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Total reflection of optical beams by weakly oscillating dielectric scatterers
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It is well known that in quantum mechanics a weak scatterer can act as a perfect reflector provided it oscillates
at a specific frequency, which is close to that of the incident particles. This is a Fano resonance, in which
case the propagating wave mode destructively interferes with the bound state. Due to the high frequencies of
the optical domain, it is not possible to design an optical device, which is based on this effect. However, if
the beam propagates in a narrow waveguide with conducting boundaries, then even a weak dielectric scatterer,
which oscillates at the frequency difference between the optical frequency and the threshold frequency of the
waveguide, can block the optical beam. This frequency difference can be arbitrarily small. A model for such a
system is presented and solved exactly numerically without approximations. For a weak scatterer an approximate
analytical expression is suggested for the point of perfect reflection. Finally, a physical realization is suggested.
This effect can be used for controlling optical beams by submicron devices.
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I. INTRODUCTION

Tunneling is a unique quantum phenomenon. Quantum
particles can penetrate barriers, which are classically impen-
etrable (see, for example Refs. [1,2]). On the other hand,
finite potential barriers cannot be perfect reflectors. Any
finite width barrier has a nonzero transmission coefficient as
well as a nonzero reflection coefficient. Even a δ-function
potential, which has an infinite potential, cannot completely
block quantum particles. The δ function can simulate a narrow
potential since the integral over this potential is finite. Had it
been infinite, it would have blocked the quantum particle, but
any physical scatterer has a finite integral and therefore cannot
have zero transmission (see, for example, [1–3]). However,
in quantum mechanics there is a remarkable phenomenon:
When a δ-function potential oscillates, and the incoming
particle has a certain frequency, which is a little below the
oscillating frequency, then the particle is totally reflected;
i.e., the transmission coefficient vanishes [4–10]. It should
be stressed that this is not an approximation. It is not that most
of the quantum particles are reflected, but all of them are. A
thorough and accurate analysis of the zeros and resonances in
this quantum phenomenon can be found in Refs. [6,8].

The problem of tunneling in the presence of an oscillating
potential received a lot of attention in the literature since it shed
light on the enigmatic process of tunneling [11–20]. Moreover,
this problem was also found useful for microelectronic devices
driven by oscillating electric field [21–27] and even for
biochemistry [27–33].

Harnessing this effect to the optical domain could be
very useful in generating small-factor modulator as well as
optical transistors. However, this peculiar quantum effect
is absent in the optical domain. Besides the fact that the
dispersion relation is different (linear instead of parabolic), it
is technologically impossible to oscillate the refraction index
at optical frequencies [34–36].

However, there is another perfect-reflection effect, which
occurs in the quantum domain. It has been shown that when a
quantum particle propagates in a narrow orifice, i.e., nanowire,
and its energy is close to the orifice threshold energy, the
particle can be reflected with probability 1 by hitting a point

potential defect [37–39]. This effect occurs only at specific
energy; however, it occurs for any point potential, no matter
how weak. This effect was used to prove that, in the presence of
any point defect, a universal conductance reduction of exactly
e2/h occurs [39].

It is the object of this paper to apply the waveguide geometry
to the optical domain to change the relevant dispersion relation
and to ease dramatically the requirement put on the refractive
index’s oscillations.

It should be stressed that the similarity between the two
cases, namely, the stationary two-dimensional (2D) waveguide
case [37–39] and the dynamic one-dimensional (1D) case
[4–10] is not accidental. In both cases, the continuum interferes
with a bound state, and Fano resonances appear [40] (for Fano
resonances in a narrow orifice, see Ref. [41]; as a result of a
dynamic breather, see Ref. [42]; and for an extensive review,
see Ref. [43]). Therefore, the zero transmission effect is a
well-known phenomenon. The unique aspect of the present
work is that it occurs for optical beams, while the blocking
scatterer oscillates at much lower frequencies.

As a consequence, this effect can be used in relatively
simple optical devices. In particular, it may be incorporated
in small-factor modulators, switches, and even frequency
controlled optical transistors.

II. MOTIVATION

When a quantum particle propagates with frequency ω and
hits a scatterer, which oscillates at frequency � ∼= ω, it may
lose frequency quanta �, and if the oscillating frequency is
larger than the incoming particle’s frequency, namely � > ω,
the particle cannot propagate and is bound to be reflected.
Clearly, in the optical domain the requirement � > ω is
unattainable. Usually � � ω, and therefore, such a scatterer
has a negligible effect on the scattered particle.

However, when a photon propagates in a narrow waveguide
with conducting boundaries, and its polarization is orthogonal
to the waveguide’s plane, then the propagating constant is

k =
√(n0ω

c

)2
−

(π

a

)2
, (1)
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where a is the waveguide’s width, n0 is the refractive index,
ω is the frequency, and c is the velocity of light. Then, in case
n0ω

c
∼= π

a
, the difference between propagating and evanescent

waves can be arbitrarily small. Even if the initial frequency is
above the cutoff frequency, i.e.,

n0ω

c
>

π

a
, (2)

then after losing frequency quantum the frequency can be
lower than the cutoff frequency,

n0(ω − �)

c
<

π

a
. (3)

As a consequence the wave becomes evanescent and the
transmission coefficient may vanish.

Clearly, (2) and (3) are not sufficient conditions for zero
transmission coefficient. The requirement is much more subtle;
however, they are a definitely necessary condition, and the
waveguide makes them feasible.

III. THEORY AND MODEL

The system is illustrated in Fig. 1. A z-polarized electro-
magnetic (EM) wave propagates in the x direction, while being
confined in the y direction to a waveguide, whose width is a.

The EM field wave equation reads(
∂2

∂x2
+ ∂2

∂y2

)
E(x,y,t) − n2(x,y,t)

c2

∂2

∂t2
E(x,y,t) = 0, (4)

x

y

z

a

FIG. 1. System schematic: Dielectric waveguide with a narrow
oscillating defect at x = 0.

where

E(x,y,t) =
{
ẑE(x,y,t) 0 < y < a

0 else

is the polarized EM field and

n2(x,t) = n2
0 + w

[
�n2

1 + �n2 cos (�t)
]
δ(x) (5)

is the square of the refraction index. Therefore, the refraction
index is constant along the waveguide except for the location
of the oscillating scatterer at x = 0.

If the incident wave is confined to the first transverse mode
then the generic solution can be written

E(x,y,t)

E0
=

⎧⎨
⎩

sin
(

πy

a

)
exp

(
ik1,0x − iω0t

) + ∑
qm sin

(
qπy
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)
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)

x < 0∑
qm sin
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)
tqm exp

(
ikqmx − iωmt
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x > 0

, (6)

where

ωm ≡ ω + m�,

kqm ≡
√(n0ωm

c

)2
−

(qπ

a

)2
, (7)

and the summation symbol indicates double summation:
∑

qm ≡ ∑∞
q=1

∑∞
m=−∞ .

However, since the scatterer has no transversal structure, it cannot scatter between transverse modes, and therefore (6) can be
rewritten in a simpler form,

E(x,y,t)

E0
=

⎧⎨
⎩

sin
(

πy

a

){
exp (ik0x − iω0t) + ∑

m rm exp (−ikmx − iωmt)
}

x < 0

sin
(

πy

a

) ∑
m tm exp (ikmx − iωmt) x > 0

, (8)

when

km ≡
√(n0ωm

c

)2
−

(π

a

)2
; (9)

i.e., km = k1m.
After matching the solution on two sides of the oscillating

scatterer, the following difference equation emerges:

δ(m) + rm = tm (10)

and

tm

(
2ikm + w�n2

1

c2
ω2

m

)
+ w�n2

2c2

[
tm+1ω

2
m+1 + tm−1ω

2
m−1

]
= 2ik0δ(m)m, (11)

which can be rewritten in a simpler form,

τm[χ (m) − iγ ] − iδ[τm+1 + τm−1]/2 = δ(m), (12)

063828-2



TOTAL REFLECTION OF OPTICAL BEAMS BY WEAKLY . . . PHYSICAL REVIEW A 94, 063828 (2016)

where

τm ≡ tm
ω2

m

ω2
0

, γ ≡ w�n2
1ω

2
0

2c2k0
, δ ≡ w�n2ω2

0

2c2k0
, and

χ (m) ≡ ω2
0

ω2
m

km

k0
. (13)

The proximity to the cutoff frequency can be quantified by
the following parameter:

Q ≡ πc

an0ω0
. (14)

When Q = 1 the particle’s initial frequency ω0 = ω is equal
to the threshold energy,

ωc ≡ πc

an0
. (15)

Then, with this notation,

χ (m) =
√

(1 + m�/ω0)2 − Q2

(1 + m�/ω0)2
√

1 − Q2
. (16)

When � � ω, then χ (m) ∼= 1, and therefore (12) can be
approximated by

τm(1 − iγ ) − iδ[τm+1 + τm−1]/2 = δ(m), (17)

whose solution is

τm
∼= i

δ
√

A2 − 1
(−A +

√
A2 − 1)|m|, (18)

where

A = (i + γ )

δ
, (19)

when δ � 1 (18) becomes

τm
∼= i

δA

(
− 1

2A

)|m|
= 1

1 − iγ

[
− δ

2(i + γ )

]|m|
. (20)

These solutions and their resemblance to the exact solution
are presented in Fig. 2. A spatiotemporal presentation of a
sample solution’s intensity |E(x,y = a/2,t)/E0|2 is presented
in Fig. 3. In this regime, the oscillating frequency is very low,
and therefore, one can adopt the approximation

km = k0

√
1 + 2mω�

(n0

c

)2
/

k2
0

∼= k0 + mω�
(n0

c

)2
/

k0,

(21)

and, in fact the entire dynamics is governed by only three
modes, m = –1,0,1. Therefore, the solution can be approxi-
mated by

E(x,y,t)/E0

∼= sin
(πy

a

){
exp(ik0x) − exp (ik0|x|)

1 + i/γ
− i

δ exp (ik0|x|)
(1 − iγ )2

× cos

[
ω�

k0

(n0

c

)2
x + �t

]}
exp(−iω0t). (22)

A sample dynamics of such a (numerically exact) solution
is presented in Fig. 3. The � oscillations are clearly shown
in time. In the spatial domain there is a clear difference
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FIG. 2. The solution of the difference equation (12) for the
parameters Q = 0.8, �/ω = 0.01, δ = 0.01, γ = 0.04. The exact
solution is presented by the solid curve and the approximation (18)
is presented by the dashed curve.

between the two half spaces (x < 0 and x > 0). In front
of the scatterer (x < 0) the dominant wavelength is 2π/k0,
while beyond the scatterer (x > 0) the dominant wavelength
is 2πk0/[ω�(n0/c)2], which is considerably larger.

Since there is only a single weak scatterer, then for most
incoming energies the scattering is governed by these three
modes; however, like in the quantum case, this behavior breaks
down when the oscillating frequency approaches the spectral
gap between the photons’ frequency and the waveguide’s
cutoff frequency.

In Fig. 4 the transmission coefficient of the main mode is
plotted as a function of the normalized oscillating frequency
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FIG. 3. A spatiotemporal presentation of the solution’s intensity
in the presence of a weak oscillating defect. The defect divides space
into two regimes, which are clearly seen in this figure. In this case
the parameters are Q = 0.93, δ = 0.1, γ = 0.04, and �/ω = 0.05.
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FIG. 4. The transmission coefficient of the main mode as a
function of the normalized oscillating frequency. The upper panel
represents the exact solution, the lower-left figure is a magnification
of the transition region, and the right figure represents the approximate
solution (24), with the approximate evaluation of the minimum
frequency (dashed horizontal line) and maximum frequency (dotted
horizontal line). In this case the parameters are Q = 0.975 68,
δ = 0.2, and γ = 0.4.

�/ω. As can be seen (in the upper panel) when �/ω is just
above the 1 − Q = 0.0243 there is a dip (at �/ω ∼= 0.028), in
which τ0 vanishes.

At this unique frequency, just as in the quantum counterpart,
all higher modes vanish as well; i.e., τm = 0 for m � 0. Again,
it should be emphasized that this is not an approximation, but
that the transmission coefficient is exactly zero.

Similarly, another peculiar point occurs a little below the
vanishing point, where the transmission coefficient is equal to
1. In this case the scatterer is totally transparent (for similar
behavior in the quantum case, see Refs. [6,8]).

To find the vanishing point from (12) we can neglect τ−3

and substitute τm = 0 for m � 0, in which case the problem

reduces to zeroing the determinant,∣∣∣∣χ (−1) − iγ −iδ/2
−iδ/2 χ (−2) − iγ

∣∣∣∣ = 0. (23)

When Q ∼= 1 and �
ω0

1
(1−Q)

∼= 1, then χ (m) can be approxi-
mated as

χ (m) ∼=
√

1 + m�/ω0(1 − Q2). (24)

This case is illustrated in the lower-right panel of Fig. 4.
Under this approximation

χ (−2) ∼= i and χ (−1) ∼= i

√
�

ω0

1

(1 − Q)
− 1, (25)

and therefore the oscillating frequency, for which the trans-
mission coefficient vanishes, can be approximated by

�min

ω0

∼= (1 − Q)

{
1 +

[
δ2

4(1 − γ )
+ γ

]2
}

. (26)

This evaluation of the minimum’s location is presented by the
horizontal dashed line in the right-lower panel of Fig. 4.

Similarly, the frequency, for which the transmission coeffi-
cient is 1, can be evaluated by substituting τ0 = 1, τm = 0 for
m � 1, and neglecting τ−3. The result is

�max

ω0

∼= (1 − Q)

{
1 +

[
γ − δ2

4γ

(1 − 2γ )

(1 − γ )

]2
}

. (27)

This evaluation of the maximum’s location is presented by the
horizontal dotted line in the right-lower panel in Fig. 4.

Thus, the spectral width of the transmission’s transition
from 1 to 0 can be evaluated by

�max − �min

ω0

∼= (1 − Q)
δ2

2
, (28)

which surprisingly is independent of γ . This estimation is
much more accurate than both (26) and (27).

In Fig. 5 the spatiotemporal dynamic of the intensity at the
zero transmission point is illustrated.
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FIG. 5. The spatiotemporal dynamics of the zero transmission point (left) and the spatial distribution of the intensity for ωt = 15 (right).
The simulation parameters are Q = 0.975 68, δ = 0.4, γ = 0.2, and �/ω = 0.0256.
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At this point all energy (or photons) is reflected; however,
like a resonant scenario there is an accumulation of photons
at the vicinity of the defect. The weaker the defect (δ), the
larger is the accumulation. This is illustrated by the value
of the intensity on the defect. This value oscillates with the
oscillation frequency,

|E(x = 0,y,t)/E0|2 ∼= sin2
(πy

a

) 4

δ2

[
1 + δ

(1 − γ )
cos (�t)

]
.

(29)

IV. PHYSICAL ESTIMATION AND REALIZATION

A possible realization is a LiNbO3 waveguide (with
refraction indices no = 2.238 and ne = 2.159) of width a =
0.335 μm and metallic boundaries. When a standard tunable
laser for the optical C band [36] is used as the optical
source, it can transmit the wavelength λ = 1.5 μm with
the bandwidth �λ = 0.1 nm. Therefore, 1 − Q ∼= 6.7 × 10−5.
The oscillating defect can then be realized by applying an
electric field on the defect’s location (by a narrow capacitor
plate, whose width is w = 0.1 μm). Let the applied alternating
voltage be V = 10 V; then (see Ref. [35])

δ ∼= w

a

n3
e

2
r33V k

1

2

√
λ

2�λ
∼= 0.05, (30)

where for this case r33 = 30 pm V−1 is the Pockels coefficient.
Two scenarios are possible: If the optical axis remains parallel
to the z axis even outside the defect zone, then γ = 0;
otherwise, if outside the defect zone the optical axis is parallel
to the y axis, then γ ∼= 0.63.

The former scenario is presented in Fig. 6. In this case the
evaluation of the minimum is very accurate:

fmin = ω0

2π
(1 − Q)

(
1 + δ4

16

)
= 13.4 GHz. (31)
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FIG. 6. The transmission of the main mode as a function of the
oscillating frequency f = �/2π for the first scenario. The lower
panel is a magnification of the transition zone (fmin = 13.4 GHz).
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FIG. 7. Same as Fig. 6 but for the second scenario.

The inaccuracy is only about a few kilohertz. This frequency is
easily achieved with optical communications equipment. Since
γ = 0 the transmission coefficient never gets to the value 1.

In the latter case since γ is not a small parameter the
approximation is

fmin
∼= ω0

2π
(1 − Q)

{
1 +

[
δ2

4(1 − γ )
+ γ

]2
}

∼= 19.4 GHz,

(32)

which is a less accurate evaluation of the real value fmin
∼=

18.73 GHz (see Fig. 7).
However, the transition

fmax − fmin
∼= π (1 − Q)

δ2

ω0
= 16.75 MHz (33)

is an excellent approximation.

V. CONCLUSIONS AND SUMMARY

The purpose of this paper was to harness waveguide
topology to mimic the quantum effect of perfect reflection in
the optical domain. In the quantum domain an oscillating point
potential can totally reflect a scattering particle. However, this
effect requires a square dispersion relation and also requires
that the oscillating frequency would be close to the incoming
particle’s frequency. These requirements are essential, since
they ensure that by losing frequency quanta the incoming
wave turns from a propagating mode to an evanescent one.
Both of these requirements are unattainable in the ordinary
optical world, where the dispersion relation is linear and the
optical frequencies are considerably larger than any oscillating
reflector (excluding nonlinear effects, of course).

We demonstrate that by using waveguide geometry these
requirements become feasible in the optical world. We solve
such a model exactly numerically and demonstrate that it
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can be easily detected in common optical communications
equipment.

This effect can be utilized to control optical beams by
submicron devices, and therefore can be used for small-form-
factor modulators and even optical transistors.
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