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Self-similar localized pulses for the nonlinear Schrödinger equation
with distributed cubic-quintic nonlinearity
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We obtain the exact analytical self-similar bright-, dark-, and kink-solitary-wave solutions of the nonlinear
Schrödinger equation with localized inhomogeneous cubic-quintic nonlinearity by employing a similarity
transformation. This equation could be a model equation of stable pulse propagation beyond ultrashort range in
optical fiber communication systems in inhomogeneous media. We have investigated that the self-similar bright-
and dark-solitary-wave solitons show interesting compression and amplification features that can be controlled
by suitably changing the phase modulation parameter and consequently varying the nonlinear parameter. We
unearth a surprising connection between optical self-similar localized waves in graded-index inhomogeneous
media and solitons in homogeneous media with the same type of cubic-quintic nonlinearity. Finally, the stability
of the solutions is discussed numerically under finite initial perturbations.
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I. INTRODUCTION

For present-day applications in telecommunication and ul-
trafast signal routing systems and gradual and steady progress
in high-repetition-rate, beyond-ultrashort- (autosecond) pulse
sources based on fiber technology [1], it is very important to
study the management of the solitary-wave solutions of the
nonlinear Schrödinger equation (NLSE) family of equations
in optical fiber communication systems with distributed co-
efficients, such as group-velocity dispersion, distributed non-
linearity, and distributed gain and/or loss. In this context, the
presence of variable-dependent coefficients of dispersion and
higher-degree nonlinear terms in the considered model is more
realistic in various situations to handle the optical systems. The
reason for this is that constant-coefficient models can only
describe the propagation of wave groups in perfect systems.
The constant-coefficient nonlinear Schrödinger equation with
cubic-quintic nonlinearities and its stationary solitary-wave
solutions, such as solitons, have been extensively studied
in various fields such as Bose-Einstein condensates [2] and
especially nonlinear optical systems [3]. Soliton propagation in
nonlinear media [4] has attracted much interest in recent years
due to its extensive usage in the field of optical communication
and all-optical ultrafast switching devices [5]. It is well
known that the cubic-quintic NLSE [5] is a generic model
for describing the propagation of femtosecond optical pulses in
single-mode fibers [6]. Unlike the ideal uniform fiber material,
in a real fiber there is always some nonuniformity in the core
medium [7] due to many factors such as variation of lattice
parameters and diameter fluctuations. In optical fibers, varia-
tion of the nonlinearity can be achieved by varying the type
of dopants along the fiber. In such an inhomogeneous medium
(graded-index waveguide) for high-intensity optical pulse
propagation in Kerr and non-Kerr media we have to consider
higher-order nonlinearity, where the refractive index varies as
n(z,t) = n0 + n1f (z)t2 + n2γ1(z)I (z,t) − n4γ2(z)I 2(z,t) and
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the propagation of an optical beam in such a highly nonlinear
inhomogeneous waveguide can be described by the cubic-
quintic nonlinear Schrödinger equation (CQNLSE) [8]

i�z + β(z)

2
�tt + g1γ1(z)|�|2� + g2γ2(z)|�|4�

+ f (z)

2
t2� − i�(z)� = 0, (1)

where �(z,t) is a slowly varying complex envelope of the
electric field in the comoving frame, z is the normalized
distance representing the coordinate along the propagation
direction, and t is normalized time with the frame of reference
moving along the fiber at the group velocity. In addition,
β(z), γ1(z), and γ2(z) are the group-velocity dispersion, cubic
nonlinear, and quintic nonlinear parameters, respectively.
The inhomogeneous parameters f (z) and �(z) are related
to the phase modulation and the attenuation (loss) (� < 0)
or amplification (gain) (� > 0), respectively. All the above
parameters are functions of the propagation distance z. Here
n0 is the linear refractive index coefficient and n2 and n4 are
the nonlinear refractive index coefficients originating from,
respectively, third- and fifth-order susceptibility. The quintic
nonlinearity, which arises due to fifth-order susceptibility [9],
can be obtained in many optical materials such as semiconduc-
tors, semiconductor-doped glasses, polydiacctylene toluene
sulfonate, calcogenide glasses, and some transparent organic
materials.

To date, most of the theoretical and experimental studies
regarding self-similar optical pulse propagations and their
interactions in nonuniform graded-index fiber have focused
on using the inhomogeneous NLSE up to variable cubic
nonlinearity [10]. In this context, self-similarity of a complex
nonlinear system points to the presence of an internal order and
it is key to extracting physical insight about its evolution [7].
Such formal similarity techniques extend the toolbox available
to mathematical physicists and are of particular importance in
analyzing nonlinear problems described by nonlinear partial
differential equations, which are notoriously difficult to solve
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exactly. With the help of similarity transformations, the orig-
inal, more complicated problem of solving partial differential
equations can be recast into a simplified problem involving
well-known differential equations [7,10]. In particular, the
self-similar evolution of a nonlinear wave implies that the
wave profile remains unchanged and its amplitudes and widths
simply scale with the modulation of the system parameters,
e.g., time or propagation distance. Recently, many authors
have tried to study the cubic-quintic inhomogeneous or
nonautonomous NLSE with varying space- or time-dependent
coefficients due to its intensive use in nonlinear optics [11] as
well as matter wave soliton theory [12]. In particular, the study
of topological quasisoliton solutions for the inhomogeneous
CQNLSE began with the pioneering work of Serkin et al.
[13]. By means of the similarity transformations, Dai et al.
[14] obtained exact self-similar solutions (similaritons), their
nonlinear tunneling effects of the generalized CQNLSE, and
their higher-dimensional forms with spatially inhomogeneous
group-velocity dispersion, cubic-quintic nonlinearity, and
amplification or attenuation. It should be noted that the
similarity transformations used by many authors [13–15] to
study the self-similar properties of the inhomogeneous systems
in different fields mainly depend on the inhomogeneous dis-
persion parameter and the dispersion management technique
is relevant for controlling the self-similar properties of the
corresponding systems.

II. MODEL EQUATION

In the present work, by making use of a type of similarity
transformation that solely depends on the inhomogeneous
cubic-quintic nonlinear parameters, we study self-similar
optical bright-, dark-, and kink-type-solitary-wave solutions
and their scaling profile structures of the inhomogeneous
CQNLSE

i�z + 1

2
�tt + g1γ1(z)|�|2� + g2γ2(z)|�|4�

+ λ2

2
t2� = 0. (2)

Here λ is a real constant parameter related to phase modulation.
When the dispersion parameter β(z) and the parameter f (z)
related to phase modulation are constant and without an attenu-
ation or amplification term, Eq. (1) becomes Eq. (2). Equation
(2) contains only localized inhomogeneity in the nonlinear
coefficients. Physically, this equation is very important in
modeling the optical propagation through a highly nonlinear
inhomogeneous medium because it is a well-established fact
from the study of modulational instability that the quintic non-
Kerr nonlinear terms are important [15,16] over the cubic Kerr
nonlinearity as quintic non-Kerr nonlinearities are responsible
for the stability of localized solutions. The importance of
the results reported here is twofold. First, the similarity
transformation approach leads to an important class of exact
self-similar solitary-wave solutions to the NLSE with localized
inhomogeneous cubic-quintic nonlinearity in a systematic
way. The finding of such self-similar solutions proves the
efficiency of the self-similarity technique in searching for exact
solutions of an equation having applications in a variety of
physical systems and is not integrable by the inverse scattering

method. Further, the study of these self-similar solutions has
been of great value in understanding widely different nonlinear
physical phenomena [7]. The second and more interesting
significance of these results lies in their potential application to
optical fiber amplifiers, optical fiber compressors, and optical
communications links.

Self-similar solutions. To obtain the exact analytic optical
solitary-wave solution of Eq. (2) we can employ the transfor-
mation

�(z,t) =
√

γ1(z)

γ2(z)
u(Z,T )eiφ(z,t),

(3)
Z = G(z), T = F (z,t)

to reduce Eq. (2) to the standard constant-coefficient CQNLSE
of the known form

iuZ + 1
2uT T + g1|u|2u + g2|u|4u = 0, (4)

only if the following conditions are satisfied:

F 2
t

dG
dz

= 1,
γ 2

1

γ2
dG
dz

= 1,
dγ2

dz
= 0 (5a)

and

λ2 = 2

γ 2
1

(
dγ1

dz

)2

− 1

γ1

d2γ1

d2z
+ 1

2γ2

d2γ2

d2z

− 1

4γ 2
2

(
dγ2

dz

)2

− 1

γ1γ2

dγ1

dz

dγ2

dz
, (5b)

with

φ(z,t) = − t2

2γ1

dγ1

dz
+ t2

4γ2

dγ2

dz
. (5c)

Now to determine the real functions γ1(z), γ2(z), G(z), F (z,t),
and φ(z,t) we have to solve Eqs. (5a) and (5b). To satisfy
Eqs. (5a) and (5b) we must have

γ1(z) = eλz, γ2(z) = const = c (say) (6)

and the coordinate transformations are

Z = G(z) = e2λz

2cλ
, T = F (z,t) = teλz

√
c

. (7)

Using Eqs. (5c) and (6), one can solve φ(z,t) = − λ t2

2 . The
coordinate transformations we have used are different from
Galilean or scaling type [17–19]. In this particular context,
Gagnon and Winternitz [17] studied the generalized (3+1)-
dimensional CQNLSE in the framework of the group-theoretic
approach, showed that the equations concerned are invariant
under the extended Galilei-similitude group, and found the
group invariant solution. More recently, using a technique
based on the symmetry reduction method and applying the
Galilean coordinate transformation, Schürmann [18] studied
the constant-coefficient CQNLSE to find the traveling-wave
solutions and Agüero [19] investigated the one, two, and three
gray solutions and their interaction features of the CQNLSE,
taking recourse in the use of known soliton solutions of the
Boussinesq-like equation using scaling transformations.
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III. LOCALIZED SOLITARY-WAVE SOLUTIONS

In the following sections we first find bright-, dark-,
and kink-solitary-wave localized solutions of the constant-
coefficient CQNLSE (4). Then we will employ these three
types of localized solutions of the constant-coefficient
CQNLSE (4) to construct the self-similar localized solitary-
wave solutions of the inhomogeneous CQNLSE (2).

A. A bright solitary wave

We find that Eq. (4) satisfies the bright solitary wave of the
form

ub(Z,T ) = 2

√
Ab

g1

exp
[
iwT − i

(
ρb − w2

2

)
Z

]
√

1 + Nb cosh[αb(T − w Z)]
, (8)

where αb = 2
√

2Ab, 1 − N2
b = 16β0Ab

3 , and Ab = ρb − w2

with β0 = − g2

g2
1
. Here Nb is a real number and Ab, w, and αb

are related to the amplitude, group velocity, and pulse width
of the bright wave profile.

B. A dark solitary wave

The dark-solitary-wave solution of Eq. (4) has the form

ud (Z,T ) = Ad√−g1

× sinh[αd (T − wZ)] exp
[
iwT − i

(
ρd − w2

2

)
Z

]
√

1 + Nd sinh2[αd (T − w Z)]
,

(9)

where αd =
√

3(Nd−1)
2β0(3Nd−2)2 , ρd − w2 = (3Nd−1)α2

d

2 , and Ad =√
(3Nd − 2)α2

dNd with β0 = g2

g2
1
. Here Nd > 1 and Ad , w, and

αd are related to the amplitude, group velocity, and pulse width
of the dark wave profile.

C. A Kink solitary wave

The kink-solitary-wave solution obtained for Eq. (4) is

uk(Z,T ) = Ak√
g1

√
1 + tanh[αk(T − wZ)]

× exp

[
iwT − i

(
ρk − w2

2

)
Z

]
, (10)

where αk = Ak under the parametric condition A2
k = − 3

8β0

with Ak =
√

−2(ρk − w2) and β0 = g2

g2
1
. In addition, Ak , w,

and αd are related to the amplitude, group velocity, and pulse
width of the kink wave profile.

IV. SELF-SIMILAR LOCALIZED
SOLITARY-WAVE SOLUTIONS

Making use of the bright-, dark-, and kink-type solutions
given in Eqs. (8), (9), and (10), respectively, of the standard
constant-coefficient CQNLSE (4), the transformations in
Eq. (3), and Eqs. (5c) and (6), we can construct the self-similar
solutions of the inhomogeneous CQNLSE (2). The self-similar

FIG. 1. Evolution of (a) the bright self-similar intensity wave
profile |�b(t, z)|2 as computed from Eq. (11) for the parameter values
λ = 0.1, g1 = 1, g2 = −1, β0 = −1, Nb = 0.5, w = 1, and c = 1 and
(b) the dark self-similar intensity wave profile |�d (z, t)|2 as computed
from Eq. (12) for the parameter values λ = 0.1, g1 = −1, g2 = 1,
β0 = 1, Nd = 3, w = 1, and c = 1.

bright optical solution of Eq. (2) is given by

�b(z,t) =
√

γ1(z)

γ2(z)
ub(Z,T )eiφ(z,t), (11)

the dark one is found to be

�d (z,t) =
√

γ1(z)

γ2(z)
ud (Z,T )eiφ(z,t), (12)

and the self-similar kink-type solution is of the form

�k(z,t) =
√

γ1(z)

γ2(z)
uk(Z,T )eiφ(z,t). (13)

Figure 1(a) shows the evolution of the self-similar optical
bright-solitary-wave solution calculated with the framework
of the inhomogeneous CQNLSE (2) with the parametric
values λ = 0.1, β0 = −1, Nb = 0.5, w = 1, and c = 1, while
Fig. 1(b) displays the evolution of the self-similar dark
soliton. In this case the parametric values used are λ = 0.1,
β0 = 1, Nd = 3, w = 1, and c = 1. The self-similar optical
bright and dark solutions exist under certain conditions that
impose constraints on the coefficients of cubic and quintic
nonlinearity. The most interesting features of these self-similar
optical bright and dark solutions are their compression and
amplitude amplification. In this context, the technique for
generating an ultrahigh-repetition-rate soliton train lies in
soliton compression. As a means of achieving this, there are
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FIG. 2. Self-similar (a) bright and (b) dark pulse compression with the same parametric values as in Figs. 1(a) and 1(b) at different
propagation distances.

reports of methods using dispersion-decreasing fiber [20] and
compression using nonlinear effects in optical fibers [5]. We
can compress the self-similar bright and dark solitons of the
inhomogeneous CQNLSE to a desired width and amplitude by
suitably changing the constant phase modulation parameter λ

and consequently varying the nonlinear parameter γ1(z) given
in Eq. (6). We show in Figs. 2(a) and 2(b) the self-similar bright
and dark pulse compression and amplitude amplification for
different propagation distances z. The parametric values for
Figs. 2(a) and 2(b) are similar to those in Figs. 1(a) and 1(b),
respectively. For low values of λ we show in Figs. 3(a) and 3(b)
the evolution of the bright and dark intensity profiles for the
same parametric values as in Figs. 1(a) and 1(b), respectively.
Here we use λ = 0.001. Interestingly, for small values of λ

the intensity profiles of the self-similar waves coincide with

FIG. 3. Evolution of (a) the bright self-similar intensity wave
profile |�b(t, z)|2 as computed from Eq. (11) for the parameter values
λ = 0.001, g1 = 1, g2 = −1, β0 = −1, Nb = 0.5, w = 1, and c =
1 and (b) the dark self-similar intensity wave profile |�d (z, t)|2 as
computed from Eq. (12) for the parameter values λ = 0.001, g1 =
−1, g2 = 1, β0 = 1, Nd = 3, w = 1, and c = 1.

those solitons supported by homogeneous, passive media with
the same type of nonlinearity. Figure 4(a) shows the evolution
of self-similar optical kink-solitary-wave solution calculated
with the framework of the inhomogeneous CQNLSE (2) with
the parametric values λ = 0.1, g1 = 1, g2 = −1, w = 1, and
c = 1. For low values of λ we show in Fig. 4(b) the evolution of
the intensity wave profile of the self-similar kink for the same
parametric values as in Fig. 4(a). Here we use λ = 0.001. Also
note that for small values of λ the intensity profiles of the
self-similar optical kink waves coincide with the kink soliton
supported by homogeneous, passive media with the same type
of nonlinearity.

FIG. 4. Evolution of (a) the kink self-similar intensity wave
profile |�k(t, z)|2 as computed from Eq. (13) for the parameter values
λ = 0.1, g1 = 1, g2 = −1, w = 1, and c = 1 and (b) the intensity
wave profile of the self-similar kink |�k(z, t)|2 as computed from
Eq. (13) for the same parametric values as in (a), except that here
λ = 0.001.
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FIG. 5. Evolution of (a) the bright self-similar intensity wave
profile |�b(t, z)|2 as computed from Eq. (11), (b) the dark self-similar
intensity wave profile |�d (z, t)|2 as computed from Eq. (12), and
(c) the kink self-similar intensity wave profile |�k(t, z)|2 as computed
from Eq. (13) under the perturbation with 10% initial white noise.
The values of the parameters are the same as in Figs. 1(a), 1(b), and
4(a), respectively.

V. STABILITY ANALYSIS

It is a well-known fact that the practical interest of a
solitary wave is closely related to its stability and, in particular,
its ability to propagate in a perturbed environment over
an appreciable distance. Note that only stable (or weakly
unstable) solitary waves can be observed experimentally [21].
It is then essential to analyze the stability of exact solutions
against finite perturbation. In what follows we demonstrate
numerically the stability of the self-similar wave solutions
presented above under initial small perturbations. Here we
performed direct simulations with initial white noise [22,23]
to study the stability of the solutions (11)–(13) compared to
Figs. 1(a), 1(b), and 4(a). The evolution plots of self-similar
solitary-wave solutions (11)–(13) under the perturbation of
10% white noise are shown in Figs. 5(a)–5(c), respectively. The

FIG. 6. Evolution of (a) the bright self-similar intensity wave
profile |�b(t, z)|2 as computed from Eq. (11), (b) the dark self-similar
intensity wave profile |�d (z, t)|2 as computed from Eq. (12), and
(c) the kink self-similar intensity wave profile |�k(t, z)|2 as computed
from Eq. (13) under the perturbation with 10% initial white noise.
The values of the parameters are the same as in Figs. 3(a), 3(b), and
4(b), respectively.

results reveal that the bright self-similar wave can propagate
in a stable way under finite initial perturbations of the additive
white noise. Thus we can conclude that the bright solution
we obtained is stable. Moreover, from Figs. 5(b) and 5(c) we
can see that the shape of dark- and kink-type-solitary-wave
solutions change while evolving over distance. This indicates
that the white noise has a greater effect upon these solutions
and could influence the main character of them. Thus, the
dark and kink solutions are unstable. We have also performed
numerical simulations to examine the dependence of the
stability of the obtained solutions on the phase modulation
parameter. Typical results are shown in Figs. 6(a)–6(c) for the
case of small values of λ, for example, λ = 0.001. Compared
with Figs. 5(a)–5(c), which correspond to λ = 0.1, we clearly
see that the evolution is the same in both cases. Indeed, in
both cases the self-similar bright solution is still very stable
after propagating a distance, but dark and kink solutions
evolve towards an instable form, indicating that the stability
of obtained solutions is independent of the phase modulation
parameter.

VI. CONCLUSION

It is an interesting point to note that the bright- and
dark-intensity-wave profiles remain unchanged during the
propagation, as we saw for the standard constant-coefficient
CQNLSE. No pulse compression and amplitude amplification
phenomena were observed during the propagation. One can
check that for small values of λ, the solutions and the
inhomogeneous CQNLSE (2) maps onto the solutions and
standard constant-coefficient CQNLSE (4). Our results show
an interesting connection between self-similar waves and the
existence of solitons in inhomogeneous and homogeneous
nonlinear media, respectively.
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In this work we have presented the exact analytical
self-similar solutions of the nonlinear Schrödinger equation
with localized inhomogeneous cubic-quintic nonlinearity us-
ing similarity transformations. These self-similar solutions
describe the stable optical bright and dark waves, propagating
inside a planar, graded-index waveguide. Compression and
amplification of soliton pulses propagating in conventional
dispersion decreasing optical fibers is a well-established tech-
nique [20]. However, the most important feature of our inves-
tigated self-similar solutions is its interesting compression and
amplification, which can be controlled to get the desired stable
high-repetition-rate pulse by changing the phase modulation
parameter λ and consequently varying the nonlinear parameter
γ1(z). We have shown for small values of λ the intensity
profiles of the self-similar waves coincide with those solitons
supported by homogeneous passive media with the same type
of nonlinearity. We have presented a surprising connection
between optical self-similar waves in graded-index inhomo-
geneous media and solitons in homogeneous media with the
same type of cubic-quintic nonlinearity. These stable ultrashort
self-similar optical waves are potentially useful for various
applications in optical telecommunications, especially in areas
such as optical fiber compressors, optical fiber amplifiers,
nonlinear optical switches, and optical communications since
they can maintain the overall shapes but allow their amplitudes
and/or widths to change according to management of the sys-
tem’s parameters. We hope that these solitary-wave solutions
can be launched in long-haul telecommunication networks to

achieve pulse compression. From our detailed investigation
on inhomogeneous systems, using suitable transformation, we
strongly believe that inhomogeneous systems can always be
transformed into the corresponding homogeneous systems.
Also, the stability of the self-similar solitary-wave solutions
under the perturbation of white noise whose maximal value is
0.1 has been discussed numerically. The results have shown
that the addition of small amounts of random noise could
not influence the main character of the bright solitary wave,
whereas this perturbation significantly affects the evolution
of self-similar dark and kink solitary waves. It would be
particularly relevant to extend the application of the used
similarity transformation to find self-similar solitary wave
solutions of the cubic-quintic-septimal nonlinear Schrödinger
equation, which has been recently introduced to describe
light propagation in a medium exhibiting nonlinearities up
to seventh order [24]. We mention that experimental reports
showing the existence of septimal nonlinearity in some
materials have been presented recently in Refs. [25–27]. Such
studies will be deferred to future work.
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