system switches to a new period-2
stable mode, a state with the period 2Tc (Tc = L/vg is the
round-trip time) corresponding to two ring round-trips [closed
red loop with circles in Fig. 2(a)]. At this point, the steady-state
power in the microring is no longer time independent, and the
switching between the two power levels occurs [Fig. 2(b)],
leading to multiple subbands in the power spectrum and
frequency comb generation [Fig. 2(c)].

However, with a finite GVD present in the system, the
dynamics of the ring resonator cannot be described by a
finite-dimensional map, and the evolution of the intracavity
field must be found by integrating the NLS equation (1).
We solve numerically the NLS equation with the initial
condition (6) with the finite-difference time-domain (FDTD)
Hopscotch method [53]. We seek a numerical solution for
A(z,t) at a set of points zm,tk on a rectangular grid in the z,t

plane, where zm = m�z,tk = k�t , �z is the increment in z,
and �t is the increment in t . The time step �t is chosen to be

(a) (b)

(c)

FIG. 2. (a) Bifurcation diagram of the first period-1 instability
region [black rectangle contour in Fig. 1(b)] for the states of the
intracavity power P at different values of the input power P0.
Fixed points of period 1 and period 2 form the blue line and
the red closed loop with circles, respectively. Solid lines represent
stable fixed points; dashed lines represent unstable fixed points.
(b) Corresponding wave forms and (c) power spectra inside the
microring resonator. The red (dark gray) curve in (b) and (c) represents
the case of zero GVD; green (light gray) and black curves correspond
to the weak (β2L/T 2

c = 1 × 10−5) and strong (β2L/T 2
c = 3 × 10−4)

normal GVD, respectively. The simulation data were obtained for a
resonator excited at λ = 1550 nm (f ≈ 194 THz) with the scaled
input power γLP0 = 3, κ2 = 0.1, φ = π − 0.14, linear losses α =
0.7 dB/cm, TPA as in silicon near λ = 1550 nm, and ring radius
R = 10 μm.

large enough to provide a sufficient frequency window for the
generated comb spectrum. Step �z is adjusted to provide the
required accuracy. The initial condition has a feedback with
the time delay equal to the round-trip time in the resonator. For
that reason the numerical integration is performed iteratively,
covering (K − M) points in time per pass, where K and M are
the number of steps per one round-trip in t space and z space,
respectively.

Note that the numerical approach of solving the NLS
equation we apply in this work is substantially different from
the common one (see, e.g., [14]), which is based on iterations
with the split-step Fourier method. The reason for this is that
the discrete Fourier transform with the temporal window span
of the single round-trip time Tc cannot be applied here since
the minimum period of observed states is 2Tc. Instead, we use
the FDTD method [53] to solve numerically the NLS equation
with the initial condition defined by the coupling between the
waveguide and the resonator.

As expected, the numerical solution shows that the instanta-
neous switching demonstrated earlier without GVD is replaced
by smooth transitions [Fig. 2(b)] in the case of normal GVD.
Dispersion acting together with Kerr nonlinearity effectively
limits the frequency comb spectrum: the stronger the GVD is,
the less frequency components are visible [Fig. 2(c)].

It should be emphasized that the proposed mechanism of
frequency comb formation is qualitatively different from the
well-known approach [12,16,24]. According to the standard
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picture, all comb sidebands are formed at multiple or single
free spectral ranges (FSR) �f away from the pump [16]. In
contrast, in the suggested mechanism, the first harmonic is
generated at f1 = �f

2 = 1
2Tc

away from the pump frequency,
although the higher harmonics follow single FSR spacing
[Fig. 2(c)].

Note that the bifurcation from the period-1 to the period-2
stable state (threshold point for frequency comb generation)
takes place at the nonlinear phase shift per round trip φT h

NL ≡
γLP T h ≈ 0.06 � 1 [Fig. 2(a)]. Moreover, our analysis shows
that the threshold intracavity power can be further decreased:
φT h

NL ≡ γLP T h ∼ κ2, with the optimally tuned linear phase
detuning φ ∼ π − κ2, and the intracavity linear losses are
negligibly small compared to the nonlinear ones (valid
approximation for the system with the parameters given in
Fig. 2). Since the TPA-related loss is proportional to the
intracavity power and other multiphoton absorption processes
exhibit even stronger power dependence, nonlinear losses are
negligible, and linear losses become the limiting factor for the
threshold intracavity power.

However, even though the intracavity power threshold
can be low, the input power threshold P T h

0 is quite high
(γLP T h

0 ≈ 2.5) since the resonator is in the antiresonance
regime. Low intracavity power leads to the possibility of
using materials with high nonlinear losses, such as silicon
at the telecom wavelength, while high input power prohibits
the single-resonator design discussed above from the practical
implementation on a chip. In the next section we resolve this
issue.

B. Double-resonator system: A solution
to the high-input-power problem

As pointed out earlier, high threshold input power
(γLP T h

0 ≈ 2.5) of the single-resonator system complicates
or even prevents a practical implementation of the system.
This issue can be resolved by introducing another resonator
into the system [resonator R1 in Fig. 3(a)] operating at or

×

×

× ×

(a) (b)

FIG. 3. (a) Schematics of the double-resonator system: R1

is the linear microring resonator, and R2 is the nonlinear one.
(b) Bifurcation diagram of the first period-1 instability region for
the states of the power P2 inside R2 at different values of the input
power P0. Fixed points of period 1 and period 2 form the blue
line and the red closed loop with circles, respectively. Solid lines
represent stable fixed points, and dashed lines represent unstable
fixed points. The inset shows wave forms inside R2 at the scaled
input power γLP0 = 1.4 × 10−4 at zero GVD. The simulation data
were obtained for resonators with ring radii R = 10 μm, κ2

1 = 0.01,
κ2

2 = 0.1, φ1 = 0, φ2 = π − 1.7 × 10−3, α = 0.7 dB/cm, and TPA
in R2 as in silicon near λ = 1550 nm.

near resonance [23,27] and acting as a “preamplifier” between
the input waveguide and the nonlinear resonator R2. To
demonstrate the properties of the double-resonator system,
we first consider the extra resonator R1 to be made of a linear
optical material, with the case of both resonators made of the
same nonlinear medium described in the following section.

Like for the single-resonator system, we obtain the nonlin-
ear map

b
(n+1)
2 = τ2a

(n)
2 exp(iφ2) + τ1κ2a

(n)
1 exp(iφ1) + κ1κ2c, (8)

a
(n)
2 = b

(n)
2

exp
(−α

2 L
)

√
1 + 2rγ L̃

∣∣b(n)
2

∣∣2

× exp
[
i ln

(
1 + 2rγ L̃

∣∣b(n)
2

∣∣2)/
(2r)

]
, (9)

a
(n)
1 = d

(n)
2 exp

(
−α

2
L

)
, (10)

d
(n)
2 = τ ∗

2 b
(n)
2 − a

(n−1)
2

κ2
, (11)

where we assumed the equal round-trip time Tc = L/vg in
both resonators of equal circumference L for simplicity of the
analysis, φ1 and φ2 are the linear phase detunings of the pump
frequency from the closest resonant modes in the cavities R1

and R2, respectively, τ1 (κ1) and τ2 (κ2) are the amplitude
transmission (coupling) coefficients for the coupler between
the waveguide and R1 and between R1 and R2, respectively,
and γ and r are the nonlinearity and the TPA coefficients,
respectively, of the nonlinear resonator R2.

As before, the stability analysis reveals multiple regions
of period-1 stable and unstable states and confirms that the
system has a bifurcation from the period-1 to the period-2
stable state when the resonator R2 is tuned in the vicinity
of antiresonance [Fig. 3(b)], as in the case of the single
resonator, whereas the resonator R1 is tuned in the near
resonance and provides the required power upconversion
between the waveguide and the resonator R2. More than that,
the stability analysis also shows that the double-resonator
system is more unstable than the single-resonator system
considered earlier, which is beneficial for frequency comb
generation. Specifically, adding an extra resonator widens
the instability regions and lowers the threshold input power
as well as the intracavity powers: φT h

NL ≡ γLP T h
2 ∼ κ2

1 κ2
2

(against φT h
NL ≡ γLP T h ∼ κ2 in the single-resonator system),

with the optimally tuned linear phase detuning φ2 ∼ π − κ2
1 κ2

2 ,
resonator R1 in near-resonance regime, and negligible linear
loss approximation as before; γLP T h

1 ∼ κ−2
2 γLP T h

2 ∼ κ2
1 ,

and γLP T h
0 ∼ κ2

1 γLP T h
1 ∼ κ4

1 (against γLP T h
0 = const ≈2.5

in the single-resonator system). Therefore, in contrast to the
case of the single resonator, the coupling between resonator R1

and the waveguide in the suggested double-resonator system
can be designed so that the threshold input power is orders
of magnitude lower [γLP T h

0 ≈ 1 × 10−4 in Fig. 3(b)], which
solves the high-threshold-input-power problem.

However, even though such a double-resonator design
could provide frequency comb generation at low input and
intracavity powers theoretically, from a practical point of view
it would be difficult to fabricate and couple two resonators
made from different materials (R1 is from a highly linear
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×

×

×

×

× × × ×

(a) (b)

FIG. 4. (a) Schematics of the nonlinear double-resonator system:
R1 and R2 are nonlinear microring resonators. (b) Bifurcation diagram
of the first period-1 instability region for the states of the power P2

inside R2 at different values of the scaled input power P0. Fixed points
of period 1 and period 2 form the blue line and the red closed loop
with circles, respectively. Solid lines represent stable fixed points,
and dashed lines represent unstable fixed points. The inset shows
wave forms inside R2 at the scaled input power γLP0 = 6.5 × 10−4

at zero GVD. The simulation data were obtained for resonators with
ring radii R = 10 μm, κ2

1 = 0.01, κ2
2 = 0.1, φ1 = −1 × 10−2, φ2 =

π − 1.4 × 10−3, α = 0.7 dB/cm, and TPA as in silicon near λ =
1550 nm. For the silicon microring waveguide cross-section area of
450 nm × 220 nm, the value of γLP = 10−4 corresponds to ≈10 mW
of power.

material, such as silica; R2 is from a nonlinear material, such
as silicon) on the same substrate. In the next section we show
that the double-resonator system still supports frequency comb
generation at low powers even when both resonators are made
from the same nonlinear material.

C. Nonlinear double resonator system

Fabricating both resonators from the same nonlinear
material would be easier for manufacturing reasons than
making them from two different media and, as in the case
of silicon, would also be compatible with the standard
silicon-based fabrication process. Since the double-resonator
system with a linear resonator R1 is capable of frequency
comb generation at low input as well as low intracavity
powers, R1 could be replaced with a nonlinear resonator
equivalent to R2, as shown in Fig. 4(a).

For the nonlinear double-resonator system [Fig. 4(a)] we
obtain the nonlinear map

b
(n+1)
2 = τ2a

(n)
2 exp(iφ2) + τ1κ2a

(n)
1 exp(iφ1) + κ1κ2c, (12)

a
(n)
2 = b

(n)
2

exp
(−α

2 L
)

√
1 + 2rγ L̃

∣∣b(n)
2

∣∣2

× exp
[
i ln

(
1 + 2rγ L̃

∣∣b(n)
2

∣∣2)/
(2r)

]
, (13)

a
(n)
1 = d

(n)
2

exp
(−α

2 L
)

√
1 + 2rγ L̃

∣∣d (n)
2

∣∣2

× exp
[
i ln

(
1 + 2rγ L̃

∣∣d (n)
2

∣∣2)/
(2r)

]
, (14)

d
(n)
2 = τ ∗

2 b
(n)
2 − a

(n−1)
2

κ2
, (15)

where we assumed the two resonators to be identical, each with
the round-trip time Tc = L/vg , circumference L, nonlinearity
γ , and TPA r coefficients; φ1(2), τ1(2), and κ1(2) are defined the
same way as before.

As seen from Fig. 4(b), frequency comb generation is
possible when the resonator R2 is tuned in the vicinity of
antiresonance and the resonator R1 is tuned in the near reso-
nance, just as in the previously considered case of the linear
preamplifier R1. The intracavity power in R1 is sufficiently
low (γLP T h

1 ∼ 10−2), so that the multiphoton absorption
processes are negligible. Note that the value of the linear phase
detuning in R1 is picked in such a way (φ1 = −1 × 10−2) that
the resonator operates close to its resonance but does not enter
the bistability regime. As could have been expected, with the
introduction of nonlinearity in the resonator R1, the overall
system becomes more unstable, which can be observed as
broadening of the period-1 instability region, which makes the
frequency comb generation regime accessible in a wider range
of input powers (γLP0 ≈ 1 × 10−4, . . . ,7 × 10−4).

III. DISCUSSION

Now that we have introduced an alternative (antiresonant)
mechanism of frequency comb generation, one of the key
questions to answer is how it compares with the conventional
(resonant) method [12,16,24]. First of all, as was mentioned
before, the antiresonant mechanism has a specific spectral
signature: the first harmonic is generated at f

(2)
1 = �f

2 = 1
2Tc

away from the pump frequency for a period-2 state (f (n)
1 =

�f

n
= 1

nTc
for a period-n state), while in the resonant approach

all harmonics are formed at multiple or single FSR away from
the pump. Second, if the comb in the suggested mechanism
arises as a consequence of the period-doubling bifurcation,
comb generation in the conventional method is connected to
the existence of MI gain and cavity solitons. Third, the group-
velocity dispersion is the key factor for pattern formation in
the resonant approach, while the comb generation with the
antiresonant mechanism relies exclusively on the first-order
dispersion (group velocity) for pattern formation and nonzero
normal GVD only narrows the spectrum.

The existence of a power threshold for parametric oscilla-
tion in the resonant regime with anomalous dispersion can be
interpreted as a balance between the parametric gain of the
NLS equation and the losses in the cavity [12,54]. The thresh-
old power for the antiresonant frequency comb generation is
determined by the first period-doubling bifurcation. Figure 5 il-
lustrates the difference in threshold powers for frequency comb
generation between the resonant and antiresonant regimes. For
the given parameters, the antiresonant method demonstrates
the lowest threshold power at low linear losses, while the
resonant one demonstrates the lowest threshold power at high
losses.

IV. THE ORIGIN OF PERIOD-DOUBLING INSTABILITY

The comb generation in a nonlinear resonator is a special
example of pattern formation in nonlinear systems and as such
follows the general rules of nonlinear dynamics [55,56]. The
onset of the frequency comb formation is related to the loss
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FIG. 5. Input power threshold for frequency comb generation in
the resonant (blue curve with open diamonds) and antiresonant (red
curve with solid circles) regimes at different levels of linear losses
and without nonlinear losses. The simulation data were obtained
in the resonant regime for the resonator with κ2 = 0.01 and in the
antiresonant regime for the nonlinear double-resonator system with
κ2

1 = 0.01, κ2
2 = 0.1. Given the silicon nitride microring waveguide

cross-section area of 1.3 μm × 600 nm and the ring radius of
60 μm [27], the value of γLP = 10−5 corresponds to ≈20 mW
of power.

of stability of the “original” cw state. This loss of stability
proceeds via one of the standard bifurcation processes [56],
such as the period-doubling bifurcation [55]. To understand
the origin of the comb formation in our system, it is therefore
necessary to identify the point where nonlinearity will induce
this bifurcation.

A cw state of a cavity is stable if perturbations (deviations
from the cw amplitude value) diminish with every round-trip
in the cavity. If deviations change sign after every round-trip
while conserving their amplitude, we observe a possible point
of the onset of the period-doubling instability: after the first
round-trip intracavity intensity deviates from its cw value, and
the next round-trip it returns to its original value. In contrast to
the cw mode with a single value of the intracavity intensity, a
period-1 state, the new regime has a period of two round-trips
with two unique values of the intracavity intensity (period-
2 state). Thus, the corresponding coefficient for deviations
from the cw state has a special meaning in the stability of
the cavity and, when equal to −1 (change of sign without
change in deviation intensity), marks the onset of the period-
doubling instability. In the literature [56], such an amplification
coefficient is known as an eigenvalue of the monodromy matrix
for perturbations, and the onset point is known as the period-
doubling bifurcation point [55].

In the purely linear and lossless cavity, it is the antires-
onance and only the antiresonance point that in the limit of
decoupled cavity (τ → 1) has a real eigenvalue approaching
−1. Thus, with finite nonlinearity added to the system, a
period-doubling instability region forms in the system phase

space around this marginally stable point, and inside of this
region frequency comb generation can be observed.

Below, we analytically demonstrate this behavior (eigen-
value λ → −1 at antiresonance as τ → 1). We study the
system stability by analyzing the robustness of its cw state
to perturbations. Since the physical mechanism behind the
onset of period-doubling instability is the same in the single
cavity and the double-resonator system, for reasons of clarity
we will discuss here the simplest case of a single cavity without
losses. The map describing the dynamics of the lossless linear
coupled cavity is a special case of the map defined by Eqs. (6)
and (7) for γ = 0 and has a cw solution in the steady state
when b(n) = b = const:

b = κc + τb exp(iφ). (16)

To check the stability of this cw solution we perturb the steady
state slightly such that b(n) = b + u(n). From Eqs. (6) and (7)
for γ = 0 we obtain

b + u(n+1) = κc + τ (b + u(n)) exp(iφ). (17)

After subtracting Eq. (16) from Eq. (17), we arrive at the linear
map for perturbations,

u(n+1) = λu(n), (18)

with the eigenvalue

λ = τ exp (iφ). (19)

From Eq. (19) it follows that only at the antiresonance,
when φ = π , is the eigenvalue real and negative, and in the
limit of a decoupled cavity (τ → 1) it assumes the value of
−1. With nonlinearity continuously added to the system, an
instability region grows around this point of marginal stability,
a region of period-doubling instability, so that period doubling
and the related frequency comb generation can be observed
at finite coupling, detuning from the cavity antiresonance, and
input power.

V. CONCLUSION

In conclusion, we have presented an alternative, antireso-
nant approach to nonlinear optical processes at low powers and
demonstrated its application to low-power optical frequency
comb generation in a silicon chip. Theoretical analysis and
simulation results showed that the alternative mechanism is
capable of operating at low intracavity and input powers and
is not suppressed in the presence of two-photon absorption
losses in materials such as silicon at the telecom wavelength.
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