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Transformation-optics simulation method for stimulated Brillouin scattering
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We develop an approach to enable the full-wave simulation of stimulated Brillouin scattering and related
phenomena in a frequency-domain, finite-element environment. The method uses transformation-optics
techniques to implement a time-harmonic coordinate transform that reconciles the different frames of reference
used by electromagnetic and mechanical finite-element solvers. We show how this strategy can be successfully
applied to bulk and guided systems, comparing the results with the predictions of established theory.
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I. INTRODUCTION

In recent years, nonlinear optical phenomena through which
light and elastic waves are strongly coupled have garnered a
strong interest. Amidst the various phenomena arising from the
coupling of optics and elastodynamics, a very well-known and
studied example is Brillouin scattering. Spontaneous Brillouin
scattering is a nonlinear optical phenomenon by which light is
inelastically scattered by the change in refractive index caused
by adiabatic density fluctuations in a medium. These are due to
thermal or quantum zero-point effects [1,2]. On the other hand,
in stimulated Brillouin scattering (SBS), the density variations
are caused by the presence of light, through electrostriction,
radiation pressure, and/or optical absorption. It is a third-order
optical nonlinearity, whereby elastic and optical waves are
coupled in a fluid or solid, mutually exchanging energy [1,3].
While it has been known and experimented upon for several
decades, recent years have seen a renewed interest in SBS and
related effects, which already enable many devices, ranging
from powerful sources and amplifiers to platforms for the
study of slow light [4] and nonreciprocity [5], and show great
promise for future applications.

There has been a growing body of literature on the
previously unknown gain enhancements that can be achieved
by specifically tailored nanostructures [6–9]. In particular, it
has been proven by theory and experiment [10] that when
waveguide geometries reach the nanoscale, previously unex-
pected, giant Brillouin gain enhancements occur. These effects
are so dramatic as to be two to four orders of magnitude larger
than traditional theories predict (five in the case of forward
SBS) [6]. Naturally, new theoretical tools have been developed
to study and describe these phenomena both in waveguides
and various resonant structures [6–8], which are understood
to be due to a combination of surface electrostriction and
radiation pressure. In hindsight, it is unsurprising that these
effects only become predominant at the nanoscale, where
the surface-to-volume ratio of particles and waveguides is
so high. In these contexts, perturbation theory in the form
usually employed in electromagnetism can fail [11]. These
current approaches are all limited to rather simple or highly
symmetric geometries, such as the aforementioned waveguides
and resonators.
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An alternative to these methods, which require prior
knowledge of the modes of the system, are full-wave simu-
lations. One of the most prominent and widely used numeric
techniques is the finite-element method. However, as we show,
correctly simulating optomechanical effects in the frequency
domain is far from straightforward, and the choice of frame
of reference for the electromagnetic and mechanical solvers is
of critical importance. Naı̈vely overlooking this aspect leads
to significantly inaccurate simulation results. In this work, we
describe the problem in detail and propose a solution based on
transformation optics. The key intuition is that the movement
of material points and boundaries can be represented by
an effective oscillation of electromagnetic properties. This
simulation method is applicable to arbitrarily complex systems
and geometries, which can be comprised of several materials,
including metals. Thus it provides an extremely flexible
computational platform for the design of optomechanical
devices and artificial media, such as plasmonic [12] and
metamaterial [13] structures.

II. VECTORIAL THEORY OF SBS IN SOLIDS

In this section, we describe time-harmonic backwards
Stokes SBS in a solid medium. Two time-harmonic electro-
magnetic fields (pump and signal, labeled with the numbers
1 and 2 throughout the paper) counterpropagate in a solid
medium, interacting with an elastic wave of angular frequency
� and wave vector q. For this process, conservation of energy
and momentum take the form ω1 = ω2 + � and k1 = k2 + q,
where ω and k indicate optical angular frequencies and wave
vectors, respectively.1 For ease of reading, but without loss of
generality, we shall assume the solid medium to be isotropic,
uniform, and electromagnetically nondispersive. This last
assumption is a reasonable approximation in the case of
SBS, where |ω1 − ω2| � ω1,ω2. In the following derivations,
we consider the behavior of a bichromatic, time-harmonic
electromagnetic field

Ẽ = Ẽ1 + Ẽ2, (1a)

H̃ = H̃1 + H̃2, (1b)

1To extend this treatment to an anti-Stokes process it is sufficient
to state energy and momentum conservation as ω1 + � = ω2 and
k1 + q = k2 and to follow the same logical steps.
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FIG. 1. Schematic of the relation between Lagrangian coordi-
nates X, Eulerian coordinates x̃, and displacement ũ.

where the tilde superscript denotes physical quantities which
oscillate rapidly and harmonically in time, and for n = 1,2,

Ẽn = Re(Ene
iωnt ) = 1

2 (Ene
iωnt + E∗

ne
−iωnt ), (2a)

H̃n = Re(Hne
iωnt ) = 1

2 (Hne
iωnt + H∗

ne
−iωnt ). (2b)

Similarly, the elastic wave is represented by the vectorial
displacement and scalar density variation fields

ũ = Re(u ei�t ) = 1
2 (u ei�t + u∗e−i�t ), (3a)

�ρ̃ = Re(�ρ ei�t ) = 1
2 (�ρ ei�t + �ρ∗e−i�t ). (3b)

A. Elastodynamics

Since solids in general support both longitudinal and shear
waves, the mechanical aspect of the phenomenon must be
described with fully vectorial elastodynamics. For finite-
element mechanical simulations, the natural choice for frame
of reference are the material (or Lagrangian) coordinates X,
which index the material points and assign a time-dependent
displacement to each, without actually updating their position.
By contrast, Eulerian coordinates x̃ follow the position of
material points through time. The two frames are related by
the displacement ũ through the relation x̃ = X + ũ, as shown
in Fig. 1. The Eulerian equilibrium equation, whose form is
perhaps more intuitive, is

ρ
∂2u
∂t2

= ∇x · ¯̄σ + fv, (4)

where ρ is the instantaneous mass density, ¯̄σ is the Cauchy
stress tensor (referred to the current, deformed, geometry) [14],
∇x is the gradient in Eulerian coordinates, and fv is the sum of
body forces (forces per unit deformed volume). Note that the
finite linewidth of SBS resonance is due to a mechanical loss
term, which can be thought of as included in the definition of
stress (by addition of a term proportional to strain rate) [15].

In a Lagrangian frame, the equilibrium equations assume
instead the form [14]

ρ0
∂2u
∂t2

= ∇X · ¯̄P + Fv, (5)

where ρ0 is the initial mass density, ∇X is the del operator in
Lagrangian coordinates, Fv is the sum of body forces, given

with respect to the undeformed volume, and ¯̄P is the first Piola-
Kirchhoff stress tensor (referred to the undeformed geometry).
Moreover, ¯̄P = ¯̄F ¯̄S, where the ¯̄F and ¯̄S tensors are respectively
the deformation gradient and the second Piola-Kirchhoff stress
[14]. It is interesting here to spend a few words on ¯̄F and its
properties. It is defined as the tensor relating Eulerian and
Lagrangian coordinates

dx = ¯̄F dX, (6)

and it is a function of the displacement ũ

¯̄F = ¯̄I + ∇Xũ, (7)

where ¯̄I is the identity matrix. The determinant of ¯̄F is
related to the ratio of instantaneous density ρ to the reference
(undeformed) density ρ0:

1

det ¯̄F
= ρ̃

ρ0
= ρ0 + �ρ̃

ρ0
= 1 + �ρ̃

ρ0
. (8)

Traditionally, most nonlinear optics textbooks such as Boyd’s
[1] model the mechanical aspect of SBS as simple elec-
trostrictive volume forces. However, we want to stress that the
computational method we present in this paper can be applied
to arbitrarily refined descriptions of optical forces. Following
for the moment the traditional description, electrostriction in
an isotropic, uniform medium, corresponds to a potential φ̃ [1]:

φ̃ = − 1
2ε0γe〈Ẽ1 · Ẽ2〉 = − 1

2ε0γe Re(E1 · E∗
2 ei�t ), (9)

where the 〈·〉 sign denotes a time average over an optical period,
ε0 is the permittivity of vacuum, and γe is the electrostrictive
constant, defined as [1,2]

γe =
(

ρ
∂ε

∂ρ

)
ρ=ρ0

, (10)

where ε is the relative permittivity of the material. The
electrostrictive constant relates simply to the photoelastic
tensor ¯̄p in the isotropic case through the fourth power of
the refractive index [15,16]. The Lagrangian electrostrictive
volume force is then

F̃v = −∇Xφ̃ = 1
2ε0γe Re[∇X(E1 · E∗

2)ei�t ]. (11)

A physical quantity of great importance that must be calculated
from the solution to Eq. (5) is pressure, which is related to
the Cauchy stress tensor through its trace: p = − 1

3 Tr ¯̄σ [14].
Also useful is the variation in mass density �ρ̃, which is
related to p̃ through the speed of longitudinal elastic waves
cp: �ρ̃ = p̃/c2

p. The electrostrictive volume force of Eq. (11)
can be entered into a finite-element solver as a contribution
to the elastodynamic partial differential equation, which in
frequency domain takes the form

−ρ0 �2u = ∇X( ¯̄F ¯̄S) + 1
2ε0γe ∇X(E1 · E∗

2). (12)

For further insight into continuum mechanics, the readers
are encouraged to consult Appendix A, which elaborates on
some of the concepts touched upon in the present section, and
references therein.
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B. Optics

Frequency-domain finite-element electromagnetic solvers
are usually cast in Eulerian coordinates, since for most
applications there is no need to keep track of mechanical
movements at electromagnetic frequencies. For an isotropic,
uniform, nondispersive medium the Eulerian optical wave
equation is [17]

∇2Ẽ − n2

c2

∂2Ẽ
∂t2

= μ0
∂2P̃
∂t2

, (13)

where n is the refractive index of the medium, c is the speed of
light in vacuum, μ0 is the permeability of vacuum, and P̃ is a
polarization term that acts as a source for the nonlinear process.
It can be related to a time-harmonic variation in relative
permittivity due to a Brillouin-related scattering mechanism as

P̃ = ε0 �χ̃ Ẽ = ε0 �ε̃ Ẽ, (14)

where χ is the electric susceptibility of the medium and ε0

is the permittivity of vacuum. In the traditional description
of bulk electrostriction, the permittivity variation takes the
form �ε̃ = γe �ρ̃/ρ0 [1]. Representing �ε̃ in the frequency
domain and using Eq. (1) and Eq. (3), we can isolate the terms
oscillating at ω1 and ω2, so that

P̃ = ε0

2
Re(�ε E2e

iω1t + �ε∗E1e
iω2t ). (15)

Rewriting Eq. (13) in the frequency domain, and separating it
into the components oscillating at ω1 and ω2, yields

∇2E1 + k2
1 E1 = −μ0ω

2
1P1 = −1

2

(ω1

c

)2
�ε E2, (16a)

∇2E2 + k2
2 E2 = −μ0ω

2
2P2 = −1

2

(ω2

c

)2
�ε∗E1, (16b)

where we have introduced the scalar wave numbers k1 and k2,
which obey the dispersion relation k = ωn/c.

We have now described the electrostrictive SBS phe-
nomenon through a set of mutually coupled partial differential
equations, cast in the form that finite-element software most
commonly solve for. However, there is a limitation to simply
implementing the nonlinear coupling terms as contributions
to standard differential equations: a computation solving the
electromagnetic wave equation in Eulerian coordinates is not
by default able to account for the movement of the geometry,
arising from the existence of displacements (which are in turn
computed in a Lagrangian frame). This invariably leads to
wrong results, especially at the nanoscale, where the effect
of (moving) interfaces can play a dominant role [6,7,9]. The
obstacle could be avoided by performing a time-domain study
instead, but it is in practice undesirable, because of the wildly
different time scales of the optical and mechanical periods.
Thus, simulating solid-state SBS accurately would seem to be
unreasonably onerous from a computational standpoint in the
time domain and outright impossible in the frequency domain.

III. TRANSFORMATION OPTICS AS A ROUTE TO
FREQUENCY-DOMAIN SBS SIMULATIONS

A. Transformation optics for a moving frame

To circumvent the difficulty described in the previous
section, a possible strategy is to employ transformation optics
(TO) [18–20] in a way that enables a standard electromagnetic
solver to correctly account for the moving frame. The idea is
to represent the movement of material points and boundaries
by an effective time oscillation of electromagnetic properties.
In TO, the material properties of an original (isotropic, to
simplify the discussion) medium, unprimed in Eq. (17), are
transformed through the following relation:

¯̄ε ′ =
¯̄A ¯̄AT

det ¯̄A
ε = ¯̄g ε, (17a)

¯̄μ ′ =
¯̄A ¯̄AT

det ¯̄A
μ = ¯̄g μ, (17b)

where ¯̄A is the Jacobian matrix of the coordinate trans-
formation and ¯̄g is the metric tensor in three dimensions.
The transformed permittivity ¯̄ε and permeability ¯̄μ are in
general complex, symmetric rank-two tensors. In our case, the
transformation is between a moving frame (Eulerian) and a
fixed frame (Lagrangian). The Jacobian of this transformation
is the deformation gradient ¯̄F mentioned in Sec. II A. Using
Eq. (3), Eq. (7), and Eq. (8), it is possible to obtain

¯̄F = ¯̄I + Re[(∇u)ei�t ], (18)

and thus a compact expression for the metric tensor

¯̄g =
3∑

n=−3

¯̄gne
in�t , (19)

with the property ¯̄gn = ¯̄g∗
−n, reflecting the fact that, as

expected, the metric maps real coordinates to real coordinates.
More details on the derivation and explicit expressions for the
metric components can be found in Appendix B. It is also
worth mentioning that the idea of a time-dependent Jacobian
in TO has been explored in the past, for example in the context
of relativity [21], and applications thereof have been proposed,
e.g., for frequency conversion [22].

B. Wavelike equations for nondispersive materials

For anisotropic, inhomogeneous material properties such
as the ones typically yielded by transformation optics, it is
not possible to obtain an equation in a form as simple as
a Helmholtz wave equation. For time-independent properties
one can derive an equation that resembles Helmholtz’s, some
form of which is in fact the master equation in many full-wave
frequency-domain finite-element solvers

∇ × (
¯̄μ−1

r ∇ × E
) − k2

0

(
¯̄εr − i ¯̄σe

ωε0

)
E = 0, (20)

where ¯̄σe, ¯̄εr , and ¯̄μr are respectively the electrical conductiv-
ity, relative permittivity, and relative permeability tensor. Our
goal is to obtain a similar result in the case of time-dependent
transformed material properties, in the form shown in Eq. (17)
and Eq. (19). The fundamental ideas of our method, however,
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are not necessarily tied to this form. In fact, they are in
principle applicable to any frequency-domain finite-element
formulation of electromagnetism. A conceptual schematic of
the method is presented in Fig. 2.

Let us first consider the well-known differential, macro-
scopic form of the charge-free Maxwell’s equations:

− ∇ × Ẽ = ∂B̃
∂t

, (21a)

∇ × H̃ = ∂D̃
∂t

+ J̃e, (21b)

∇ · D̃ = 0, (21c)

∇ · B̃ = 0, (21d)

where Ẽ is the electric field, D̃ is the electric flux field, H̃ is
the magnetic field, B̃ is the magnetic flux field, and J̃e is the
electric current density. Supposing the undeformed medium is
isotropic we can rewrite Eq. (21a) and Eq. (21b) by applying
the appropriate TO rules [18,23]:

− ∇ × Ẽ = ∂

∂t
( ¯̄gμH̃), (22a)

∇ × H̃ = ∂

∂t
[ ¯̄g(ε + ε0�ε)Ẽ] + ¯̄gσeẼ, (22b)

where μ,ε,σe ∈ IR. In fact, for traditional materials at optical
frequencies, in first approximation μ = μ0. Traditional models
of SBS model �ε = γe�ρ̃/ρ0 (cf. Sec. II B), but we will not
specify a form for �ε, which can act as a “black box” for any
relevant scattering mechanism involved. Using Eq. (1), a few
simple algebraic steps allow us to calculate ¯̄gμH, admitting
the Stokes conservation of energy and that we can disregard
all terms not oscillating at ω1 or ω2:2

¯̄gμH̃ = μ Re[eiω1t ( ¯̄g0H1 + ¯̄g1H2) + eiω2t ( ¯̄g∗
1H1 + ¯̄g0H2)].

(23)

It is thus possible to rewrite Eq. (22a), separating the terms
at different frequencies and switching to a more compact
frequency-domain notation:

− ∇ × E1 = iω1( ¯̄A H1 + ¯̄B H2), (24a)

−∇ × E2 = iω2( ¯̄B∗H1 + ¯̄A H2), (24b)

where ¯̄A = ¯̄g0μ and ¯̄B = ¯̄g1μ. Since μ ∈ IR as discussed
earlier, Aij ∈ IR too. We can then left-multiply Eq. (24) by
¯̄A−1 to get

− ¯̄A−1∇ × E1 = iω1(H1 + ¯̄A−1 ¯̄B H2), (25a)

− ¯̄A−1∇ × E2 = iω2( ¯̄A−1 ¯̄B∗H1 + H2). (25b)

2The only approximations involved in this approach are not includ-
ing relativistic effects and not considering explicitly the presence
of an anti-Stokes signal, and the subsequent higher-order Brillouin
resonances. It would be possible to consider such contributions, at
the cost of more coupled equations. If only a small fraction of the
pump energy is transfered to the signal, every such resonance can be
considered separately.

We can now take the curl of each side of Eq. (25) to get,
invoking the linearity of the curl operator,

− ∇ × ¯̄A−1∇ × E1 = iω1[∇ × H1 + ∇ × ( ¯̄A−1 ¯̄B H2)],

(26a)

−∇ × ¯̄A−1∇ × E2 = iω2[∇ × H2 + ∇ × ( ¯̄A−1 ¯̄B∗H1)].

(26b)

Analogous to the derivation of Eq. (24), we can obtain expres-
sions for the curl of the magnetic-field complex amplitudes,
taking into account the linear and nonlinear polarization terms,
and the conduction current:

∇ × H1 = iω1[( ¯̄C + ¯̄K)E1 + ( ¯̄D + ¯̄L)E2], (27a)

∇ × H2 = iω2[( ¯̄D∗ + ¯̄L∗)E1 + ( ¯̄C + ¯̄K)E2], (27b)

where ¯̄C = ¯̄g0 ε, ¯̄D = ¯̄g1ε,
¯̄K = ε0( ¯̄g1�ε∗ + ¯̄g∗

1�ε)/2, and
¯̄L = ε0( ¯̄g0�ε + ¯̄g2�ε∗)/2. We have folded conductivity into
permittivity as is customary, making the latter complex ε =
ε′ − iε′′ with ε′′ > 0 for optically lossy materials. Moreover,
Kij ∈ IR. Substitution of Eq. (27) into Eq. (26) yields

∇ × ¯̄A−1∇ × E1 − ω2
1

¯̄CE1

= ω2
1[ ¯̄KE1 + ( ¯̄D + ¯̄L)E2] − iω1∇ × ( ¯̄A−1 ¯̄BH2),

(28a)

∇ × ¯̄A−1∇ × E2 − ω2
2

¯̄CE2

= ω2
2[( ¯̄D∗ + ¯̄L∗)E1 + ¯̄KE2] − iω2∇ × ( ¯̄A−1 ¯̄B∗H1).

(28b)

Upon comparison with Eq. (20), we notice that the general
form of the equations is preserved. Naturally, Eq. (28) are mu-
tually coupled through the right-hand sides as a consequence
of the nonlinear process they describe. On the left-hand sides,
¯̄A takes the place of ¯̄μr , and ω2

n
¯̄C that of k2

0[ ¯̄εr − i ¯̄σe/(ωε0)].

IV. EXAMPLES OF APPLICATIONS

In this section, we present two applications of our method
to predict SBS gain in well-understood solid-state systems.
It should be noted that these examples, for which analytical
solutions are known, are chosen to validate our approach,
which is however general and not limited to such cases. In the
first example, we consider a one-dimensional (1D) amplifier
setup. In the second case, we highlight how more refined
descriptions of optical forces can be incorporated into the
method, allowing it to accurately predict gain enhancement
in nanostructures, as described in [6,7,9]. All simulations
are run in COMSOL Multiphysics 5.2, with the full-wave
electromagnetic solver master equation replaced by Eq. (28),
except where noted.

A. 1D solid-state SBS amplifier

As a preliminary demonstration of the effectiveness of
the method, we simulate a simple solid-state 1D back-
ward SBS amplifier. It consists of two counterpropagating
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FIG. 2. Conceptual schematic of TO method, as applied to the system described in Sec. IV B. Two optical TEz guided modes (one of which
is depicted in the first row) counterpropagate in a dielectric slab waveguide, giving rise to a mechanical potential φ and the corresponding
force field Fv (second row, color map and arrows, respectively). The force excites one or more elastic modes (third row, warped grid), thus
creating a mass density variation field �ρ (third row, color map). This in turn induces a relative permittivity variation field �ερ (fourth row,
left column), but there is no effect �μρ on permeability in the case of ordinary nonmagnetic optical materials (fourth row, right column). With
our method, we calculate effective anisotropic properties (fifth and sixth rows, left column permittivity, right column permeability) that enable
the simulation of SBS coupling while keeping material points fixed (Lagrangian frame). All figures are depicted in reference to a given time t0.

electromagnetic waves in a solid Brillouin medium that is finite
in the propagation direction ẑ, and infinite in the other two.
A pressure wave arises due to optical forces, in this case the
standard bulk electrostriction mentioned in Sec. II A. The first
wave, the pump, is chosen to be much more intense than the
signal seed (I1 	 I2), so we can expect the undepleted pump
approximation to be valid. In this case, signal amplification is
described appropriately by a simple exponential model, i.e.,
the solution to the ordinary differential equation ∂

∂z
I2(z) =

−g I1 I2(z) [1]. The simulation is described in further detail in
Fig. 3.

Simulations were run over a range of mechanical frequen-
cies �, keeping the pump frequency ω1 constant (free-space
wavelength 600 nm) and adapting the signal frequency as
ω2 = ω1 − �. The medium is chosen to be a glass with
properties: refractive index n = 1.5, electrostrictive constant
γe = 1.77, Young’s modulus EY = 90 GPa, Poisson’s ratio
ν = 0.2, and a mass density ρ0 = 2700 kg m−3, mechanical
isotropic loss factor of 0.017. Results from the simulation at the
resonant frequency � = �B 
 1.69 × 1011 s−1 are displayed
in Fig. 4. The top panel shows that the pump intensity
remains constant throughout the propagation distance, thereby
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FIG. 3. 1D backward SBS amplifier: schematic of 2D simulation
(inspired by [1]). The lateral boundaries are connected through
periodic boundary conditions, making the domain effectively infinite
in the transverse direction. Open boundary conditions generate optical
fields at one end (z = 0 for the pump; z = Lg for the signal) and
transmit them without reflection at the other. Elastic waves are
generated by optical forces, and absorbed at either z boundary by
perfectly matched layers. Lg is the characteristic gain length. Elastic
waves are computed in the plane strain approximation.

FIG. 4. 1D backward SBS amplifier at resonance: (top) relative
pump intensity (middle) relative signal intensity and (bottom)
pressure amplitude, as predicted by theory (blue, dashed line), the
TO method (orange, upper continuous line), and a simply coupled
simulation (green, lower continuous line).

FIG. 5. 1D backward SBS amplifier: exponential gain g spectrum
predictions: theory (continuous blue line) against simulations run with
TO method (orange “x” series) and without (green “o” series).

confirming the validity of the undepleted pump approximation.
In the middle panel, results for relative signal intensity are
reported for simulations run with and without the TO method,
and are compared with theory [1]. The graph highlights how
simply implementing the nonlinear coupling into the software
is inadequate, and how our method is necessary to obtain
a solution consistent with theory. The difference between
theory and simulation with the TO method near z = 0 is easily
interpreted as a transient feature [24]: the electrostrictive force
only acts within the simulation region, i.e., over a finite length.
Therefore, the pressure wave must build up gradually, as shown
in the bottom panel of Fig. 4, before taking the trend predicted
by theory (that instead concerns itself with plane waves, which
exist and are coupled over the whole propagation space). Since
pressure mediates the energy transfer from pump to signal, this
explains the small deviation in I2.

For each simulation, a relative signal intensity graph such
as the one in Fig. 4 is generated. The data is then fitted with an
exponential function I2(z) = I2(L)exp[I1g(L − z)] [1], from
which the gain factor g is extracted. These values are plotted
in Fig. 5 against the theoretical prediction. The agreement
between the two approaches is excellent, whereas the simply
coupled simulations fail to predict the scale of the Lorentzian
resonance peak.

B. Dielectric elastic slab waveguide at different scales

We next apply our method to a structured system: a
suspended slab waveguide of finite thickness and infinite extent
in the plane, as depicted in Fig. 6. The example is conveniently
simple, because it possesses translational invariance in the
plane perpendicularly to the direction of propagation, thus
making the problem effectively 2D. We study the backward
SBS interaction between the fundamental TE mode and the
quasilongitudinal elastic modes, all of which share a plane of
symmetry at half thickness (with respect to the electric field
and longitudinal displacement).

The dispersion diagrams were computed semianalytically
from the waveguide dispersion relations [17,25] and are
depicted in Fig. 7. For a broad range of waveguide thickness
values, we simulate SBS at the optical free-space wavelength
of 1.55 μm, in an undepleted-pump regime, with the previously
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FIG. 6. Dielectric slab SBS amplifier: schematic of the waveg-
uide, of finite thickness d . The direction of propagation is z, and
the problem is translationally invariant in the out-of-plane direction,
making it 2D.

presented selection rule applied to propagation constants
k1z = k2z + qz and operating at the elastic frequency of the
lowest-order elastic mode.

The waveguide material is silicon, whose properties are
modeled as follows: relative permittivity εr = 12.25, rel-
ative permeability μr = 1, photoelastic coefficient (Pock-
els tensor element [15,16]) p21 = 0.017, Young’s modulus

FIG. 7. Dielectric slab SBS amplifier: schematic of the dispersion
diagrams for lossless TEz electromagnetic and longitudinal elastic
waves. In simulations, a fixed optical frequency ω is picked. Selecting
a waveguide thickness d , one can read off the corresponding
propagation wave number kz for the desired mode (the lowest order in
our case). By phase matching, the corresponding elastic propagation
constant qz 
 2kz is determined, from which one finds the frequency
� of the desired elastic mode.

FIG. 8. Dielectric slab SBS amplifier: gain G vs waveguide
thickness d . Theory (continuous blue line); simulations with TO
method (orange “x” series) and without method (green “o” series).

EY = 170 GPa, Poisson’s ratio ν = 0.28, and mass density
ρ0 = 2329 kg m−3. The material is assumed to be optically
lossless, while all elastic modes are arbitrarily assigned an
isotropic loss factor of 1/200, which translates into a viscosity
tensor whose nonzero elements are 1/200 of the corresponding
stiffness tensor elements. From the simulations we extract
a combined gain value with a procedure similar to the one
outlined in the previous section. An important caveat is
that, in this case, we adopt a definition of gain more suited
to guided systems, i.e., ∂

∂z
P1(z) = ∂

∂z
P2(z) = −GP1(z) P2(z),

where P1,2(z) are, respectively, the time-averaged guided pump
and signal powers. Provided P1 	 P2 ∀z, P1 can be treated as
a constant (undepleted pump approximation). Optical forces
due to electrostriction (both as a volume force on the bulk and
as a pressure term on the boundaries) and radiation pressure
are taken into account [6,7]. In Fig. 8 we compare the results of
simulations, run with and without the TO method, with those
of the most advanced theory of SBS available in the literature,
that of Wolff et al. [9].

The simulation results have qualitatively similar trends,
although the TO method predicts a peak value of gain that
is larger by approximately one order of magnitude. This
highlights the importance of taking into account the movement
of material points and boundaries when performing SBS
calculations. The agreement between TO method and the Wolff
theory, however, is much closer. The discrepancies can be
attributed to the Wolff theory being strictly monomodal with
respect to each field, whereas the TO-SBS simulations by
their nature take into account all elastic modes at the chosen
frequency, be they propagating or evanescent, that contribute
constructively (destructively) to the SBS process, thereby
increasing gain (losses). In this fashion, our method is able
to predict configurations in which the combined contribution
of elastic modes does not give rise to any gain, but instead
results in net loss. Thus our method expands the prediction
capabilities of current theories, which by construction are only
able to predict positive values of gain in optically lossless
systems [6,7,9,26].

V. CONCLUSIONS

We describe a TO-based strategy to enable the finite-
element simulation of SBS phenomena in the frequency
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domain. The method is versatile in that it can work with
any kind of geometry, and can incorporate arbitrarily refined
descriptions of optical forces. Furthermore, it does not require
prior analytic or modal knowledge of the problem. The method
is readily generalizable to anisotropic background materials
and to a fully tensorial description of the photoelastic effect.
Future developments may include extending applicability to
fluid domains, which are usually described by either a scalar
pressure field, or more generally by a vectorial velocity field.
Our method provides a powerful platform for the design of
artificial media, in particular metamaterials and plasmonic sys-
tems, whose electromagnetic and elastic properties (including
resonances) can be engineered with ample control.
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APPENDIX A: USEFUL CONTINUUM MECHANICS
CONCEPTS

Since continuum mechanics is not typically a subject that
the optics community is fluent in, herein is presented a small
compendium of useful notions that may help the readers’
understanding of this work. For more comprehensive reading,
Refs. [14,27,28], from which the following material is drawn,
are recommended.

1. Kinematics: Displacement and strain

Given a material body, it will occupy a subset of 3D space
at a certain moment in time. The position of all material points
the body is comprised of at that time is the configuration. A
deformation is the change from a reference configuration to
a different (deformed) one. Deformation here can mean both
rigid motion and warping of the body’s shape. The positions of
material points in the reference configuration are identified by
Lagrangian (material) coordinates X, which are independent of
deformation, whereas in the deformed configuration the points
are described by the set of Eulerian (spatial) coordinates x.

The deformation itself can be modeled as a deformation
(motion) map ϕ : x = ϕ(X,t), which must meet some con-
ditions to represent physical deformations: (a) it is bijective
and (b) det ∇ϕ(X) > 0, i.e., it is orientation-preserving (e.g.,
it cannot perform a mirror image operation or collapse the
volume to zero). A map is said to be admissible if it meets
these requirements. The associated vector field is called the
displacement u, which can be defined as

u(X) = ϕ(X) − X. (A1)

The concept of strain refers to local changes in shape of a
body due to deformation. There are several ways to define and
quantify it, none of which are fundamentally superior to the
others. The choice is usually dictated by the problem at hand

and by what aspects of it one wants to highlight more easily. In
this appendix, four such definitions are illustrated. In all cases,
strain is described by a second-order tensor.

The deformation gradient ¯̄F , which has been repeatedly
referenced in the body of this paper, is a rather intuitive
measure of strain:

¯̄F (X) = ∇X ϕ(X), (A2a)

Fij = xi,j = ∂xi

∂Xj

, (A2b)

where ∇X is the Lagrangian del operator and the comma
followed by an index notation conventionally denotes a partial
derivative in Lagrangian coordinates. One should note that ¯̄F
contains information on rotation, not only stretch. This can
turn out to be problematic in the study of stress and strain in a
body. It is however possible to perform a polar decomposition,
factoring out the influence of rotation. There are two variants
of this process:

¯̄F = ¯̄R · ¯̄U = ¯̄V · ¯̄R, (A3)

where ¯̄R is a rotation, and ¯̄U =
√

¯̄FT ¯̄F and ¯̄V =
√

¯̄F ¯̄FT are
symmetric, positive-definite tensors called the right and left
stretches.

Another description of strain is the right Cauchy-Green
strain tensor ¯̄C, defined as

¯̄C = ¯̄FT ¯̄F, (A4a)

Cij = FkiFkj , (A4b)

where, by the Einstein convention, repeated indices imply
summation. By its nature, the information on rotations is left
out, isolating the one on stretches. This makes the Cauchy-
Green strain a more useful quantity in many cases.

A third option is the infinitesimal strain tensor ¯̄E:

¯̄E = 1
2 ( ¯̄C − ¯̄I ) − 1

2 (∇Xu)T ∇Xu, (A5a)

Eij = 1
2 (FkiFkj − δij ) − 1

2 (ui,juj,i), (A5b)

where ¯̄I is the identity tensor. ¯̄E contains small-strain terms and
quadratic terms, which make it also independent of rotation.
If the quadratic terms are neglected (small deformations), ¯̄E
encodes almost the same information as ¯̄C. The difference lies
in the fact that ¯̄E has a linear dependence on displacement,
where ¯̄C depends on it nonlinearly. Moreover, for small
deformations (or, to better put it, small rotations), ¯̄E is
practically indistinguishable from the well-known engineering
strain tensor ¯̄ε, defined as

¯̄ε = 1
2 ( ¯̄F + ¯̄FT ) − ¯̄I, (A6a)

εij = 1
2 (Fij + Fji) − δij = 1

2 (ui,j + uj,i). (A6b)

2. Measures of stress

Contrary to strain, there is arguably one definition of stress
that is most natural: the Cauchy (or “true”) stress tensor ¯̄σ , an
inherently Eulerian quantity defined as

t(n̂,x) = ¯̄σ (x)n̂, (A7)
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where t is the traction (surface force) field and n̂ is the surface
unit vector. Conceptually, Cauchy stress represents a force
per unit area, where the infinitesimal area element accounted
for is in the current configuration. This is in contrast to the
engineering stress, where the area is a fixed reference.

In the Lagrangian frame, it is more appropriate to employ
the first and second Piola-Kirchhoff stress tensors, ¯̄P and ¯̄S,
respectively:

¯̄P = (det ¯̄F ) ¯̄σ ¯̄F−T , (A8)

¯̄S = ¯̄F−1 ¯̄P. (A9)

The advantage of using the second Piola-Kirchhoff stress
tensor—besides it being symmetric—is that, contrary to
Cauchy stress, it factors out the influence of body rotations,
being defined in Lagrangian coordinates (the analogy with
Cauchy-Green and infinitesimal strain is evident). On the other
hand, the first Piola-Kirchhoff stress tensor is not symmetric,
and is conceptually a generalization of the engineering stress,
as it relates the force in the deformed configuration to
infinitesimal areas in the initial configuration.

3. Conservation of mass and momentum

In continuum mechanics, conservation laws can be ex-
pressed in a localized way, either in the Eulerian or in the
Lagrangian frame. For example, conservation of mass takes
the form of the inherently Eulerian continuity condition

∂ρ

∂t
+ ∇x · (ρv) = 0, (A10)

where ∇x is the del operator in Eulerian coordinates, and
ρ(x,t) and v(x,t) are the spatial mass density and velocity
fields, respectively. The same law can also be expressed in its
Lagrangian form by use of the deformation gradient:

ρm(X,t) det ¯̄F (X,t) = ρ0(X), (A11)

where ρm is the Lagrangian analog of the spatial mass density
field, and ρ0 is the reference Lagrangian mass density field.

Conservation of momentum is most generally expressed
by the well-known Navier-Stokes equation, which is more
naturally Eulerian. For elastic bodies, however, it can be
simplified to

ρ v̇ = ∇x · ¯̄σ + ρ b, (A12)

which in Lagrangian coordinates reads

ρ0 ϕ̈ = ∇X · ¯̄P + ρ0 bm. (A13)

In the preceding equations, b and bm are spatial body force
fields—the former Eulerian, the latter Lagrangian.

4. On material derivatives

In the previous section, both the Leibniz and Newton
(dot) notations were used for time derivatives. This choice
serves to highlight an important distinction between spatial and
material quantities. The term “total time derivative” indicates
a rate of change from the point of view of an observer
following each material point individually, i.e., it is the time
derivative computed keeping the Lagrangian coordinates X

fixed. It can also be called material, substantial, or convective
time derivative. There are no counterintuitive implications for
material fields. In fact, given one such field B(X,t) and using
the Newton notation for total time derivative

Ḃ(X,t) = ∂

∂t
B(X,t). (A14)

Spatial coordinates, however, change with time in a way
described by the motion ϕ, which relates them to the material
frame through x = ϕ(X,t). Then, the total time derivative of a
spatial field �(x,t) is not simply ∂

∂t
�(x,t), but instead

�̇(x,t) =
[

∂

∂t
�(ϕ(X,t),t)

]
X=ψ(x,t)

= [�̇m(X,t)]X=ψ(x,t) = [�̇m]s , (A15)

where the m and s subscripts indicate material and spatial
descriptions, and ψ is the inverse deformation map, i.e.,
that which maps the deformed body back to the original
configuration: ψ(ϕ(X,t),t) = X. It is insufficient to simply
take the partial time derivative of a spatial field because the
time dependence of the Eulerian frame would be overlooked.
This fact is more apparent when examining the familiar
concepts of velocity V and acceleration A of a material point.
These are inherently Lagrangian quantities, easily defined as

V(X,t) = ∂

∂t
ϕ(X,t), (A16)

A(X,t) = ∂2

∂t2
ϕ(X,t). (A17)

When the spatial descriptions of these fields are required, care
must be taken in taking the total time derivative appropriately.
Thus spatial velocity v and acceleration a become

v(x,t) =
[

∂

∂t
ϕ(X,t)

]
X=ψ(x,t)

, (A18)

a(x,t) =
[

∂2

∂t2
ϕ(X,t)

]
X=ψ(x,t)

. (A19)

If the spatial velocity v is known, it can be proven that it
is possible to compute the total time derivative of an arbitrary
spatial field, be it scalar (φ) or vectorial (w):

φ̇ = ∂

∂t
φ + ∇x φ · v, (A20a)

ẇ = ∂

∂t
w + (∇x w)v. (A20b)

In fact, this applies to the spatial acceleration field as well,
which can be rewritten as

a = ∂

∂t
v + (∇x v)v. (A21)

It has now become apparent that the spatial description of
acceleration is a nonlinear function of spatial velocity and its
derivatives (and, therefore, of displacement).

5. Elastic material behavior

When solving continuum mechanics problems, it is neces-
sary to specify material constitutive relations relating stress to
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strain in order to have a determined problem. This section
is concerned exclusively with elastic solids. The simplest
material behavior is the tensorial version of Hooke’s law, which
models an isotropic, linear elastic material. It does not matter
much which definitions of stress and strain are used, as in this
model’s range of validity the differences between definitions
vanish. Thus one can equally write

¯̄ε = 1

EY

[(1 + ν) ¯̄σ − ν ¯̄I Tr ¯̄σ ], (A22a)

¯̄E = 1

EY

[(1 + ν) ¯̄S − ν ¯̄I Tr ¯̄S], (A22b)

where EY and ν are Young’s modulus and Poisson’s ratio. The
relation is readily inverted to obtain stress as a function of
strain. Componentwise, it reads

σij = EY

1 + ν

(
εij + ν

1 − 2ν
δij εkk

)
. (A23)

More generally, anisotropy can be described by introducing
the stiffness tensor C. This is a fourth-rank quantity relating
stress to strain as follows:

¯̄σ = ¯̄C : ¯̄ε, (A24)

where the : operator denotes a tensorial double-dot product. As
in the previous case, it does not matter which stress or strain
definition is employed, provided the initial configuration is
stress-free. More rigorously, the stiffness tensor can be related
to a material stress response function, e.g., the second Piola-
Kirchhoff stress response function Ŝ, defined as ¯̄S(X,t) =
Ŝ( ¯̄F (X,t),X):

Cijkl = ∂Ŝij

∂Fkl

( ¯̄I ). (A25)

APPENDIX B: METRIC TENSOR COMPONENTS

By substituting the expressions for ¯̄F as a function of
displacement Eq. (7) and det ¯̄F as a function of density
variation Eq. (8),

¯̄F = ¯̄I + Re[(∇Xu)ei�t ], (B1a)

det ¯̄F = [1 + Re(�ρ ei�t/ρ0)]−1, (B1b)

into the TO formula ¯̄g = ¯̄F ¯̄FT / det ¯̄F , ¯̄g = ∑3
n=−3

¯̄gne
in�t is

obtained by writing

¯̄g = { ¯̄I + Re[(∇u)ei�t ]}{ ¯̄I + Re[(∇u)T ei�t ]}
× [1 + Re(�ρ ei�t/ρ0)], (B2)

where the X subscript has been dropped from the gradient for
ease of reading. In particular, the four metric coefficients are

¯̄g0 = ¯̄I + 1

2
Re

{
(∇u)(∇u)† + �ρ

ρ0
[(∇u)∗ + (∇u)†]

}
,

(B3a)

¯̄g1 = (∇u) + (∇u)T

2
+ �ρ

2ρ0

{
¯̄I + 1

2
Re[(∇u)(∇u)†]

}

+ �ρ∗

ρ0

(∇u)(∇u)T

8
, (B3b)

¯̄g2 = (∇u)(∇u)T

4
+ �ρ

ρ0

(∇u) + (∇u)T

4
, (B3c)

¯̄g3 = �ρ

ρ0

(∇u)(∇u)T

8
, (B3d)

where the † sign indicates the conjugate transpose operator.
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