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Singularities and internal rotational dynamics of electron beams
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We study the internal rotational dynamics of electronic beams in relation to the phase singularities of their
wave functions. Given their complex singularity structure, Hermite-Gaussian beams and other superpositions of
Laguerre-Gaussian modes are studied here. We show that by inspecting the lowest nonvanishing terms of the
wave function near the singularity, it is possible to infer the structure of the Bohmian streamlines. Conversely,
starting from a map of the electron’s Bohmian velocities, we demonstrate that it is possible to derive the form of
the electron’s wave function near the singularity. We outline a procedure that could yield an experimental method
to determine the main parameters of the electron’s wave function close to a singularity.
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I. INTRODUCTION

The charged particle subject to a uniform and static
magnetic field [1–3] is at the heart of many physical theories.
The quantum Hall [4] and related effects such as de Haas–van
Alphen effect [5], Shubnikov–de Haas oscillations [6], and
the fractional quantum Hall effect [7] cannot be understood
without it. However, solid-state systems are too complex to
provide precise information about the internal dynamics of
the Landau levels. Inspired by optical vortex beams, electron
vortex beams have recently gained attention [8–16] not only
because they are expected to provide new capabilities to
electron microscopes, but also for allowing the observation of
the electrons’ isolated quantum states. The concept of vortex
beam has even been extended to two-level atom beams [17].

Whereas electron vortex beams may be understood as so-
lutions of the Schrödinger equation, their optical counterparts
are paraxial solutions of the Helmholtz equation [11–13]. In
contrast to solid-state systems, Laguerre-Gaussian (LG) beams
allow for more precise and accurate observation of the internal
dynamics of the Landau levels because they are generated in
the rather controlled environment of a transmission electron
microscope (TEM).

Among other techniques, electron vortex beams with a
helical wave front carrying a large orbital angular momentum
(as LG beams) are produced passing a standard electron beam
through a holographic mask in TEMs [11–13,18]. For example,
LG beams are created by using a diffraction grating with a
dislocation [13] that confers electrons a certain orbital angular
momentum (OAM). In order to get actual Fock-Darwin states,
the beam waist is chosen to match their diameter in a region
where the axial magnetic field is uniform. When LG beams
propagate along the direction of a uniform magnetic field,
they behave as stable solutions of the Schrödinger equation.
LG beams correspond in fact to the Fock-Darwin states that
in turn are stationary solutions of the Shrödinger equation
of a two-dimensional (2D) charged particle in a magnetic
field. Thereby most of their features remain constant and, as
for their optical counterparts, the beam profile is maintained
as electrons propagate. Among these quantities, the OAM is
preserved.

Bessel electron beams [19], Airy beams [20], and Hermite-
Gaussian (HG) beams [21] have been studied and produced in
the laboratory. HG modes, for example, may serve to probe the
OAM of electron beams. All of these beams can be understood
as linear combinations of LG states carrying different amounts
of OAM.

Phase singularities play a crucial role in the formation of
vortices in light. They have been widely studied since the
pioneering works of Dirac [22], Aharonov and Bohm [23],
Nye [24], and Berry [25]. Mathematically, optical singularities
are regions in the domain of the electromagnetic field where
the phase is indeterminate; as a consequence the field vanishes
in these regions of space. Phase singularities are also present in
electron beams and manifest themselves as vortices of density
currents that turn around a zero of the wave function. Due
to their cylindrical symmetry, LG beams can be made to
have large OAM. Their wave front spirals around a phase
singularity located at the center of the wave front [26,27].
Singularities may be characterized by their topological charge,
i.e., an integer number that counts the number of times the wave
front makes a full revolution in one wavelength. In the case of
LG beams and other eigenstates of the OAM, the topological
charge matches the OAM. Some linear combinations of LG
modes are very interesting in this regard because, not carrying
a distinctive angular momentum, they may present rich and
complex singularity arrangements. Around each singularity, a
density current vortex is formed whose properties fully depend
on the mathematical form of the singularity.

Given the large amount of knowledge on optical vortices,
they were the first candidates for OAM-based spectroscopic
techniques. However, optical techniques have been proven
to be very inefficient, owing to the weak optical multipolar
transitions [28]. In contrast, it has been theoretically [29,30]
and experimentally [15] demonstrated that the OAM of
electron beams can be transferred to atomic electrons having
an observable effect on the magnetic circular dichroism. It has
also been suggested that by creating different superpositions
of LG beams [31], it is possible to tailor the internal electron
currents. For instance, by superimposing various LG states, it
is possible to produce off-axis density current vortices [19].
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This would allow addressing specific atoms in the sample by
novel TEM techniques such as chiral-specific, electron vortex
beam spectroscopy [32].

In this paper, we study the relation between the internal
rotational dynamics of electron beams and their singularities.
We study the features of the canonical and kinetic currents
[31,33] close to the phase singularities. We show that the
properties of the electron density currents are completely
determined by the singularities’ structure and topological
charge. To prove our results, we have studied HG and related
modes. The type of states that give rise to stable vortex
excitations in Bose-Einstein condensates (BECs) [19] are also
studied here given their interesting singularity structure.

Our results show that the mathematical structure of each
singularity completely determines the vortex structure in its
vicinity. In particular, we demonstrate that it is possible
to guess the shape of the Bohmian trajectories close to a
singularity by inspecting the wave function’s structure near
it. Conversely, we show that it is possible to obtain the
wave function’s mathematical structure through the Bohmian
streamlines around a vortex. This could lead to an experimental
method to determine the electron’s wave function close to a
singularity.

This paper is organized as follows. In Sec. II, we study
Fock-Darwin states and introduce the rising and lowering
operators that generate them. These operators are very practical
for obtaining general expressions of the kinetic and canonical
density currents in superpositions of LG modes. The math-
ematical form of HG and related modes as well as BEC
states are introduced in Sec. III. Section IV presents the main
results regarding the connection of the phase singularities’
structure and the kinetic and canonical density currents. In
Sec. VI, we apply these results to the characterization of the
the singularities found in HG and BEC modes. We present the
outline of a method to characterize the mathematical structure
of singularities from the Bohmian streamlines in Sec. VII.
In Sec. VIII, we summarize the results and propose general
conclusions.

II. LG MODES AND FOCK-DARWIN STATES

The starting point is the Hamiltonian of an electron in a
uniform magnetic field given by

Ĥ = 1

2m
( p̂ + e Â)2, (1)

where the vector potential in the symmetric gauge is given by

Â = −B

2
ŷ i + B

2
x̂ j . (2)

This particular choice makes the Hamiltonian (1) invariant
under rotations. By expanding the momentum and position
components, the Hamiltonian takes the form

Ĥ = 1

2m

(
p̂2

x + p̂2
y

)+ mω2

8
(x̂2 + ŷ2) + ω

2
(x̂p̂y − ŷp̂x),

(3)

where ω = eB/m is the cyclotron frequency, and the position
and momentum operators follow the standard commutation

relations [x̂,ŷ] = [p̂x,p̂y] = 0 and [x̂,p̂x] = [ŷ,p̂y] = i�. In
the equation above we immediately identify the z component
of the angular momentum, L̂z = �lz = x̂p̂y − ŷp̂x . A bit of
algebra shows that it commutes with the Hamiltonian, i.e.,
[Ĥ ,L̂z] = 0, and therefore must be a conserved quantity. This
is a direct consequence of the adopted gauge.

To simplify the Hamiltonian, we define the following rising
and lowering operators:

b̂ = 1

2
√

2lB

[
(x̂ + iŷ) + i

2

mω
(p̂x + ip̂y)

]
, (4)

b̂† = 1

2
√

2lB

[
(x̂ − iŷ) − i

2

mω
(p̂x − ip̂y)

]
, (5)

ĉ = 1

2
√

2lB

[
(x̂ − iŷ) + i

2

mω
(p̂x − ip̂y)

]
, (6)

ĉ† = 1

2
√

2lB

[
(x̂ + iŷ) − i

2

mω
(p̂x + ip̂y)

]
, (7)

where lB = √
�/mω is the magnetic length. It can readily be

verified that they follow the usual commutation rules [b̂,b̂†] =
[ĉ,ĉ†] = 1 and [b̂,ĉ] = [b̂†,ĉ†] = 0. From the definitions given
above, the Hamiltonian can be expressed in the compact form
of a quantum oscillator,

Ĥ = �ω
(
ĉ†ĉ + 1

2

)
. (8)

The number operators b̂†b̂ and ĉ†ĉ commute and there-
fore have simultaneous eigenstates. We therefore use their
eigenvalues to label the kets |l,n〉, where ĉ†ĉ|l,n〉 = l|l,n〉
and b̂†b̂|l,n〉 = n|l,n〉. Additionally, from the properties of
quantum oscillators, we know that l,n = 0,1,2, . . . ,∞. Given
that b̂ and ĉ follow the standard commutation rules of quantum
oscillators, we can take advantage of their properties as rising
and lowering operators and express any normalized state of
the charged particle as

|l,n〉 = (c†)l(b̂†)n√
l! n!

|0,0〉, (9)

where |0,0〉 is the ground state. These are the Fock-Darwin
states. They are degenerate energy eigenstates with energy
eigenvalues given by El = �ω(l + 1/2). Here it is clear that l

tags the Landau levels and n parametrizes the degeneracy. The
angular momentum may be conveniently expressed in terms
of the rising and lowering operators (4)–(7) as

l̂z = ĉ†ĉ − b̂†b̂. (10)

Since l̂z depends on the number operators, the state |l,n〉 is
also an eigenstate of the angular momentum, i.e., l̂z|l,n〉 =
m|l,n〉 = (l − n)|l,n〉, where m is the angular momentum
eigenvalue. As n and l are positive integers, the angular
momentum m might be negative, in contrast to the classical
case where the angular momentum is always positive. One of
the most striking implications of this fact is the existence of
states with negative OAM.
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The very well-known position-space wave function of
Fock-Darwin states is given by

ψLG
l,n (z,z∗) = 1√

2πlB
exp

(
−zz∗

4l2
B

)

×
⎧⎨
⎩

(−1)l
√

l!
n!

(
z∗√
2lB

)n−l
Ln−l

l

(
zz∗
2l2

B

)
, n � l

(−1)n
√

n!
l!

(
z√
2lB

)l−n
Ll−n

n

(
zz∗
2l2

B

)
, l � n,

(11)

where z = x + iy. The corresponding probability density is
given by

ρLG
l,n (r) = 1

2πl2
B

min(l,n)!

max(l,n)!

(
r2

2l2
B

)|l−n|

× exp

(
− r2

2l2
B

)[
L

|l−n|
min(l,n)

(
r2

2l2
B

)]2

, (12)

where z = r exp(iθ ) and r2 = x2 + y2 = |z|2. These are pre-
cisely the LG modes.

III. SUPERPOSITION OF LG MODES

Any beam can, in principle, be expressed as a linear
superposition of the LG mode as

ψ(x,y) =
∑
l,n

Al,nψ
LG
l,n (x,y), (13)

where

Al,n = 〈l,n|ψ〉 =
∫

dxdyψLG∗
l,n (x,y)ψ(x,y). (14)

A particular case is HG beams. HG electron beams have
been generated by means of mode converters [21] that add
or subtract units of the topological charge to an incident
beam. Therefore, a LG mode having nonvanishing angular
momentum and topological charge can be turned into a HG
mode with vanishing topological charge. An immediate appli-
cation of mode converters would then be mode discrimination.
Adding one charge unit to a given negatively charged vortex
would allow one to distinguish it from its positively charged
twin by comparing the otherwise identical spatial intensity
distributions [21].

HG beams can be thought of as stationary solutions
of a 2D isotropic oscillator. Their wave function is
given by

ψHG
j,k (x,y) = 1√

2π2j 2kj !k!lB
exp

(
−x2 + y2

4l2
B

)

×Hj

(
x√
2lB

)
Hk

(
y√
2lB

)
. (15)

Using the relation between Hermite and Laguerre 2D
polynomials [34],

Hj (x)Hk(y) = ik
j+k∑
q=0

2qP (j−q,k−q)
q (0)

{
(−1)qq!(x − iy)j+k−2qL

j+k−2q
q (x2 + y2), 2q � j + k

(−1)j+k−q(j + k − q)!(x + iy)2q−j−kL
2q−j−k

j+k−q (x2 + y2), 2q � j + k,
(16)

one can identify the Al,n coefficients for HG beams. Their
wave functions adopt the form

ψHG
j,k (x,y) =

j+k∑
q=0

Aj,k
q ψLG

q,j+k−q (x,y), (17)

where

Aj,k
q = 2q ik

√
q!(j + k − q)!

2j 2kj !k!
P (j−q,k−q)

q (0), (18)

and P
j−q,k−q
q (0) are the Jacobi polynomials. From Eq. (17),

we can readily calculate the time-dependent HG states,

ψHG
j,k (x,y,t) =

j+k∑
q=0

Aj,k
q exp

[
−iω

(
q + 1

2

)
t

]
ψLG

q,j+k−q (x,y).

(19)

In general, HG beams have the structure of balanced
states [35], i.e., they are formed of linear combinations of
LG beams where states having opposite angular momentum
participate with the same weight. Thereby, HG beams have
vanishing overall angular momentum. However, it is possible
to separate HG beams in a negative, vanishing, and positive part

as

ψHG
j,k = ψ−HG

j,k + ψ0HG
j,k + ψ+HG

j,k . (20)

These are correspondingly formed of LG states having nega-
tive, vanishing, and positive angular momenta. Nevertheless,
they are not necessarily angular momentum eigenstates. In
pure HG beams, phase singularities are arranged as lines with
vanishing topological charge. Conversely, the negative and
positive parts of the HG states possess phase singularities
arranged as isolated points with different topological charges.
We are particularly interested in these states because of their
rich and complex singularity structure.

The vanishing part of an HG beam is given by

ψ0HG
j,k (x,y,t)

= A
j,k

(j+k)/2 exp

(
−i

j + k + 1

2
ωt

)

×
{
ψLG

(j+k)/2,(j+k)/2(x,y), j + k even
0, j + k is odd.

(21)

The positive and negative parts can be expressed as

ψ±HG
j,k (x,y,t) =

q±
max∑

q=q±
min

Aj,k
q e−i(q+ 1

2 )ωtψLG
q,j+k−q (x,y), (22)
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where

q−
min = 0, (23)

q−
max = int

(
j + k

2

)
− p, (24)

q+
min = int

(
j + k

2

)
+ p, (25)

q+
max = j + k, (26)

with p = 1 if j + k is even, and p = 0 if j + k is odd. Pure
HG beams are generated for qmin = 0 and qmax = j + k.

Other superpositions of LG modes, such as the ones given
by

ψ+BEC
n = 1√

5
ψLG

0,0 + 2√
5
ψLG

n,0 , (27)

ψ−BEC
n = 1√

5
ψLG

0,0 + 2√
5
ψLG

0,n , (28)

yield interesting singularity arrangements. It has been proved
that their optical analogues have n vortices located at equally
spaced points around the center. Their vortex structure has
been studied in optical beams [36] and plays an important role
in Bose-Einstein condensates stirred with a laser beam [35,37].

IV. TOPOLOGICAL CHARGE OF ELECTRON BEAMS

Any point in the wave function’s domain where the
amplitude vanishes presents a singularity where the phase is
undefined. These are also called vortex singularities because
the wave function’s phase circulates around these points. The
singularity of a state ψ = |ψ |eiφ may be characterized by its
topological charge,

S = 1

2π

∮
C
∇φ · d l = 1

2π

∫ 2π

0

dφ

dθ
dθ, (29)

where C is a closed path around a point where ψ = |ψ | exp(iφ)
vanishes.

In the particular case of LG beams, the calculation of
the topological charge is straightforward. These states only
possess one singularity located in the symmetry axis of the
beam (z = 0). It can be easily verified that the Fock-Darwin
states in Eq. (11) have an (n − l)-fold zero in z = 0. In this
point, the LG modes vanish if l �= n and, consequently, the
phase is undefined. By setting z = r exp(iθ ) in Eq. (11), we
notice that the wave function’s phase is φ = (l − n)θ and, from
Eq. (29), the topological charge is given by

SLG
l,n = (l − n). (30)

Thus, the topological charge of the singularity in LG states is
identical to the angular momentum. The structure of the LG
modes in the vicinity of the singularity is listed in rows 1 and
2 of Table I.

In beams whose wave functions are not eigenstates of the
angular momentum, singularities may have a more involved
structure. An arbitrary state ψ may have a number of phase
singularities, z1 = x1 + iy1, z2 = x2 + iy2, . . ., zn = xn + iyn.
Expanding the wave function around one of them, say zj , up

to the lowest nontrivial power, we obtain

ψ = a[γX′ + iβY ′]s . (31)

The coordinates X = x − xj and Y = y − yj belong to a
frame oriented along the singularity’s symmetry axes and
whose origin is located in the singularity. If the singularity’s
symmetry axes form a ν angle with respect to the standard
frame, then X′ = cos νX − sin νY , Y ′ = cos νY + sin νX,
where X′ and Y ′ are in the standard reference frame. The
γ and β parameters are real and a = |a| exp(iα) is a complex
number. The wave function will have elliptical symmetry and,
in general, it will not be aligned with the standard reference
frame. Although the wave function may have other forms in
the vicinity of a singularity, (31) is general enough to allow
the analysis of the wave functions presented here.

In order to perform a closed integral (29) around the
singularity and since, in general, γ �= β, it is convenient to
set

z̄ − z̄j = |γ |(x − xj ) + i|β|(y − yj ) = r exp(iϕ). (32)

Performing the closed integral around a circle in the z̄

variable (0 � ϕ � 2π ) is equivalent to integrating the original
z variables around an ellipse (0 � θ � 2π ) centered in zj and
whose semimajor and semiminor axes are γ and β.

Three different cases must be considered: (1) γβ > 0, (2)
γβ < 0, and (3) γβ = 0. If γβ > 0, then the wave function
(31) can be approximated by ψ = ±|a|z̄s = ±|a|rs exp(iα +
sϕ). Therefore, the wave function’s phase in z̄ = z̄j is φ =
(1 ∓ 1)π/2 + α + sϕ. Inserting the phase in the integral (29),
the topological charge yields

S = 1

2π

∫
dφ = 1

2π
s

∫ 2π

0
dϕ = s, γβ > 0. (33)

Similarly, if γβ < 0, the singularity is located in the iso-
lated point z̄∗ = z̄∗

j . Thereby, the first nonvanishing term of
the wave-function expansion is given by ψ = ±|a|(z̄∗)s =
±|a|rs exp(iα − sϕ) and the topological charge yields

S = 1

2π

∫
dφ = − 1

2π
s

∫ 2π

0
dϕ = −s, γβ < 0. (34)

We have quite a different situation when γβ = 0. In this case,
the phase of the wave function close to the singularity is
constant. If γ = 0, then φ = π/2, and if β = 0, then φ = 0.
In either case, the phase is constant and therefore

S = 1

2π

∫
dφ = 0, γβ = 0. (35)

V. KINETIC AND CANONICAL CURRENTS

In most quantum mechanical systems, the canonical mo-
mentum p̂ is proportional to the velocity operator v̂. However,
when the effect of the magnetic field is introduced, this is no
longer true due to extra terms arising from the vector potential
A. These terms strongly depend on the gauge choice. One can
then distinguish two different kinds of momenta: the canonical
momentum p̂ and the kinetic momentum mv̂ [31,33]. One
can accordingly compute two types of density current: the
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TABLE I. List of singularities. The first column presents the state.

ψ zj S limz→zj
ψ γβ

ψLG
l,n ,

0 SLG
l,n = l − n l!

πn!(2l2
B
)n−l L

n−l
l (0)[(x − xj ) − i(y − yj )]n−l γβ < 0

n > l

ψLG
l,n ,

0 SLG
l,n = l − n n!

πl!(2l2
B
)l−n Ll−n

n (0)[(x − xj ) + i(y − yj )]l−n γβ > 0
l > n

ψHG
3,3 0 + i0 SHG

3,3 = 0 3
2l3

B

√
2π

(x − xj )(y − yj ) γβ = 0

ψHG
3,3 0 + id,d �= 0 SHG

3,3 = 0 − d

(
d2−3l2

B

)
2l5

B

√
2π

e
− d2

4l2
B (x − xj ) γβ = 0

ψHG
3,3 d + i0,d �= 0 SHG

3,3 = 0 − d

(
d2−3l2

B

)
2l5

B

√
2π

e
− d2

4l2
B (y − yj ) γβ = 0

ψHG
3,3 ±√

3lB + id SHG
3,3 = 0 − d

(
d2−3l2

B

)
2l5

B

√
2π

e
− d2

4l2
B

− 9
4 {

(x − xj ) ∓ 3
[ 2lB

d
− d

lB

(
1 − 4l2

B

d2−3l2
B

)]
(y − yj )

}
γβ = 0

ψHG
3,3 d ± i

√
3lB SHG

3,3 = 0 − d

(
d2−3l2

B

)
2l5

B

√
2π

e
− d2

4l2
B

− 9
4 {∓ 3

[ 2lB
d

− d

lB

(
1 − 4l2

B

d2−3l2
B

)]
(x − xj )(y − yj )

}
γβ = 0

ψ−HG
3,3 0 S−HG

3,3 = −2 3i

8
√

2πl3
B

[(x − xj ) − i(y − yj )]2 γβ < 0

ψ−HG
3,3 2lB

√
3

2+√
2
einπ/4, S−HG

3,3 = −1 − 3
2l2

B

ie
3√
2
−3
√

3(10−7
√

2)
π

[
(x − xj ) + i

2 (1 − √
2)(y − yj )

]
γβ < 0

n = 0,2,4,6

ψ−HG
3,3 2lB

√
3

2−√
2
einπ/4, S−HG

3,3 = +1 3
2l2

B

ie
−3− 3√

2

√
3(10+7

√
2)

π

[
(x − xj ) + i

2 (1 + √
2)(y − yj )

]
γβ > 0

n = 0,2,4,6

ψ−HG
3,3

√
6lBeinπ/4, S−HG

3,3 = 0
3i
√

3
2π

8l2
B

e3/2 [(x − xj ) − (y − yj )] γβ = 0

n = 1,3,5,7

ψ+HG
3,3 0 S+HG

3,3 = +2 − 3i

8l3
B

√
2π

[(x − xj ) + i(y − yj )]2

ψ+HG
3,3 2lB

√
3

2+√
2
,einπ/4, S+HG

3,3 = +1 3
2l2

B

ie
3√
2
−3
√

3(10−7
√

2)
π

[
(x − xj ) − i

2 (1 − √
2)(y − yj )

]
γβ > 0

n = 0,2,4,6

ψ+HG
3,3 2lB

√
3

2−√
2
einπ/4, S+HG

3,3 = −1 − 3
2l2

B

ie
−3− 3√

2

√
3(10+7

√
2)

π
[(x − xj ) − i

2 (1 + √
2)(y − yj )] γβ < 0

n = 0,2,4,6

ψ+HG
3,3

√
6lBeinπ/4, S+HG

3,3 = 0 − 3i
√

3
2π

8l2
B

e3/2 [(x − xj ) − (y − yj )] γβ = 0

n = 1,3,5,7

ψ−BEC
3

3
√

2
√

3lBeinπ/3, S−BEC
3 = −1 − 3√3(

√
3+3i)e

− 1
2

3
√

3
2

211/6l2
B

√
5π

[(x − xj ) − i(y − yj )] γβ < 0

n = 1,3,5

ψ+BEC
3

3
√

2
√

3lBeinπ/3, S+BEC
3 = +1 − 3√3(

√
3+3i)e

− 1
2

3
√

3
2

211/6l2
B

√
5π

[(x − xj ) + i(y − yj )] γβ > 0

n = 1,3,5

canonical density currents

JC = Re

[
ψ∗(x,y,t)

(
−i

�

m
∇
)

ψ(x,y,t)

]

= Re

[
ψ∗(x,y,t)〈x,y| p̂

m
|ψ〉
]
, (36)

and the kinetic density current

JK = Re

[
ψ∗(x,y,t)

(
−i

�

m
∇ + e

m
A
)

ψ(x,y,t)

]
= Re[ψ∗(x,y,t)〈x,y|v̂|ψ〉], (37)

where v̂ = ( p̂ + e Â)/m is the velocity operator. These cur-
rents, especially the kinetic one, are of big experimental

significance. The kinetic density current is associated to the
Bohmian velocity by vK = JK/ρ. In turn, the Bohmian
trajectories arising from the vK streamlines can be measured
by averaging over large numbers of identical single-particle
events [15,38,39].

The relation that S holds with the kinetic and canonical
density current is of particular interest to the present work.
It can be easily shown that the topological charge may be
associated to the canonical density current by

S = m

2π�

∮
C
vC · d l, (38)

where the velocity vC = JC/ρ is the canonical version of
the Bohmian velocity. As the canonical and kinetic currents
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only differ by a term proportional to the vector potential, the
Bohmian velocity is also connected to the topological charge
through the relation

S = m

2π�

∮
C
vK · d l − e

2π�
B. (39)

In the previous expression, B is the magnetic flux passing
through the surface enclosed by C. If C is very close to the
singularity, then B ≈ 0 and the topological charge can be
estimated entirely from the closed integral of vK .

Close to a singularity of the form (31), the canonical current
components take the form

JC
x = −S|γβ||a|2 �

m
|z̄ − z̄j |2(s−1)(y − yj ), (40)

JC
y = S|γβ||a|2 �

m
|z̄ − z̄j |2(s−1)(x − xj ). (41)

From these expressions, it is clear that the canonical current
close to the singularity spins in the direction indicated
by the topological charge. Therefore, positive and negative
topological charges yield counterclockwise and clockwise
currents, respectively, whereas a vanishing topological charge
yields a vanishing canonical current. Moreover, the topological
charge can be determined from the shape of the Bohmian
streamlines. By inserting the vector potential (2) in (36), the
kinetic current components yield

JK
x =−|a|2

m
|z̄ − z̄j |2(s−1)

[
S�|γβ|(y − yj ) + |z̄ − z̄j |2 eBy

2

]
,

(42)

JK
y = |a|2

m
|z̄ − z̄j |2(s−1)

[
S�|γβ|(x − xj ) + |z̄ − z̄j |2 eBx

2

]
.

(43)

The components of the Bohmian velocity near the singularity
are therefore

vK
x =− 1

m|z̄ − z̄j |2
[
S�|γβ|(y − yj ) + |z̄ − z̄j |2 eBy

2

]
,

(44)

vK
y = 1

m|z̄ − z̄j |2
[
S�|γβ|(x − xj ) + |z̄ − z̄j |2 eBx

2

]
.

(45)

The last four equations show that close to the singularity, the
direction of the kinetic density current is also determined by
the the sign of the topological charge. Nevertheless, the kinetic
current might change direction away from the singularity when
S < 0. This is a characteristic feature of singularities having
the opposite topological charge sign compared to the classical
angular momentum of the electron. As we discuss below, this
is exactly true for LG beams. It is worthwhile to notice that
close to a singularity (|z̄ − z̄j | ≈ 0), the dominant contribution
comes from the term proportional to S. Therefore, the kinetic
and the canonical currents as well as the velocities are similar,

i.e., JK ≈ JC and

vK
x ≈ vC

x = − S�|γβ|
m|z̄ − z̄j |2 (y − yj ), (46)

vK
y ≈ vC

y = S�|γβ|
m|z̄ − z̄j |2 (x − xj ). (47)

In order to prove these results for the particular case of BECs
and HG beams, we express the canonical and kinetic currents
in terms of the LG beams. Calculating the explicit form of the
velocity operators in terms of the rising and lowering operators
(4)–(7), we obtain

v̂x = ∂Ĥ

∂p̂x

= 1

m

(
p̂x − mω

2
ŷ
)

= iωlB√
2

(ĉ† − ĉ), (48)

v̂y = ∂Ĥ

∂p̂y

= 1

m

(
p̂y + mω

2
x̂
)

= ωlB√
2

(ĉ† + ĉ). (49)

Similarly, for the momentum, we have

p̂x = i
mωlB

2
√

2
(ĉ† − ĉ + b̂† − b̂), (50)

p̂y = mωlB

2
√

2
(ĉ† + ĉ − b̂† − b̂). (51)

In order to gain insight into the behavior of these currents
in a simple case, let us first calculate them for pure LG beams.
Using the generalized Laguerre polynomials’ recurrence
relation

L
j−1
k+1(x) = j − x

k + 1
L

j

k (x) − x

k + 1
L

j+1
k−1(x), (52)

we obtain the kinetic density currents components for LG
beams,

JLG,K
x = Re

[
iωlB√

2
ψLG∗

l,n (x,y)〈x,y|ĉ† − ĉ|l,n〉
]

=−ρLG
l,n (x,y)

ωl2
B

r

(
l − n + r2

2l2
B

)
sin θ, (53)

JLG,K
y = Re

[
ωlB√

2
ψLG∗

l,n (x,y)〈x,y|ĉ† + ĉ|l,n〉
]

= ρLG
l,n (x,y)

ωl2
B

r

(
l − n + r2

2l2
B

)
cos θ, (54)

where r =
√

x2 + y2 and θ = arctan (y/x). These relations
are consistent with the results presented in Ref. [35]. Replacing
p̂x/m = v̂x + ωŷ/2 and p̂y/m = v̂y − ωx̂/2 into the kinetic
density current components, the canonical ones are readily
obtained,

JLG,C
x = Re

[
ψ∗

l,n(x,y)〈x,y|i mωlB√
2

(ĉ† − ĉ) + ω

2
ŷ|l,n〉

]

=−ρLG
l,n (r)

ωl2
B

r
(l − n) sin θ, (55)

JLG,C
y = Re

[
ψ∗

l,n(x,y)〈x,y|mωlB√
2

(ĉ† + ĉ) − ω

2
x̂|l,n〉

]

= ρLG
l,n (r)

ωl2
B

r
(l − n) cos θ. (56)
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These equations clearly show that both kinetic and canonical
density currents similarly circulate around the singularity
located at z = 0. They spin in clockwise or counterclockwise
direction depending on the sign of the angular momentum or
topological charge, S = l − n. This is a confirmation of the
rather general results obtained in Eqs. (40)–(43). Indeed, it has
been shown that for m = −1, the canonical density current
spins around the singularity in a counterclockwise direction,
for m = 1, it spins in a clockwise direction, and for m = 0, the
canonical current vanishes [19]. The kinetic density current,
however, exhibits a more complicated behavior. Whereas the
canonical density current spins only in the direction indicated
by the topological charge S, the kinetic density current
changes direction in the orbit r = lB

√
2(n − l) provided that

the angular momentum is negative (l − n < 0). This orbit
corresponds precisely to the classical trajectory of the electron.

All of these features are clearly illustrated by plotting the
path integrals,

ηK =
∮
C

J K · d l, (57)

ηC =
∮
C

J C · d l, (58)

where C is a circle of radius r . These two gauge-invariant
functions differ only by a multiple of the Dirac phase.

The gain of using these two functions becomes evident
when we calculate them in the proximity of a singularity of
the type (31), obtaining

ηC = 2πωl2
BSρ(r), (59)

ηK = 2πωl2
B

(
S + γ + β

2γβ

r2

2l2
B

)
ρ(r), (60)

where ρ(r) = |a|2r2s is the probability density close to the
singularity zj . These equations imply that the topological
charge can be computed analytically by taking the limit as
z approaches zj of either ηK/2πωl2

Bρ or ηC/2πωl2
Bρ. The

functions ηK and ηC are easier to calculate than the actual
phase change around a singularity

∫
dϕ that on many occasions

can only be computed numerically.
The particular case of LG beams is quite illustrative in this

matter. LG beams yield

ηK = 2πωl2
B

(
l − n + r2

2l2
B

)
ρLG

l,n (r), (61)

ηC = 2πωl2
B(l − n)ρLG

l,n (r). (62)

Notice that (59) and (60) reduce to the expressions above
provided that we set S = l − n and the integral is performed
around a circle, namely, γ = β = 1.

From the previous equations, we observe that while ηK > 0
for m = 0,1 for all r values, ηK > 0 with m = −1 presents
a sign change at r = √

2lB characteristic of negative OAM
states. The expression of ηC clearly shows that the canonical
currents spin in the expected direction given by the sign of the
angular momentum and the topological charge S. By taking
the limit r → 0 of ηC/2πωl2

Bρ or ηK/2πωl2
Bρ, we obtain

the topological charge S confirming the result in Eqs. (59)
and (60).

By inserting the velocity operators (48) and (49) into the
definition of the density current (37) for a general state of the
form (13), we get

JK
x = Re

[
i
ωlB√

2

∑
l,l′,n,n′

A∗
l′,n′Al,ne

iω(l′−l)tψLG∗
l′,n′

× (√l + 1ψLG
l+1,n −

√
l ψLG

l−1,n

)]
, (63)

JK
y = Re

[
ωlB√

2

∑
l,l′,n,n′

A∗
l′,n′Al,n eiω(l′−l)tψLG∗

l′,n′

× (√l + 1ψLG
l+1,n +

√
l ψLG

l−1,n

)]
. (64)

Similarly, inserting the components of the momentum operator

(50) and (51) into (36), the canonical current is readily obtained
as

JC
x = Re

[
i
ωlB

2
√

2

∑
l,l′,n,n′

A∗
l′,n′Al,ne

iω(l′−l)tψLG∗
l′,n′

× (√l + 1ψLG
l+1,n −

√
l ψLG

l−1,n

+ √
n + 1ψLG

l,n+1 − √
n ψLG

l,n−1

)]
, (65)

JC
y = Re

[
ωlB

2
√

2

∑
l,l′,n,n′

A∗
l′,n′Al,ne

iω(l′−l)tψLG∗
l′,n′

× (√l + 1ψLG
l+1,n +

√
l ψLG

l−1,n

− √
n + 1ψLG

l,n+1 − √
n ψLG

l,n−1

)]
. (66)

In the particular case of HG beams, the kinetic density

current is given by

JHG,K
x = Re

[
i
ωlB√

2

qmax∑
q,p=qmin

(
Aj,k

p

)∗
Aj,k

q eiω(p−q)tψ∗
p,j+k−p

× (
√

q + 1ψq+1,j+k−q − √
qψq−1,j+k−q )

]
, (67)

JHG,K
y = Re

[
ωlB√

2

qmax∑
q,p=qmin

(
Aj,k

p

)∗
Aj,k

q eiω(p−q)tψ∗
p,j+k−p

× (
√

q + 1ψq+1,j+k−q + √
qψq−1,j+k−q )

]
. (68)

For the canonical density current of HG beams, we have

JHG,C
x = Re

[
i
ωlB

2
√

2

qmax∑
q,p=qmin

(
Aj,k

p

)∗
Aj,k

q eiω(p−q)tψ∗
p,j+k−p

× (
√

q + 1ψq+1,j+k−q − √
qψq−1,j+k−q
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FIG. 1. Rotational dynamics of ψHG
3,3 . A vector field of the kinetic density current is superimposed to the density plot to the probability

density ρHG
3,3 . (a) The probability density ρHG

3,3 at t = 0. The dashed lines and the (purple) point indicate the position of the singularities SHG
3,3 .

(b),(c) The evolution of the probability density at t = π/4ω and t = π/2ω, respectively.

+
√

j + k − q + 1ψq,j+k−q+1

−
√

j + k − q − 1ψq,j+k−q−1)

]
, (69)

JHG,C
y = Re

[
ωlB

2
√

2

qmax∑
q,p=qmin

(
Aj,k

p

)∗
Aj,k

q eiω(p−q)tψ∗
p,j+k−p

× (
√

q + 1ψq+1,j+k−q + √
qψq−1,j+k−q

−
√

j + k − q + 1ψq,j+k−q+1

−
√

j + k − q − 1ψq,j+k−q−1)

]
. (70)

For a standard HG beam, qmin = 0 and qmax = j + k. Instead,

for the positive and negative part of HG beams, qmin and qmax

are given by Eqs. (23)–(26). In the following sections, the
expressions above will be very useful in exploring the vorticity
of density currents around singularities.

VI. RESULTS AND DISCUSSION

In this section, we wish to prove the general relations
between the singularities’ mathematical structure and the
kinetic and canonical currents in more involved electron
beams. In order to complex systems with a rich singularity
structure, we have chosen HG and BEC beams.

We begin by investigating ψHG
3,3 and ψ±HG

3,3 . The state ψHG
3,3

has the structure of a balanced beam given by

ψHG
3,3 = − i

4

(√
5ψLG

0,6 −
√

3ψLG
2,4 +

√
3ψLG

4,2 −
√

5ψLG
6,0

)
.

(71)

Substituting the explicit form of ψHG
3,3 into Eqs. (69) and

(70), the canonical density current vanishes JHG,C
3,3 = 0 in

the whole domain of the wave function. Thereby, the kinetic
density current JHG,K

3,3 = eB(−y i + x j )ρHG
3,3 /m, which only

contains the terms arising from the vector potential, spins in
the counterclockwise direction, as can be seen in Fig. 1. In
contrast to LG beams that have singularities in isolated points,
HG beams present singular points arranged as lines [27]. In
Fig. 1(a), we show the structure of the ψHG

3,3 singularities. They

can conveniently be grouped in one point [(purple) dot] and six
lines (dashed lines) listed in rows 3–7 of Table I. Except for the
point (row 3), all of these singularities can be put in the form
(31) where γβ = 0. Under the arguments presented in Secs. IV
and V, the canonical currents close to these singularities must
vanish as expected. Figures 1(a)–1(c) also show the time
evolution of the probability density ρHG

3,3 for times t = 0,
t = π/4ω, and t = π/2ω, respectively. Given that the beam
is a superposition of states with different eigenenergies, it
presents a nontrivial time evolution. In this case, the singularity
lines rotate in the counterclockwise direction, i.e., in the same
direction a classical electron would move under the action of a
perpendicular magnetic field. This behavior is observed in all
of the singularities presented from here on.

The singularities in states ψ±HG
3,3 have a completely different

structure. They can be expressed in terms of the LG states as

ψ−HG
3,3 = − i

4

(√
5ψLG

0,6 −
√

3ψLG
2,4

)
, (72)

ψ+HG
3,3 = − i

4

(√
3ψLG

4,2 −
√

5ψLG
6,0

)
. (73)

The above states have a total of 13 singularities arranged as
isolated points. These are shown in Figs. 2(a) and 3(a) as
dots and are listed in rows 8–15 in Table I. A more detailed
diagram of the four different types of singularities and their
corresponding topological charges is shown in Fig. 4. The
singularity located at the center z = 0 has a topological charge
S±

3,3 = ±2. Along the lines forming angles of 0◦, 90◦, 180◦,
and 270◦, we have two different types of singularities: the first
type with S±

3,3 = ±1 and the second with S±
3,3 = ∓1. Along

lines forming angles of 45◦, 135◦, 225◦, and 315◦ with the x

axis, we find the fourth kind of singularity having a vanishing
topological charge S±

3,3 = 0. By using Eqs. (67)–(70), we can
compute the components of the kinetic and canonical density
currents. The streamlines of the ψ+HG

3,3 kinetic density current,
namely the Bohmian trajectories, are presented in Figs. 2(a)
and 2(b), while Figs. 2(c) and 2(d) show the canonical
density current. Similarly, Figs. 3(a) and 3(b) plot the kinetic
density current and Figs. 3(c) and 3(d) plot the canonical
one for ψ−HG

3,3 . We immediately notice that in contrast to
ψ+HG

3,3 , the streamlines in ψ−HG
3,3 switch from a clockwise to a

counterclockwise direction as we move away from the center
of the beam. As it was discussed for LG beams, it is a distinctive
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FIG. 2. Rotational dynamics of ψ+HG
3,3 . (a),(b) The time evolution

of ρ+HG
3,3 and the vector field JK for t = 0 and t = π/8ω, respectively.

(c),(d) The time evolution of ρ+HG
3,3 and the vector field JC for t = 0

and t = π/8ω, respectively. The positions of the different kinds of
singularities are indicated with (colored) dots in (a).

FIG. 3. Internal rotational dynamics of ψ−HG
3,3 . (a),(b) The time

evolution of ρ−HG
3,3 and the vector field JK for t = 0 and t = π/8ω,

respectively. (c),(d) The time evolution of ρ−HG
3,3 and the vector

field JC for t = 0 and t = π/8ω, respectively. The positions of
the different kinds of singularities are indicated with (colored) dots
in (a).

FIG. 4. Position and topological charges of the ψ+HG
3,3 and ψ−HG

3,3

singularities. The position and spinning directions of the main types
of singularities are superimposed to the density plot to the probability
density ρ±HG

3,3 . These singularities are also shown in Figs. 2 and 1.

feature of singularities having the opposite topological charge
sign to the spinning direction of the classical electron.

The same vector fields close to the four types of singularities
are shown in Figs. 5 and 6 for ψ+HG

3,3 and ψ−HG
3,3 , respectively.

Only the canonical current is shown in this case because, given
the proximity to the singularities, the terms related to the vector
potential do not strongly distort the general form of the current
streamlines. In each case, we confirm that the canonical current
spins in the direction indicated by the topological charge.

Figures 7(a) and 7(b) show plots of ηK and ηC , respectively.
In this case, they are calculated through Eqs. (57) and (58)

FIG. 5. Singularities of ψ+HG
3,3 . The positions of the four main

types of ψ+HG
3,3 singularities are indicated with (colored) dots.

The density plot of the density probability ρ+HG
3,3 along with the

corresponding vector field JC are shown. (a)–(d) The vorticity of the
S+HG

3,3 = +2, S+HG
3,3 = +1, S+HG

3,3 = −1, and S+HG
3,3 = 0 topological

charges, respectively.
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FIG. 6. Singularities of ψ−HG
3,3 . The positions of the four main

types of ψ−HG
3,3 singularities are indicated with (colored) dots.

The density plot of the density probability ρ−HG
3,3 along with the

corresponding vector field JC are also shown. (a)–(d) show the
vorticity of the S−HG

3,3 = −2, S−HG
3,3 = −1, S−HG

3,3 = +1, and S−HG
3,3 =

0 topological charges, respectively.

integrating around a circle of radius r =
√

x2 + y2. In these
figures, it is possible to note that the kinetic density current
of the negative angular momentum part of ψHG

3,3 presents
a sign change that is consistent with the relative sign of

(a)

(b)

FIG. 7. ηK and ηC for ψHG
3,3 (orange), ψ+HG

3,3 (blue), and ψ−HG
3,3

(green) as functions of r = √x2 + y2. In the negative beam, ψ−HG
3,3 ηK

changes sign and ηC is symmetric with respect to the positive beam
ψ+HG

3,3 .

FIG. 8. Topological charges of the ψ−HG
3,3 and ψ+HG

3,3 singularities.
ηK/2πωl2

Bρ (solid lines) and ηC/2πωl2
Bρ (dashed lines) are plotted

as functions of r , the distance to the singularity. (a)–(d) show
ηC/2πl2

Bρ and ηK/2πl2
Bρ corresponding to the S±HG

3,3 = ±2, S±HG
3,3 =

±1, S±HG
3,3 = ∓1, and S±HG

3,3 = 0 singularities, respectively. The
singularities (a), (c), and (d) are approached along the angle θ = π/3,
and the one in (b) is approached along θ = 0.

the singularity’s topological charge compared to the angular
momentum of the classical electron. This same feature was
discussed above regarding the Bohmian trajectories observed
in Figs. 3 and 4.

Let us now turn our attention to the calculation of the
topological charge via the limit S = limr→0 ηK/2πωl2

Bρ =
limr→0 ηC/2πωl2

Bρ. In Fig. 8, we have plotted ηK/2πωl2
Bρ

and ηC/2πωl2
Bρ as functions of the distance to the singularity

r for the four types of singularities (shown in Figs. 5 and 6)
found in the ψ±HG

3,3 beams. Figures 8(a)–8(d) correspond to the
singularities listed in Table I in rows 8–11 for ψ−HG

3,3 and rows
12–15 for ψ+HG

3,3 . Given the high symmetry of S±HG
3,3 = ±2

[Fig. 8(a)], the corresponding ηK/2πωl2
Bρ and ηC/2πωl2

Bρ

were calculated exactly. However, in order to plot ηK/2πωl2
Bρ
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and ηC/2πωl2
Bρ for the three remaining singularities S±HG

3,3 =
±1, ∓ 1,0 with lower symmetry, a Taylor expansion of the
order of 12 in r around the singularity (r = 0) was used.
Even though such high-order expansions are needed to obtain
accurate plots, the calculation of the topological charge only
requires a Taylor expansion of the lowest nonvanishing order.
For example, expanding ηC/2πωl2

Bρ to the first order in r for

S−HG
3,3 = −1 around z = 2lB

√
3/(2 + √

2) + i0 with γ = 1

and β = (
√

2 − 1)/2 (see Table I, row 9), we get

ηC/2πωl2
Bρ ≈ −1 + r

12lB

√
3(2 +

√
2) cos θ

× [10
√

2 − 3 − (7 + 2
√

2) cos 2θ ]. (74)

Similarly for S−HG
3,3 = 1, expanding around z =

2lB

√
3/(2 − √

2) + i0 with γ = 1 and β = (1 + √
2)/2

(see Table I, row 10), we have

ηC/2πωl2
Bρ ≈ 1 + r

24lB

√
3(2 +

√
2)

× [(7 + 2
√

2) cos 3θ − (18
√

2 − 13) cos θ ],

(75)

and for S−HG
3,3 = 0, expanding around z = √

3 + i
√

3 with
γ = 1 and β = 0 (see Table I, row 10), we have

ηC/2πωl2
Bρ = 0. (76)

The three functions clearly reduce to their corresponding
topological charges when the limit r → 0 is taken.

To further prove the formulas obtained in Sec. V, we also
study BEC states. These have n singularities arranged as
isolated and equally spaced points. In Fig. 9, we illustrate the
time evolution of the ψ+BEC

3 beam. The vector field represents
the JK density currents in Figs. 9(a) and 9(b) and JC in
Figs. 9(c) and 9(d). Figure 10 shows the time evolution of
the ψ−BEC

3 beam. We observe again the features seen for
LG and HG beams: (i) in the positive beam ψ+BEC

3 , both
kinetic and canonical currents spin in the counterclockwise
direction, (ii) in the negative beam ψ−BEC

3 , the kinetic current
near the singularities spins in the clockwise direction, and (iii)
as we move away from the singularities, the counterclockwise
direction of the kinetic current is recovered. The positive beam
ψ+BEC

3 is not an energy eigenstate and therefore it rotates
in the counterclockwise direction as it evolves in time. The
negative beam, however, does not rotate since it is a stationary
state, composed of two LG beams with the same energy, �ω/2
(l = 0).

The behavior of the kinetic currents close to the singularities
is shown in Fig. 11 for ψ+BEC

3 [Fig. 11(a)] and ψ−BEC
3

[Fig. 11(b)] (see row 16 in Table I). We observe that the
direction of the kinetic current is determined again by the
sign of the topological charge.

Now, expanding ηC/2πωl2
Bρ and ηK/2πωl2

Bρ to the first
order, we obtain the ψ±BEC

3 topological charges. For S−BEC
3 =

FIG. 9. Rotational dynamics of ψ+BEC
3 . (a),(b) The time evolution

of ρ+BEC
3 and the vector field JK for t = 0 and t = π/6ω,

respectively. (c),(d) The time evolution of ρ+BEC
3 and the vector field

JC for t = 0 and t = π/6ω, respectively. The positions of the three
singularities are indicated with (orange) dots in (a).

FIG. 10. Rotational dynamics of ψ−BEC
3 . (a),(b) The time evo-

lution of ρ−BEC
3 and the vector field JK for t = 0 and t = π/6ω,

respectively. The singularities clearly revolve around the center in
the counterclockwise direction. (c),(d) The time evolution of ρ−BEC

3

and the vector field JC for t = 0 and t = π/6ω, respectively. The
positions of the three singularities are indicated with (orange) dots
in (a).
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FIG. 11. Topological charges and positions of the (a) ψ+BEC
3 and

(b) ψ−BEC
3 singularities. The position and the kinetic density currents’

spinning direction of the singularities are superimposed to the density
plot to the probability density ρ±BEC

3 . The vector plot indicates the
vector field of the kinetic density current JK . These singularities are
also shown in Figs. 9 and 10.

−1, we have γ = 1 and β = −1 (see row 16 in Table I),

ηC/2πωl2
Bρ ≈ ηK/2πωl2

Bρ

≈ −1 + r√
3lB

(
3

2

)1/3[
1 −
(

3

2

)1/3]

×
(

1√
3

cos θ + sin θ

)
. (77)

Similarly for the singularity S+BEC
3 = 1, we have γ = 1 and

β = 1 (see row 17 in Table I),

ηC/2πωl2
Bρ ≈ ηK/2πωl2

Bρ

≈ 1 − r√
3lB

(
3

2

)1/3[
1 −
(

3

2

)1/3]

×
(

1√
3

cos θ + sin θ

)
. (78)

In Figs. 12(a) and 12(b) we show plots of ηK and ηC as
functions of the distance to the center of the beam, respectively.
The general behavior of LG and HG beams (see Fig. 7)
is also observed for BEC beams. While ηK presents a sign
change only for beams with negative total topological change
(ψ−BEC

3 ), the sign of ηC always matches that of the total
topological charge. Again we observe that the limit of the

FIG. 12. ηK and ηC for ψBEC
3 (orange), ψ+BEC

3 (blue), and ψ−BEC
3

(green) as functions of r = √x2 + y2. In the negative beam ψ−BEC
3 ,

ηK changes sign and ηC is symmetric with respect to the positive
beam ψ+BEC

3 .

expressions above as the distance to the singularity approaches
zero is equal to the topological charge as can be seen in Fig. 13.

VII. FINDING THE MATHEMATICAL STRUCTURE OF A
SINGULARITY FROM THE BOHMIAN STREAMLINES

Using the previous relations, in this section we outline a
method to obtain the mathematical structure of the wave func-
tion near a singularity. Starting from the Bohmian streamlines,
we work backward obtaining the main parameters that define
the wave function.

FIG. 13. Topological charges of the ψ−BEC
3 and ψ+BEC

3 singu-
larities. ηK/2πωl2

Bρ (solid lines) and ηC/2πωl2
Bρ (dashed lines) are

plotted as functions of r , the distance to the singularity. The plot
is shown for the S±BEC

3 = ±1 singularity located in z = (2
√

3)1/3

exp(iπ/3). The singularity is approached along the angle θ = 0.
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As an example, let us consider the beam characterized by
the wave function

ψ(x,y) = 1

N l4
B

exp

(
−x2 + y2

4l2
B

)

×
{[√

3

2
(x − 3lB) + 1

2
(y − lB)

]

+ i
3

2

[√
3

2
(y − lB) − 1

2
(x − 3lB)

]}3

, (79)

where N =
√

(6 192 176 − 1 960 965
√

3)π/16 is a normal-
ization constant. From the structure of the wave function, it
is easy to show that it only has one singularity located in
xj = 3lB and yj = lb, with S = +3, γ = 1, β = 3/2, and it is
tilted 30◦ with respect to the x axis. The wave function (79)
can be expressed in terms of the LG modes as

ψ = A0,0ψ
LG
0,0 + A0,1ψ

LG
0,1 + A0,2ψ

LG
0,2 + A0,3ψ

LG
0,3

+A1,0ψ
LG
1,0 + A1,1ψ

LG
1,1 + A1,2ψ

LG
1,2 + A2,0ψ

LG
2,0

+A2,1ψ
LG
2,1 + A3,0ψ

LG
3,0 , (80)

where the coefficients are given by

A0,0 = 1

N

(
1

4
− 3i

16

)

× [(−247 − 138i) + (63 + 126i)
√

3]

√
π

2
, (81)

A0,1 =− 1

N

(
27

32
+ 3i

16

)
[(5 − 18i) + (6 + 7i)

√
3]

√
π,

(82)

A0,2 =− 1

N

(
9

32
− 3i

32

)
[(−3 + 2i) + (4 + 3i)

√
3]

√
π,

(83)

A0,3 = − 1

8N i

√
3π

2
, (84)

A1,0 =− 1

N

(
15

16
− 135i

32

)
[(−18 − 13i) + (1 + 6i)

√
3]

√
π,

(85)

A1,1 = 1

N

(
15

4
+ 15i

8

)
[3

√
3 − (1 + 4i)]

√
π

2
, (86)

A1,2 = 15

16N (
√

3 + i)

√
π

2
, (87)

A2,0 = 1

N

(
75

32
+ 225i

32

)
[(7 + 6i) − i

√
3]

√
π, (88)

A2,1 = 75

16N (
√

3 − i)

√
π

2
, (89)

A3,0 = −125

8N i

√
3π

2
. (90)

Using Eqs. (63)–(66), we calculate the kinetic and canonical
density currents shown in Fig. 14. Notice that the probability

FIG. 14. Rotational dynamics of ψ . (a),(b) The time evolution
of ρ = |ψ |2 and the vector field JK for t = 0 and t = π/6ω,
respectively. (c),(d) The time evolution of ρ and the vector field JC

for t = 0 and t = π/6ω, respectively. The positions of the singularity
zj = 3lB + ilB are indicated with an (orange) dot in (a).

density evolves by rotating in the counterclockwise direction.
In the same figure, we also show the position of the singularity
whose wave function we wish to characterize.

The starting point is a grid of 16 × 16 nodes centered in
the singularity. In each one of them, the values of the x and
y components of the Bohmian velocity are known. We have
intentionally added a 10% error to the velocity components. A
zoom of the Bohmian velocity field of ψ close to the singularity
is exhibited in Fig. 15.

FIG. 15. Bohmian velocity around the singularity zj = 3lB + ilB
of ψ . The position of the singularity is indicated with a dot. The
density plot of the density probability ρ = |ψ |2 and the corresponding
Bohmian velocity field vK are also shown.
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The topological charge is the first parameter that we extract
from this map. Given that the Bohmian streamlines spin in the
counterclockwise direction, S must be positive. It is readily
obtained through Eq. (39) by numerically integrating the
Bohmian velocity around a square centered in the singularity.
This procedure yields S = +3.0012, which is consistent with
the structure of the wave function in Eq. (79).

The remaining parameters are calculated as follows: adding
the squares of Eqs. (46) and (47), we obtain the equation of an
ellipse, (X

A

)2

+
(Y
B

)2

= 1, (91)

with semimajor and semiminor axes given by A = √|Sβ/γ |
and B = √|Sγ/β|, respectively. The normalized coordinates
X = X/R = (x − xj )/R and Y = Y/R = (y − yj )/R are in
a reference frame oriented along the singularity’s symmetry
axes and centered in the singularity. Bohmian velocities enter
the calculation through the normalizing length, given by

R =
√

�

m

4

√√√√(x − xj

vK
y

)2

+
(

y − yj

vK
x

)2

. (92)

As the orientation of the singularity is yet unknown, we
first calculate X ′ = X′/R and Y ′ = Y ′/R in the standard
frame. It is worthwhile to notice that the variables R and,
consequently, X ′ and Y ′ can be fully computed from the
Bohmian velocity map. Figure 16(a) shows a plot of the points
(X ′,Y ′) in the standard frame. From the tilt of the ellipse,
we calculate the angle formed by the singularity’s symmetry
axes and the standard frame. The angle that best aligns
the ellipse is ν = 32.31◦ = 0.5640 rad ≈ π/6 rad. After a
32.31◦ rotation, the variables in the singularity frame take the
form X = X ′ cos ν + Y ′ sin ν and Y = Y ′ cos ν − X ′ sin ν.
The new variables are plotted in Fig. 16(b).

By fitting Eq. (91) (see Fig. 17), we find the semimajor
and semiminor axes A = 2.105 and B = 1.418. The fitted
curve is shown in Figs. 16(a) and 16(b) with a solid line. The
topological charge S can be newly calculated as S = AB =
2.985. Finally, the ratio of the γ to the β parameters can be
determined from |β/γ | = A/B = 1.485.

All of these results are consistent with the structure of the
wave function (79).

VIII. CONCLUSIONS

We have investigated the relation between phase singu-
larities and the internal rotational dynamics in electron beams
subject to a constant and uniform magnetic field. To understand
different singularity configurations, we have studied super-
positions of LG modes having different angular momenta.
In particular, we have used HG beams and their positive
and negative angular momentum parts. BEC fields were also
examined given their regular singularity structures. We have
demonstrated that the wave function’s mathematical form in
the vicinity of a singularity plays a key role in shaping the
velocity profile of the Bohmian streamlines. The topological
charge, which is the main parameter defining the singularity’s
mathematical structure, can be analytically calculated from

(a)

(b)

FIG. 16. (a) Normalized coordinates X ′, Y ′ in the standard frame
and (b) normalized coordinates X , Y in the frame aligned with the
singularity’s symmetry axes. The symmetry axes form an angle of ν =
32.31◦ = 0.5640 rad ≈ π/6 rad with the X ′ axis. In both frames, the
fit is indicated with a solid line.

the lowest nonvanishing order of the wave function expanded
around the singularity’s position. Conversely, we show that
the shape of the Bohmian streamlines can be used to estimate
the mathematical structure of the singularity. The method
developed here could lead to an experimental procedure to
obtain the relevant parameters of the electron’s wave function
starting from a map of the Bohmian velocities.

FIG. 17. X 2 vs Y2 and fit Y2 = −mX 2 + c, m = −0.441762,
c = 1.99527.
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