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We present a full theoretical analysis of quasi-phase-matching (QPM) in three-dimensional (3D) periodic
structures and point up optimum nonlinear structures, which promote the best nonlinear conversion efficiencies
and are close to real structures. The QPM properties of 14 Bravais lattices are investigated as a function of motifs
(orthorhombic and spherical) and of modulation types (“+/–” and “+/0”). This full 3D QPM theory allows us to
produce all results of one- and two-dimensional QPM structures by choosing appropriate lattice periodicity and
motif. The optimization of nonlinear conversion efficiencies in 3D QPM is obtained by analyzing four particular
structures (simple cubic, body-centered cubic, face-centered cubic, and diamond cubic lattices) with different
filling factors and motifs. In particular, 3D structures, which are very close to those realized in practice, are
proposed and simulated, creating a guide for fabrication of real optimum QPM structures.
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I. INTRODUCTION

Nonlinear optics revealed a possibility to transform the
fundamental property of light beams (its frequency), but it
faced a problem of chromatic dispersion, which leads to
phase mismatching and destructive interference with new light
generated in different regions of the nonlinear material. Two
main ways were proposed to compensate for this inherent
lack of phase matching. Relying on birefringence of nonlinear
medium by choosing correct “cut” or crystal orientation,
birefringent crystals have been used for minimizing the
phase mismatching of frequency conversion since the early
1960s [1,2]. However, this method showed an insuperable
drawback of the given material properties, the dispersion and
the birefringence, and hence not all phase-matching conditions
can be satisfied due to the lack of proper crystal orientation.
Besides, most birefringent crystals have a limitation of efficient
length due to the “walk-off” effect [3–5].

Another solution, called quasi-phase-matching (QPM),
was proposed independently in the 1960s [6,7] and it has
been intensively developed since the mid-1990s. QPM is
based on spatial modulation of nonlinear susceptibility to
compensate for the phase mismatching between interacting
waves. For efficient harmonic generation the modulation
periodicity should be equal to twice the coherent length,
which is in the range of micrometers. This method overcomes
drawbacks of birefringent crystals: It can be applied to any
nonlinear material and compensates for phase mismatching of
any nonlinear process. Furthermore, it reveals simultaneous
and multicascade complicated processes, as well as a new
nonlinear optics effect, that cannot be realized with standard
birefringent materials. The original ideal was proposed to
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modulate the nonlinear susceptibility in one dimension (1D)
and the full theory is well presented in Ref. [8]. Many
experimental works have been reported in agreement with the
theory, demonstrating great advantages of the QPM technique
comparing to the birefringence-based method. However, by
using a periodic 1D QPM structure, applications are limited to
a single wavelength and to a single nonlinear optics effect, such
as second-harmonic generation (SHG). In 1998, Berger [9]
released a study of QPM into 2D space. Two-dimensional
periodical and quasiperiodical nonlinear structures provide
plentiful reciprocal vectors used for noncollinear SHG [10],
for simultaneous wavelength interchange [11], for third- and
fourth-harmonic generations [12,13], for all-optical deflec-
tions and splitting [14], for optical parameter oscillation [15],
and for various beam shaping [16–18]. Theoretically speaking,
3D QPM structures should be thoroughly studied in fundamen-
tal physics as well as potential applications. Compared to the
1D and 2D cases, 3D QPM structures provide more reciprocal
lattice vectors to compensate the phase mismatches in more
complicated nonlinear optical processes. However, only a few
articles concerning 3D QPM have been reported [19,20],
mainly due to the lack of fabrication technologies. Full
understanding of 3D QPM and optimal 3D structures is
therefore still missing.

For realization of QPM structures, various techniques have
been suggested and applied for different kinds of nonlinear ma-
terials. An electric poling method has been used successfully
to pole various ferroelectric crystals for 1D [21] and 2D [10]
structures. Unfortunately, this poling technique seems to be
almost impossible when used for obtaining 3D ferroelectric
crystals, or it requires a fabrication process containing multiple
complicated steps. Recently, it was found that naturally grown
crystal can support broadband SHG [22], but randomness
of 3D domains reduces frequency of conversion and this
technique does not allow us to control the process to create
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exact structures. Another fabrication technique is based on
orientation pattering of semiconductors such as GaAs [23],
and provides large nonlinearity and extensive transparency,
but it is also not applicable in creating 3D QPM structures.
The most promising materials for modulating the nonlinear
coefficient in 3D are polymers. Numerous methods can be
applied to realize 1D and 2D structures in polymers such
as periodic poling [24], photothermal poling [25], all-optical
poling [26], photodepoling with photolithographic masks [27],
UV photo bleaching [28], two-beam interference [29], and
direct laser writing [30,31]. As for 3D QPM structures, a
few attempts of fabrication based on direct laser writing
method with Disperse Red 1 (DR1) sol-gel polymer [32]
and DR1-Poly-methyl-methacrylate copolymer [33] have been
reported.

Theoretically speaking, second-order nonlinear suscepti-
bility, χ (2), is periodically modulated by reversing the sign of
domains with a periodicity determined by the coherence length
of the nonlinear crystal. The best QPM structure is obtained
by reversing the domain by 180◦ with a ratio of 50-50 between
two domains (called “+” and “–”) and with a periodicity of 2
times the coherence length [8]. The “+/–” QPM 1D and 2D
structures have been fabricated in ferroelectrics [10,21,22],
semiconductors [23], and polymers [24–26,28]. Another pos-
sibility to demonstrate the QPM effect is to modulate the
nonlinear material [χ (2) �= 0] with a linear material, which
possesses a χ (2) null. This QPM structure is named “+/0,”
which is less efficient than the “+/–” QPM structure but it is
very easy to implement in experiment, in particular in the case
of polymer materials [27,29–31]. This type of QPM structure
(“+/0”) may be unique to realize 3D QPM structures.

Indeed, the “+/0” QPM structures could be realized
by using nonlinear polymer materials and the interference
technique. The interference technique allows us to realize very
large and uniform 1D, 2D, and 3D polymeric structures (χ (2) =
0), with filling factor and periodicity kept under control [34].
By filling the air holes of the fabricated structures with a
nonlinear polymer material, we can obtain a desired “+/0”
QPM structure. This technique is probably unique to realize
3D QPM structures. It is therefore necessary to investigate in
detail the theory of 3D QPM method and to find out optimum
3D structures.

It seems to have a connection with so-called photonic
crystal or nonlinear photonic crystal. However, it should borne
in mind that the periodicity of QPM structure is twice the
coherence length (micrometer range) while the periodicity of
photonic crystal is less than half of the photonic bandgap wave-
length (submicrometer range). Moreover, the QPM structures
also requires a large filling factor of the nonlinear material
in order to achieve a high nonlinear conversion efficiency.
This requires a full understanding of 3D QPM structures for
optimizing experimental implementation.

This paper is organized as follows: In the second section,
we begin with a general theory of 3D QPM structures and
establish a relation of nonlinear conversion efficiency with
3D lattices type and its motif. We will show that this general
theory can be applied in order to obtain the results reported
in Ref. [8] for 1D QPM structures and in Ref. [35] for
2D ones. The third section is devoted to the influence of
structure motif in the case of 3D QPM. We investigate two

kinds of motifs in particular, orthorhombic and spherical, and
determine nonlinear conversion efficiency for different 3D
QPM orders and also compare new results with those obtained
in 1D and 2D QPM structures reported in previous papers.
In Sec. IV we present an optimization of QPM 3D structures,
which also includes connection with practical structures. In the
last section, we summarize the theoretical results and announce
further work concerning experimental demonstration of 3D
QPM structures.

II. GENERAL THEORY OF 3D QPM STRUCTURES

A. Wave equations in 3D QPM structures

This paper focuses on collinear SHG, but results can
be easily applicable to other three-wave mixing processes.
Concerning electric field and coupled-wave equations for 3D
QPM structures, we adapted the generalization from Ref. [36].
The electric field in the QPM structure for the second harmonic
(SH) with a new frequency 2ω can be written as

Ẽ2ω(r,t) = 1
2E2ω(r) exp[i(2ωt − k2ω · r)] + c.c., (1)

where r ≡ (x,y,z) is the 3D spatial coordinates. Using slowly
varying amplitude approximation, ∇2E2ω(r) � k2ω∇E2ω(r),
and assuming that the amplitude of the fundamental wave is
constant throughout the entire interaction length, the evolution
of the SH field amplitude can be written as:

k2ω∇E2ω(r) = −2i
ω2

c2
E2

ωd(r) exp[i(k2ω − 2kω)r], (2)

where d(r) = χ
(2)
ijk · g(r)/2 is a nonlinearity function and g(r)

is a normalized and dimensionless function, representing space
dependence of the nonlinear coefficient function. In QPM
structures, it can be presented as a Fourier series,

g(r) =
∑

Gmnq · exp(iKmnq · r), (3)

where the sum is extended over the whole 3D reciprocal
lattice (RL), Gmnq are Fourier coefficients, and Kmnq are
RL vectors (RLVs), which depend on orders m, n, and
q. k2ω − 2kω = �k is a mismatching vector between wave
vectors of SH and fundamental waves. It can be compensated
by one of the grating vectors Kmnq . To find out the electric
field, and hence intensity, we can directly integrate Eq. (2)
using numerical methods. It can be applied to any periodic
or aperiodic structure. In this study it is convenient to use the
Fourier transform approach [8,35] to understand the influence
of motif and lattice on SHG efficiency and to optimize final
configuration.

As for the 3D QPM structure it can be modeled as a
convolution of a periodic lattice and a nonlinear motif with
function s(r) (Fig. 1). A motif represents, for example, a
χ (2) with a positive sign, “+1”, while other surrounding
material possesses a χ (2) with a negative sign “−1” or a
null value (“0”). If we assume that (m,n,q)-order satisfies
the phase matching condition, i.e., �k − Kmnq = 0, while all
other orders contribute negligible oscillating terms, after an
interaction length, L, SH intensity can be calculated as

I2ω ≈ 2ω2χ
(2)
ijk|Gmnq |2

n2ωn2
ωc3ε0

I 2
ωL2, (4)
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+ χ(2)

- χ(2)

FIG. 1. Convolution of a simple cubic lattice with a triangular
motif to model 3D periodic QPM structure.

with

Gmnq = 1

V

∫
s(r) exp(iKmnq · r)d3r

= 1

V
S(Kmnq/2π ), (5)

where the integration is taken over repeating unit cell, V is a
unit cell volume, and S(f) is Fourier transform of the motif.
It is clear that Fourier coefficient depends on type of lattice,
Kmnq , and type of motif, s(r).

B. 3D QPM structures: Real and reciprocal lattices

Mathematically, periodical QPM structure can be treated
by the same way as a regular periodical crystal, which is well
described in Ref. [37]. In 3D space, there are 14 types of
Bravais lattice, grouped into seven lattice systems: triclinic,
monoclinic, orthorhombic, tetragonal, cubic, trigonal, and
hexagonal.

Each 3D lattice is defined by three fundamental translation
vectors, a1, a2, and a3. Hence all real lattice points r are
determined by a set of arbitrary integers u1, u2, and u3,

r = u1a1 + u2a2 + u3a3. (6)

The primitive vectors a1, a2, and a3 are described by lengths
a, b, and c, respectively, and by three angles α, β, and γ (see
Fig. 2) and can be represented as:

a1 = a(1,0,0), (7a)

a2 = b(cos γ, sin γ,0), (7b)

a3 = c(cos β, cos α sin γ, sin α sin β). (7c)

Here a1 belongs to the x axis, a2 lies in the xy plane, and
a3 is determined by all three axes. Volume of the unit cell can
be calculated as V = abc sin α sin β sin γ .

1
2

3

FIG. 2. Illustration of a triclinic unit cell, with different parame-
ters defined in the text.

Similarly to a regular periodical crystal, RLVs can be found
in the relation ai · bj = 2πδij . Hence, in the general case,
RLVs are determined by

b1 = 2π

a

(
1,

−1

tan γ
,

(
cos γ

tan α sin β
− 1

tan β sin α

))
, (8a)

b2 = 2π

b

(
0,

1

sin γ
,

−1

tan α sin β

)
, (8b)

b3 = 2π

c

(
0,0,

1

sin α sin β

)
. (8c)

The 3D reciprocal lattice points are given by

Kmnq = mb1 + nb2 + qb3. (9)

Table I presents parameters, primitive vectors, unit cell
volume, and RLVs of four particular 3D lattices.

III. INFLUENCE OF STRUCTURE MOTIF

In this section we discuss the influence of structures motifs
on the nonlinear coefficients. By varying parameters of the
motif for each QPM, an order-relevant Fourier coefficient can
be found. This ensures investigating efficiency for a given
structure as a function of dimensions and shape of the motif.
We can determine the highest efficiency or completely null of
conversion efficiency, which is useful for nullifying unwanted
processes.

A. Orthorhombic motif

The orthorhombic motif is defined by:

s(r) = rect

(
x

X

)
rect

(
y

Y

)
rect

(
z

Z

)
, (10a)

where

rect(u) =
{+1 |u| � 1

2
p elsewhere .

(10b)

Here p is equal −1 for “+/−” QPM structures and p

is equal 0 for “+/0” QPM structures. The corresponding
Fourier transform is calculated by:

S(f) = P (XYZ)[sinc(fxX)sinc(fyY )sinc(fzZ)] (11)

where the “sinc” function is defined as sinc(x) = sin (x)/x;
X, Y , and Z are the sizes of an orthorhombic motif in three
dimensions; P = 2 for “+/–” QPM structures; and P = 1 for
“+/0” QPM structures. Table II(a) displays the Fourier coeffi-
cients of four types of lattices made by an orthorhombic motif.
These coefficients are calculated for “+/–” structures, which
are twice as large as nonlinear coefficients for “+/0” QPM
structures. Obviously, it is hard to illustrate all possible coeffi-
cients for each QPM order due to a number of variables; how-
ever, we can distinguish most efficient parameters using knowl-
edge of the “sinc” function. We should remember that motifs
should not overlap with each other, otherwise the Fourier
transform approach will not provide the correct result. Hence,
in the case of orthorhombic and square lattices, the size of the
motif should not exceed the size of a unit cell, i.e., X/a � 1.

Using this general theory, we can calculate the nonlinear
coefficients of any 1D, 2D, and 3D structures and find out
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TABLE I. Parameters, primitive vectors, unit cell volume, and RLVs of four particular 3D lattices

Triclinic Orthorhombic Cubic Hexagonal

Parameters a �= b �= c a �= b �= c a = b = c a = b �= c

α �= β �= γ α = β = γ = 90◦ α = β = γ = 90◦ α = β = 90◦,γ = 120◦

Primitive a1 = a(1,0,0) a1 = a(1,0,0) a1 = a(1,0,0) a1 = a(1,0,0)
vectors a2 = b(cos γ, sin γ,0) a2 = b(0,1,0) a2 = a(0,1,0) a2 = a(− 1

2 ,
√

3
2 ,0)

a3 = c(cos β, cos α sin γ, sin α sin β) a3 = c(0,0,1) a3 = a(0,0,1) a3 = c(0,0,1)
Unit cell volume V = abc sin α sin β sin γ V = abc V = a3 V = a2c

√
3

2
RLVs b1 = 2π

a
(1, −1

tan γ
,( cos γ

tan α sin β
− 1

tan β sin α
)) b1 = 2π

a
(1,0,0) b1 = 2π

a
(1,0,0) b1 = 2π

a
(1, 1√

3
,0)

b2 = 2π

b
(0, 1

sin γ
, −1

tan α sin β
) b2 = 2π

b
(0,1,0) b2 = 2π

a
(0,1,0) b2 = 2π

a
(0, 2√

3
,0)

b3 = 2π

c
(0,0, 1

sin α sin β
) b3 = 2π

c
(0,0,1) b3 = 2π

a
(0,0,1) b3 = 2π

c
(0,0,1)

the optimum QPM structures. Indeed, choosing the first-order
(m,n,q) = (1,0,0), we obtained a 1D QPM structure. The
highest nonlinear coefficient, |G100|2 = 0.405, was obtained
with the following parameters: X/a = 0.5, Y/b = 1, and
Z/c = 1, which is very consistent with the results published in
Ref. [36]. We called it a 1D-like structure, and it is presented
in Fig. 3(a). Similarly, by using the second QPM order (1,1,0)
relying on two primitive vectors, we obtained a 2D QPM
structure, as shown in Fig. 3(b), with the highest nonlinear
coefficient |G110|2 = 0.041. The new QPM order (1,1,1),
which appears in 3D structures, relies on all three primitive
vectors. It has a value |G111|2 = 0.004 with parameters X/a =
0.5, Y/b = 0.5, and Z/c = 0.5 [Fig. 3(c)].

Note that for 3D QPM the nonlinear coefficient depends on
many parameters, for example, the propagation direction of
the fundamental light beam through the nonlinear crystal. For
the following analysis, we can fix the 3D structure as shown
in Fig. 3(c), and calculate the nonlinear efficiency for different
orders. For the first order (m,n,q) = (1,0,0), we obtained
|G100|2 = 0.025, which is 16 times smaller than that of the
1D-like structure shown in Fig. 3(a). This is explained by the
fact that in a 3D QPM structure there is 4 times less working
material comparing to a 1D-like structure, resulting in a 4 × 4
times weaker nonlinear coefficient. A similar thing occurs with
order (m,n,q) = (1,1,0): We obtained |G110|2 = 0.010 and it

is 4 times smaller than that of the 2D-like structure [shown in
Fig. 3(b)], due to 2 times less working material.

B. Spherical and cylindrical motif

Spherical motif (χ (2) = +1) with radius R immersed in a
background of [χ (2) = −1 or 0] is determined as:

s(r) ≡
{+1 |r| � R

p elsewhere. (12)

Here p is equal −1 for “+/−” QPM structures and p is
equal 0 for “+/0” QPM structures. Corresponding Fourier
transform is calculated by:

S(f) = 4πP

|f3| [sin(|f|R) − |f|R cos(|f|R)], (13)

where P = 2 for “+/−” QPM structures and P = 1 for “+/0”
QPM structures.

Table II(b) displays the Fourier coefficients of a spherical
motif for four types of lattice. The normalized efficiency for 3D
lattice can be analyzed as a function of ratio between spherical
radius and length of primitive vector. The ratio R/a should not
exceed 0.5. In orthorhombic lattice, normalized efficiency can
be examined by the function Gmnq(R/a; a/b; a/c), where a is
the length of the shortest primitive vector, hence R/a � 0.5,

TABLE II. Fourier coefficient of (a) an orthorhombic motif and (b) a spherical motif for “+/−” QPM structures

Lattice type Fourier coefficients

(a) Fourier coefficient of an orthorhombic motif

Triclinic Gmnq = 2XYZsinc(m X
a )sinc(Y an−bm cos γ

ab sin γ
)sinc(Z abq−acn cos α+cbm(cos α cos γ−cos β)

abc sin α sin β
)

abc sin α sin β sin γ

Orthorhombic Gmnq = 2 XYZ

abc
sinc(mX

a
)sinc(nY

b
)sinc(q Z

c
)

Square Gmnq = 2 XYZ

a3 sinc(mX

a
)sinc(nY

a
)sinc(q Z

a
)

Hexagonal Gmnq = 2 XYZ

a2c
√

3
sinc(mX

a
)sinc((m + 2n) Y

a
√

3
)sinc(q Z

c
)

(b) Fourier coefficient of a spherical motif

Gmnq = 8π

|K|3V
(sin (|K|R) − |K|R cos (|K|R))

Triclinic |K| = 2π

√
m2

a2 + (an−bm cos α)2

a2b2(sin γ )2 + (abq−acn cos α+cbm(cos α cos γ−cos β))2

a2b2c2(sin α sin β)2

Orthorhombic |K| = 2π

√
m2

a2 + n2

b2 + q2

c2

Square |K| = 2π

a

√
m2 + n2 + q2

Hexagonal |K| = 2π

√
4(m2+mn+n2)

3a2 + q2

c2
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(a) (b) (c)

FIG. 3. (a) 1D-like structure with parameters X/a = 0.5, Y/b =
1, and Z/c = 1; (b) 2D-like structure with parameters X/a = 0.5,
Y/b = 0.5, and Z/c = 1; (c) 3D structure with parameters X/a =
0.5, Y/b = 0.5, and Z/c = 0.5.

a/b � 1, and a/c � 1. It shows that the first QPM orders
relying on different RLVs are not equal (see Fig. 4). For
example, in orthorhombic lattice, first orders (0,1,0) [Fig. 4(b)]
or (0,0,1) [Fig. 4(c)] provide significantly high efficiency
(|G010|2 = 0.190 with parameters R/a = 0.5, a/b = 0.65,
and a/c = 1. These results are similar to those obtained with
a rectangular lattice and circular motif reported in Ref. [38].
But when the fundamental light propagates along the shortest
primitive vector, a maximum nonlinear coefficient of the
first order, which we can achieve, is |G100|2 = 0.101 with
parameters R/a = 0.5, a/b = 1, and a/c = 1 [Fig. 4(a)].
Obviously, this value is the best for cubic lattice, where it
has equivalent lattices for three dimensions.

Note that, unlike the orthorhombic motif shown in the
previous section, while using a spherical motif, it is difficult
to obtain equivalent 1D and 2D structures with an optimum
nonlinear coefficient (see Fig. 5). We have already shown
that the highest nonlinear coefficient for the rectangular motif
in a rectangular lattice (2D) and the orthorhombic motif
in an orthorhombic lattice (3D) is |G10|2 = |G100|2 = 0.405
and it is the same as that of a 1D structure. However, the
highest normalized efficiency for a rectangular lattice with a
circular motif is |G10|2 = 0.338 with parameters R/a2 = 0.5
and R/a1 = 0.29 [38]. The highest normalized efficiency for
the orthorhombic lattice with a spherical motif was mentioned
above and is equal to |G010|2 = 0.190. These data show that
the most optimum structures with circular and spherical motifs
are similar to that of a 1D periodic structure and they have quite
high efficiency compared with other 2D and 3D structures but
lower than the 1D QPM structure. But this high efficiency is

(a) (b) (c)
aaa

FIG. 4. Optimum configurations of a 3D QPM structure with
orthorhombic lattice, spherical motif, and the shortest side a depend-
ing on QPM order: (a) (1,0,0) order for collinear QPM means that
fundamental light propagates along the shortest side of the lattice,
(b) (0,1,0) order, and (c) (0,0,1) order both have propagation of
fundamental light perpendicular to the shortest side.

2D 3D

(b)(a)

FIG. 5. Schematic comparison of QPM structures with (a) rect-
angular and circular motif in 2D and (b) orthorhombic and spherical
motif in 3D.

useful only for phase matching a single process and this is the
biggest drawback of these structures.

We concluded that the general theory proposed in this work
could be applied to any 1D, 2D, and 3D QPM structures. But
the optimum QPM structure depends largely on the chosen
motif as well as on the type QPM lattice (see next section).
Figure 6 shows, for example, extension of 2D structure to
3D space using cylindrical and spherical motif with different
motif/periodic ratios. The 2D structure and the structure in
Fig. 6(a) have the same efficiency of the first QPM order and
it is higher than in other structures, but all other structures
have more orders useful for QPM in all three dimensions.
The spherical motif seems to be the only appropriate one for
the formation of 3D QPM structures due to its symmetry. In
the next section, we will focus on the optimization of 3D
QPM structures by investigating the nonlinear coefficients as
a function of spherical and cubic motifs, of the filling factor of
the 3D QPM structures, and the propagation direction of the
fundamental light beam.

IV. OPTIMIZATION OF QPM 3D STRUCTURES

In this section, we present research on optimum 3D QPM
structures. First, we show the results of several particular 3D
structures, which possess the highest nonlinear coefficients.
Then, we show the results obtained with modified 3D QPM
structures, in which the motifs are connected by small features
that are very close to the real structures fabricated in practice.

A. Optimum 3D QPM structures
It is well known that in the case of photonic crystal, diamond

cubic (DC) lattices possesses the best photonic bandgap [39].
However, it does not mean that the same situation is observed in

(a)

(b) (c)

(d)

FIG. 6. Extension of 2D structure to 3D space using cylindrical
and spherical motifs, with different motif/period ratios.
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TABLE III. Fourier coefficients and limitations of motifs for SC, BCC, FCC, and DC lattices for “+/–” QPM structures.

Lattice types Fourier coefficients

Simple cubic For cubic motif:
Gsc = 2 X3

a3 sinc(mX

a
)sinc(nX

a
)sinc(q X

a
), X

a
� 1

For spherical motif:
H = 2π

√
m2 + n2 + q2

Gsc = 8π

H 3 [sin (H R

a
) − H R

a
cos (H R

a
)], R

a
� 0.5

Body-centered cubic Gbcc = Gsc{1 + exp [iπ (m + n + q)]}, X

a
� 0.5, R

a
�

√
3

4

Face-centered cubic Gfcc = Gsc{1 + exp [iπ (n + q)] + exp [iπ (m + q)] + exp [iπ (m + n)]}, X

a
� 0.5, R

a
�

√
2

4

Diamond cubic Gdc = Gfcc{1 + exp [iπ (m + n + q)/2]}, X

a
� 0.25, R

a
�

√
3

8

QPM structures for nonlinear processes. Indeed, as mentioned
previously, in the case of nonlinear optics, it requires a balance
between the high symmetry of the photonic structures and
the nonlinear material quantity. By calculating all 14 Bravais
lattices and a few varieties, we found that just some of them
possess high nonlinear coefficients. We report here only some,
namely, simple cubic (SC), body-centered cubic (BCC), face-
centered cubic (FCC), and DC lattices, and compare their
nonlinear coefficients. For all these structures, we used cubic
and spherical motifs as the simplest symmetric motifs, which
are also similar to real structures.

The simplest 3D structure is the SC structure [37]. The
Fourier coefficients for three other lattices can be calculated
easily with the help of the theory presented previously or
using a method to describe complex periodic structures with
more simple ones, where basis has two or more points. For
example, the BCC lattice can be presented as two shifted
SC lattices, the FCC lattice consists of four SC lattices,
and the DC lattice is a set of two FCC lattices. Table III
displays Fourier coefficients of four particular lattices with two
types of motifs. We found that DC provides many equivalent
RPL vectors, i.e., many equivalent propagation directions,
but the nonlinear coefficients are not always optimum. These
nonlinear coefficients vary as a function of lattice but also as a
function of motif and propagation direction of the fundamental
light beam.

B. Working material and filling factor

It seems that DC is the best structure because of its sym-
metry and also of the material quantity in a unit cell. Figure 7
illustrates four particular structures, made by spherical motifs.
In this illustration, the ratio between radius (R) of motif
and QPM structure periodicity (a) is fixed at a reasonable
value. The DC structure clearly possesses the largest nonlinear
material quantity (χ (2) = +1). As shown in the table of Fig. 7,
the best 3D QPM structure should be DC, with highest
nonlinear coefficient obtained for the order (1,1,1). However,
as mentioned, the nonlinear coefficient depends on the quantity
of nonlinear material. In Table III, we can see that the limit
of R/a in the DC lattice is

√
3/8. It means that the nonlinear

coefficients of the DC structure will be limited by this filling
factor. In contrast, it is quite easy to increase the normalized
ratio R/a in the case of SC lattice, resulting in higher nonlinear
coefficients. We therefore studied the influence of material
filling factor on the nonlinear coefficients of a 3D QPM SC
structure.

Figures 8 and 9 show the dependence of the nonlinear
coefficients of SC lattices on the filling factor (X/a or D/a

where D = 2R) for cubic and spherical motifs, respectively.
Using a SC lattice, the best nonlinear coefficient is obtained
by the (1,0,0) QPM order for both kinds of motifs. In the
case of square motif maximum efficiency |G100|2 = 0.064 is
obtained for X/a = 0.73, while with spherical motif max-
imum efficiency |G100|2 = 0.101 is achieved by D/a = 1,

G||redrO 2 G||redrO 2 Order |G| 2 G||redrO 2
DCFCCBCCSC

(1,1,1)
(2,2,0)

(1,1,1)
(2,0,0)

(1,1,0)
(2,0,0)

(1,0,0)
(1,1,0)

0.0049
0.0033

0.0131
0.0053

0.0340
0.0241

0.0680
0.0068

R

a

(d)(c)(b)(a)

a a

R R R

a

FIG. 7. Four 3D structures with fixed ratio R/a = √
3/8: (a) SC, (b) BCC, (c) FCC, and (d) DC. The tables present Fourier coefficients of

first orders for each corresponding structure. Normalized efficiency is calculated for the “+/–” structure.
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ycneiciffe dezila

mro
N

X/a

FIG. 8. Normalized efficiency of SC lattice for the three first
orders (1,0,0), (1,1,0), and (1,0,0) as a function of ratio between the
size of cubic motif, X, and the the lattice periodicity, a. Normalized
efficiency is calculated for the “+/–” structure.

ycneiciffe dezila
mro

N

D/a

FIG. 9. Normalized efficiency of SC lattice for three first orders
(1,0,0), (1,1,0), and (1,0,0) as a function of ratio between the
spherical motif diameter, D, and the lattice periodicity, a. Normalized
efficiency is calculated for the “+/–” structure.

TABLE IV. Optimum Fourier coefficients of SC, BCC, FCC, and
DC lattices for “+/–” QPM structures, made by two particular motifs.

Cubic motif Spherical motif

Order |Gmax|2 X/a |Gmax|2 R/a

Simple cubic
(1,1,0) 0.064 0.730 0.101 0.500
(2,0,0) 0.012 0.585 0.013 0.353
Body-centered cubic
(1,1,0) 0.041 0.500 0.050 0.352
(2,0,0) 0.004 0.365 0.012 0.433
Face-centered cubic
(1,1,1) 0.066 0.500 0.060 0.289
(2,0,0) 0.016 0.365 0.025 0.247
Diamond cubic
(1,1,1) 0.016 0.500 0.068 0.216
(2,2,0) 0.010 0.500 0.012 0.177

which is higher than the maximum nonlinear coefficient
obtained with a DC structure. Again, the spherical motif shows
to be the best configuration for 3D QPM structure. We also
found that the first QPM order, (1,0,0), is the best direction
for 3D QPM, which is also the most efficient process in case
of 1D and 2D QPMs, as shown before.

Table IV shows most efficient orders with the highest
Fourier coefficients and with corresponding optimum param-
eters of four lattices. It can be noted that a spherical motif
provides better nonlinear coefficients in comparison with those
obtained by the cubic motif. This can be explained by the high
symmetry of the spherical motif. This result is quite interesting,
because the spherical motif is very close to what can be realized
in practice. We also found that the SC, the simplest 3D QPM
structure, possesses the highest nonlinear coefficient for some
particular propagation directions. We suggest that, for nonlin-
ear optics, the QPM could be realized by a simple 3D structure,
which reduces challenges of fabrication requirement.

We should note that, in our calculation, the motif possesses
a χ (2) = +1, while all surrounding materials possess a χ (2) =
−1 or χ (2) = 0. In the case of “+/–” QPM structures, we found
that there is no difference if the motif possesses an inverse
sign, i.e., χ (2) = −1, and the surrounding medium possesses a
χ (2) = +1. However, in the case of “+/0” or “0/+” 3D QPM
structures, the results differ. In this case, we defined “block
motif” for a situation in which the motif possesses χ (2) = +1
and the surrounding medium possesses χ (2) = 0 and a “hollow
motif” for the situation in which the motif possesses χ (2) =
0 and the surrounding medium possesses χ (2) = +1. Using
linearity of a Fourier transform, we can calculate the nonlinear
efficiency of SC structures made by hollow and block motifs.
Figure 10 shows the variation of the nonlinear coefficients as a
function of filling factor (volume of nonlinear material divided
by volume of unit cell) for the block motif (solid line) and for
the hollow motif (dashed line). When Vnonlinear material/Vunit cell

is zero, there is no active material and the QPM effect is
canceled. When Vnonlinear material/Vunit cell is equal to 1, we have
only active material and the same situation occurs. A crossing
of curves is obtained when the motif size is equal to a half of
length of unit cell. The insert of Fig. 10 shows the evolution
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ycne ic iffe dezila
mro

N

Vnonlinear material /Vunit cell

FIG. 10. Normalized efficiency for (1,0,0) order of a SC lattice with a cubic motif. The solid and dashed lines represent efficiency curves of
3D QPM structures made by solid and inverse (hollow) motifs, respectively. The insert shows the evolution from full material to null material
(hollow motif) and from null to full material (block motif).

from full material to null material (hollow motif) and from
null to full material (block motif).

C. Real structure approach

In reality, motifs are more complicated, depending on
the fabrication technologies and materials used. 3D QPM
structures could be only fabricated by optical lithographies
techniques on polymer materials. For example, a 3D template
with χ (2) = 0 can be fabricated by an interference tech-
nique [34], which is simple and useful for the fabrication
of large-area, uniform, and controllable forms. The third
dimension of these 3D structures can be as thick as desired
by using a holographic assembly technique [40] or as thick as
300 μm by using an ultra-low absorption method [41]. The
fabricated structures can be then filled by a nonlinear material
[χ (2) = +1], resulting in a “+/0” QPM 3D structure. Note that
the polymeric structure [χ (2) = 0] and the nonlinear material
[χ (2) �= 0] have the same refractive indices. Therefore, there
is no lost of the fundamental and harmonic lights due to the
scattering or diffraction effect. The 3D structures fabricated by
this method consist of main motifs (spherelike) connected to
each other by nanoconnections in form of a grid. We therefore
performed the calculation of nonlinear conversion efficiency
by taking into account this “real structure approach.” In this
section, we present the results obtained with SC lattices with
two types of connections: “square-cut” and “circular-cut,” but
only the last one is presented in Fig. 11.

For calculations we introduced a spherical motif [χ (2) =
+1] with a radius R in the center of the SC lattice unit
cell. The unit cell is repeated by a period of a in x, y,
and z directions. Each spherical motif has six symmetrical
circular-cut connections [χ (2) = +1], where the cross sec-
tion has a radius of r [Fig. 11(a)]. Using the property of
linearity of the Fourier transform, we calculate the Fourier
coefficients for these two complicated motifs, as shown in
Table V. It should be mentioned that the connections are
rather small in comparison with the main motif and that this

assumption allows us to simplify the form of connection as
orthorhombic (“square-cut”) and cylindrical (“circular-cut”)
forms.

Figure 11(b) represents the surface of normalized efficiency
for a SC QPM structure (“+/0” type) made by spherical motifs
with cylindrical nanoconnections. Normalized efficiency was
calculated for optimum (1,0,0) order. In the case of r/a = 0,
we got a result similar to the case of a simple spherical
motif (without connection). Also, it should be noted that
the normalized radius of spherical motif has lower limit
R/a > r/a because the size of connections should not exceed
the size of the main motif. We found a slight increase of the
nonlinear coefficient as a function of the r/a parameter. This is
explained by the increase of the quantity of nonlinear material.
However, considering a limitation of cylindrical connections as
r/a � 0.1, the increase is very modest, as shown in Fig. 11(b).
It means that nanoconnections have a slight influence on
normalized efficiency and could be neglected in the calculation
of more complicated structures.

r

a

R

(a) (b)

ycneiciffe de zi la
mro

N

r/a R/a

FIG. 11. (a) Spherical motifs with “circular-cut” connections. a

is lattice period, R is radius of sphere located in the center of unit cell,
and r is radius of circular cut. (b) Surface of normalized efficiency of
corresponding 3D QPM structure as a function of r/a � 0.1 and
0.3 � R/a � 0.5. Normalized efficiency is calculated for (1,0,0)
order for “+/0” QPM structure.
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TABLE V. Fourier coefficients for two types of 3D “+/0” QPM structures: Spherical motif with square-cut connections and with circular-cut
connections.

Motif Fourier coefficients

Spherical motif H = 2π
√

m2 + n2 + q2

with square-cut Gmnq = 4π

H 3 [sin (H R

a
) − H R

a
cos (H R

a
)] + L2

a2 sinc(nL

a
)sinc(q L

a
)[sinc(m) − 2 R

a
sinc(2mR

a
)]

connections +L2

a2 sinc(mL

a
)sinc(q L

a
)[sinc(n) − 2 R

a
sinc(2nR

a
)]

+L2

a2 sinc(mL

a
)sinc(nL

a
)[sinc(q) − 2 R

a
sinc(2q R

a
)]

Spherical motif H = 2π
√

m2 + n2 + q2

with circular-cut Gmnq = 4π

H 3 [sin (H R

a
) − H R

a
cos (H R

a
)] + r

a

1√
n2+q2

J1(2π r

a

√
n2 + q2)[sinc(m) − 2 R

a
sinc(2mR

a
)]

connections + r

a

1√
m2+q2

J1(2π r

a

√
m2 + q2)[sinc(n) − 2 R

a
sinc(2nR

a
)]

+ r

a

1√
m2+n2

J1(2π r

a

√
m2 + n2)[sinc(q) − 2 R

a
sinc(2q R

a
)]

In particular case
√

n2 + q2 = 0:
r

a

1√
n2+q2

J1(2π r

a

√
n2 + q2) = π r2

a2

V. CONCLUSION

In this paper, we have presented a general analysis of
quasi-phase-matched conversion efficiency in periodic 3D
structures. We investigated in detail the nonlinear conversion
efficiency of 3D QPM structures with different choices of
lattice, shape, and dimensions of the nonlinear motif. General
data displayed in Table II and Table III can be used to calculate
Fourier coefficients of any QPM order. We demonstrated that
this general theory is applicable to 1D and 2D QPM structures,
as reported in previous papers. It shows that the conversion
efficiency of the 3D QPM structures is weaker than that of
the 2D QPM and the later one is also weaker than that of
the 1D QPM. It is explained by the quantity of the nonlinear
material in each motif of a QPM structure and in good logic
and proportion. However, the 3D QPM structure possesses
much more QPM orders than 1D and 2D structures, and hence
it enhances the flexibility of the RLV design and enables more
complicated nonlinear processes in the same 3D structure.

Furthermore, we have investigated the optimization of the
3D structure’s configuration to achieve the best nonlinear
conversion efficiency. Four possible structures are studied, SC,
BCC, FCC, and DC lattices with square and spherical motifs,
showing high conversion efficiency. The filling factor of those

structures was also optimized to obtain optimum conversion
efficiency. Simple cubic 3D structure is a very simple structure
but it is the most efficient 3D QPM structure. Normalized
efficiency plots of SC lattice for cubic and spherical motifs
revealed strong influence of filling factor on conversion
efficiency of a nonlinear process.

Finally, we have drawn a lot of attention to connection
of our theoretical work with real structures. We made an
accent on structures, which can be fabricated in practice by a
simple method, such as interference lithography. Description
and analysis of theoretical structures with small connections
between motifs, which are very close to real structures, were
stated. We demonstrated that, due to the small quantity of
nonlinear material of the connection, it has a slight influence on
normalized nonlinear conversion efficiency and, theoretically,
could be neglected.
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