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Collapse of the wave field in a one-dimensional system of weakly coupled light guides
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The analytical and numerical study of the radiation self-action in a system of coupled light guides is fulfilled on
the basis of the discrete nonlinear Schrödinger equation (DNSE). We develop a variational method for qualitative
study of DNSE and classify self-action modes. We show that the diffraction of narrow (in grating scale) wave
beams weakens in discrete media and, consequently, the “collapse” of the one-dimensional wave field with
power exceeding the critical value occurs. This results in the ability to self-channel radiation in the central fiber.
Qualitative analytical results were confirmed by numerical simulation of DNSE, which also shows the stability
of the collapse mode.
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I. INTRODUCTION

The advance in studies of nonlinear wave processes in
spatially periodic media [1–3] led to active development
of this field of nonlinear science, specifically, research into
specific features of supercontinuum generation [4,5], control
over the wave-field structure and formation of light bullets
[6–8], localization of laser radiation in a certain light guide
[9–11], shortening of pulse duration [11], the possibility of
generation of intense laser fields in an active system of light
guides [12,13], etc. Due to the complexity of the problems
considered, the main results were obtained on the basis of
numerical simulation.

The basic model for studying self-action of wave fields
in a continuous medium is the nonlinear Schrödinger equation
(NSE). Expansion of this model for the description of nonlinear
processes in spatially periodic media was also successful.
For example, the dynamics of self-action in a system of
coupled light guides under the conditions of weak overlapping
of guiding modes is determined by the nonlinear discrete
Schrödinger equation (DNSE) [14,16]. A similar approach
in solid-state physics and molecular systems [2] leads to the
same equation for the description of nonlinear excitations of
the polariton type.

In contrast to continuum media, no analytical methods have
been developed for qualitative studies of specific features of
self-action of wave fields in spatially periodic media. Only
the soliton-type solutions, which are localized on the scale
of the order of magnitude of the grating period [1,2], have
been considered, and their stability has been investigated.
In the case of initial field distributions, which are smooth
on the characteristic scale of the spatially periodic system,
several qualitative conclusions about system behavior (the
possibility of wave beam self-compression [4,11], wave flow
control [11], etc.) can be made on the basis of the continuum
model. Numerical studies show that the wave dynamics turns
out to be richer within the framework of the discrete model
than in the continuum one [1,2]. Therefore, it is important
to develop methods for approximate description of the wave-
field dynamics which would allow for specific features of a
microstructured medium.
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Variational methods are widely used to obtain analytical
results in physics. In the annex to the discrete NSE, stationary
structures of the soliton type [17–21] were found based on
the variational method. The variational approach with the
Gaussian ansatz (which is similar to the one used in our
paper) was performed in [22]. This paper considers self-action
dynamics in a Bose-Einstein condensate (BEC) in a periodic
trap, which corresponds to defocusing nonlinearity. We study
the self-action in media with focusing Kerr nonlinearity, which
have essential specific features.

In this work, we perform a detailed analysis of the specific
features of self-focusing of wave beams in the framework
of the simplest discrete model of a microstructured medium
[14,16] in the one-dimensional case. We show on the basis
of numerical simulation that there exists a regime of self-
action of wave fields which is typical of the discrete problem.
The conditions are determined on the basis of the variational
method, in which a wide field distribution (on the scale of the
medium microstructure period) is collected in one light guide.
We use the term “collapse” to denote the situation where most
of a pulse power due to self-focusing will be located in the
single light guide. This is a discrete analog of collapses in
the continuum limit. The method of an approximate analytical
study of this regime of radiation collapse is developed. In
many aspects, this method is similar to the aberration-free
approximation in the NSE theory, where it is assumed that
wave beams have a Gaussian profile and a parabolic phase
front. As a result, the problem is reduced to studying a simpler
system of ordinary equations for the width of the wave beam
and curvature of the phase front.

This paper is structured as follows. In Sec. II, a DNSE
system is formulated, which describes self-action of radiation
in the one-dimensional system of coupled light guides.
Based on numerical simulation of these equations, self-action
regimes are categorized. Section III generalizes the aberration-
free description of the spatial evolution of the system to
the discrete NSE. As in the continuum limit, we derive the
DNSE Lagrangian for parameters of Gaussian wave beams
using the variational approach. It gives us equations for the
wave beam width and phase-front curvature which allow for
discreteness of the initial problem. Analysis of these equations
shows that medium discreteness leads to weakening of the
wave beam diffraction. This results in the possibility of a
collapse of the one-dimensional distribution of the wave
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FIG. 1. Dynamics of the beam amplitude |�(z,n)| for different values of the parameters δ and N : (a) δ = 0.1,N = 2 (P = 1.6 < Pcr );
(b) δ = 0.05,N = 3 (P = 1.8 < Pcr ); (c) δ = 0.1,N = 3 (P = 3.6 > Pcr ); and (d) δ = 0.1,N = 5 (P = 10 > Pcr ).

field with the total power exceeding a certain critical value.
Section V presents the results of the numerical simulation of
the approximate aberration-free equations. The comparison of
the results with the data from numerical studies of the initial
DNSE from Sec. II shows that the presented aberration-free
approximation describes rather well the characteristic features
of the self-action in a discrete medium. In the same section,
the stability of the collapse regime is studied on the basis of
the initial DNSE equations.

II. FORMULATION OF THE PROBLEM: NUMERICAL
SIMULATION OF THE FIELD EVOLUTION

Consider the simplest discrete model [1,2] in the one-
dimensional case. Assume that the evolution of a slowly
varying field envelope in the nth light guide in the process
of propagating along the z axis is determined by the following
factors: the third-order nonlinearity of the medium and
interaction with only the nearest light guides. For a system of
equidistantly located lossless light guides, we use the discrete
NSE, which has the following form [14,16]:

i
∂�n

∂z
+ �n+1 + �n−1 + |�n|2�n = 0. (1)

This equation has a Hamiltonian structure, like the continuum
NSE. Additionally, Eq. (1) retains the wave-field power

P =
+∞∑

n=−∞
|�n|2. (2)

Equation (1) is well known as the discrete self-channeling
equation [1,14]. It also has many other physical applications
[1,2].

We will consider mainly the spatial evolution of wave
beams with the characteristic initial size a0 being much longer

than the distance between the light guides (a0 � 1). In the
continuum limit, the system dynamics is determined by the
power P . A typical value is the power P = P0, at which a
uniform light guide channel (spatial soliton) is formed. At
P slightly different from P0, the wave beam width changes
periodically along the propagation path. AtP � P0, the initial
field distribution disintegrates into a set of solitons. In the
discrete case, the situation becomes essentially different.

Equation (1) was solved numerically for the initial distri-
butions

|�n| =
√

2N δ

cosh[(n − n0)δ]
(3)

with a plane phase front. Here, 1/δ determines the character-
istic quantity of light guides in which the field is concentrated
(or the characteristic size of the area occupied by the field
a0 = 1/δ). For the power, we have P = 4δN 2.

In the continuum problem distribution (3) describes the
spatial soliton at N = 1. The parameter N determines the
number of solitons contained in the initial distribution.

The results of studying Eq. (1) numerically are shown in
Fig. 1. Figures 1(a) and 1(b) show that the evolution of smooth
wave-field distributions (on the scale of a cell) is similar to that
in the continuum problem. However, as the power increases
[see Figs. 1(c) and 1(d)], the self-action regime becomes
essentially different: irreversible collapse of the wave beam
occurs, and it is localized on the scale approximately equal
to the medium microstructure period. Numerical calculations
show that the critical self-focusing power is nearly independent
of the width of the initial field distribution a0. Also it does not
depend on the types of boundary conditions since wave fields
become localized far from boundaries. The question of the
value of the critical self-focusing power stays undetermined to
a certain degree. The matter is that the decrease in the wave
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field and, correspondingly, the decrease in the power in the
narrow central part of the beam are observed in the process
of the collapse [see Fig. 1(c)]. For example, self-focusing of
the wave beam in Fig. 1(c) occurs as the power decreases
from Pin = 3.6 to Pout = 2.7. This self-action regime, which
is typical for the discrete problem, will be considered in what
follows in more detail.

III. ANALYTICAL STUDY OF SPATIAL
EVOLUTION OF WAVE BEAMS

The ability of wave beam collapse can be understood from
the following simple considerations. References [14,15] show
that highly localized wave structures with the size of a few cells
can exist in an array of coupled light guides if the wave power
exceeds a certain critical value P�. It is well known from the
self-focusing theory that significant wave beam self-focusing
occurs at the initial stage in continuous nonlinear media if the
input solitonlike wave field has an amplitude much higher than
the soliton amplitude. Obviously, the beam size may become
comparable to the cell size at beam self-focusing even in a
one-dimensional discrete system if the beam power exceeds the
critical value. As a result, part of the radiation will be captured
in a localized structure and channeled in one waveguide.

Next, consider the evolution of the wide wave beams. As in
the continuum medium, it is convenient to use the variational
method for an approximate description of the wave-field
evolution. The initial parameter is the Lagrangian of the
system (1),

L =
+∞∑

n=−∞
Ln =

∑ i

2

(
�n

∂�∗
n

∂z
− �∗

n

∂�n

∂z

)

−�n+1�
∗
n − �∗

n+1�n − 1

2
|�n|4. (4)

Using the Poisson summation formula for continuous-
argument function F (x),

∞∑
n=−∞

F (n) =
∫ ∞

−∞
F (x)

∞∑
n=−∞

exp(2πinx)dx, (5)

we transform Lagrangian (4) into a form which is more
convenient for our approach:

L =
+∞∑

n=−∞

∫ ∞

−∞

[
i

2

(
�

∂�∗

∂z
− �∗ ∂�

∂z

)
− 1

2
|�(x)|4

−�(x + 1)�∗(x) − �∗(x + 1)�(x)

]
e2πinxdx. (6)

As in the continuum problem, we will consider Gaussian
wave packets with a parabolic phase front,

�(x) =
√

P
a
√

π
exp

(
− x2

2a2
+ iβx2

)
, (7)

whereP is the integral of the one-dimensional problem (2) and
parameters a(z) and β(z) characterize the wave-packet width
and phase-front curvature.

Integrating Eq. (6) with respect to the continuous variable
x, we obtain

L =
√

π

2

dβ

dz
Pa2

∞∑
n=−∞

(1 − 2π2a2n2)e−π2a2n2

− 2P
√

πe−β2a2−1/4a2
∞∑

n=−∞
cos(πn)e−π2a2n2−2πnβa2

−
√

π√
2

P2

2a

∞∑
n=−∞

e−π2a2n2/2. (8)

One can see that the terms of this series decrease fast as
n increases. For wave beams with a width a � 1/π , we
can confine ourselves to only one term with n = 0 in order
to describe the processes. As a result, we obtain a reduced
Lagrangian of the system,

Lc = dβ

dz

Pa2

2
− 2P exp

(
− 1

4a2
− β2a2

)
− P2

2a

√
1

2π
. (9)

We turn our attention to the following fact. Since in this case
the evolution of wave packets is determined by only one term
in Eq. (8) with n = 0, it follows from Eq. (6) that the system
dynamics is described by the Lagrangian

L0 = i

2

(
�

∂��

∂z
− c.c.

)
− 1

2
|�(x)|4

−�(x + 1)��(x) − ��(x + 1)�(x). (10)

This means that the evolution of field distributions with the
characteristic scale L⊥ � 1

π
is described by the following

equation in finite differences:

i
∂�

∂z
+ �(x + 1) + �(x − 1) + |�|2� = 0. (11)

One can see from the comparison of the reduced Lagrangian
(9) with the corresponding Lagrangian in the continuum limit
that the strongest modification in the discrete medium was
undergone by the middle term in Eq. (9). It describes the
wave-field diffraction. One can see that medium discreteness
leads to exponential weakening of the diffraction as the wave
beam width decreases. That is why the wave-field collapse
occurs in the one-dimensional case under consideration [see
Figs. 1(c) and 1(d)].

Let us study thoroughly the consequences of diffraction
weakening on the basis of the equations for the wave beam
parameters. Using the Euler equation

d

dz

∂Lc

∂qz

− ∂Lc

∂q
= 0, (12)

where q is the parameter of the (a,β) system, we find

dβ

dz
=− P

2
√

2πa3
+ 1 − 4β2a4

2a2

2

a2
e−β2a2−1/4a2

, (13a)

da

dz
= 4βae−β2a2−1/4a2

. (13b)

To study the role of discreteness in the nonlinear system
dynamics, let us turn first to Eq. (13a). It is the eikonal equation
for the case of wave beams with a parabolic phase front. The
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first term in Eq. (13a) describes the nonlinear aberration of the
phase front, and the second term describes the diffraction one.
One can see that in the discrete system, the diffraction term
decreases exponentially with a decrease in the beam width,
and therefore, the role of nonlinearity increases.

Consider now stationary homogeneous wave structures
(spatial solitons). In the case of a collimated wave beam, setting
in Eqs. (13) β = 0 and dβ/dz = 0, we find the relationship

P = 2
√

2π

a
exp

(
− 1

4a2

)
, (14)

which connects the characteristic field distribution width a and
the power P . Analysis of Eq. (14) shows that the maximum
transmitted power of the homogeneous light guide system with
width a = 1/

√
2 is Pm = 4

√
π/e. At P � Pm, two solitons

with a width of the order of the magnitude of the cell size exist:
narrow (a < 1/

√
2) and wide (a > 1/

√
2). They have been

studied sufficiently thoroughly in the discrete problem. Within
the approach considered here, these solitons are described
by the continuous Gaussian function [Eq. (6)]. For narrow
solitons, this is valid, until a > 1/π .

To study specific features of spatial evolution of the wave
beams, which are sufficiently wide initially, let us turn to the
system of equations (13). It has the integral

exp

(
− 1

4a2
− β2a2

)
= C − P

4
√

2πa
, (15)

where C is the integration constant. For the Hamiltonian
system, C is proportional to the Hamiltonian. Excluding β in
Eq. (13b) using integral (15), we obtain the following equation:

da

dz
= ±4

(
C − P

4
√

2πa

)√
− ln

(
C − P

4
√

2πa

)
− 1

4a2
.

(16)

The right-hand part of Eq. (16) contains two cofactors. The first
reflects specific features of the discrete problem. The stationary
point (da/dz = 0)

a1 = P
4
√

2πC
, (17)

which is determined by this cofactor, corresponds to the
self-action regime, which is different from homogeneous light
guide channels [Eq. (14)]. It is seen from Eq. (15) that it is
realized at β → ∞, i.e., for wave beams with the nonplane
phase front (β �= 0).

Consider specific features of the system evolution, which
are determined by the second cofactor in Eq. (16). In the case
of an initially wide (a = a0 � 1) collimated (β = 0) wave
beam, the integration constant, as it follows from Eq. (15),
is C � 1. At the initial stage (a � a1), the beam evolution is
described by the equation which is written conveniently as

da

dz
≈ ±2C

a

√
ln C

√
(a0 − a)(a − a2), (18)

where a2 = √
2πC/P − P/8

√
2πC. When obtaining this

equation from Eq. (16), we expanded the logarithmic function
in a series at C � P/4a

√
2π and represented the quadratic

polynomial in the root expansion. It describes the periodic

oscillation of the width between the initial value a0 and the
minimal value a2, as in the continuum problem. With increas-
ing P , the value of a2 decreases and becomes comparable to
the value of the beam width (17), which is determined by the
first cofactor in Eq. (16). This results in bifurcation from the
oscillation regime to the monotonic one for

P > Pcr = 4
√

π√
3
C ≈ 4.1C.

A more accurate estimate can be obtained by keeping higher-
order terms in the series expansion of the transcendent right-
hand part of Eq. (16). In particular, keeping the cubic term in
the logarithm expansion, we obtain

Pcr =
√

48π

11
C ≈ 3.7C. (19)

Unfortunately, the formulas become too complicated if we
keep higher terms of the logarithm expansion. Direct numerical
simulation of Eqs. (13) gives just a slightly smaller valuePcr ≈
3.3 C. So the estimate (19) for critical power has appropriate
accuracy.

Expression (19) for local critical power depends on the
beam parameter through the coefficient C, similar to ones
in continuum media. However, the discrete case has a key
difference: the beam width has to be larger than one cell,
i.e., a � 1. This provides the finite maximal value of Pcr .
Using Eq. (15) for C, we obtain the following estimate for this
maximal value:

Pmax
cr ≈ 4.9, (20)

which does not depend on beam parameters and is the
“true” critical power in the sense that a beam with arbitrary
parameters will collapse if its power exceeds Pmax

cr .
The solution of Eq. (18) at P > Pcr at the stage of the wave

beam collapse (a � a2) has the form

√
a(a0 − a) + a0

[
arcsin

(
a0 − 2a

a0

)
+ π

2

]
= 2C

√
ln Cz.

(21)

Here, beam width a decreases monotonically from a0 to a1. It
follows from this formula that the beam width in this region
decreases obeying the law, which is close to the parabolic one,
and becomes zero at

z0 = π

2

a0

C
√

ln C
. (22)

Determining C from Eq. (15), we find that for wide beams
C = 1 + P

4
√

2πa0
. As a result, we obtain

z0 = π
4
√

2a
3/2
0

4
√

π√
P

; (23)

that is, z0 decreases obeying the law ∝ 1√
P .

In the process of self-focusing, the system passes to the
state in which the first cofactor in Eq. (16) tends to zero.
The evolution of the bandwidth is determined at this stage
by Eq. (16), in which one can neglect the term 1

4a2 under the

063806-4



COLLAPSE OF THE WAVE FIELD IN A ONE- . . . PHYSICAL REVIEW A 94, 063806 (2016)

square-root sign. The solution of this equation describes the
exponential decrease in the beam width to the minimal size a1

obeying the law

a = a1 + exp(−4C2z2). (24)

One can see here that the typical length of the approaching a1

coincides with Eq. (22) almost completely. This means that the
transition from self-focusing to the asymptotic regime occurs
at z � z0.

It should be noted that in the asymptotic limit the self-action
regime, which we considered, contains a homogeneous wave
structure which differs strongly from Eq. (14). The phase of
this structure is not planar. Moreover, it is seen from Eq. (13a)
that β increases along the wave beam propagation path obeying
the law

β = − P
2a3

1

√
2π

z. (25)

This is similar to the collapse of axisymmetric beams, which
is well known in the self-focusing theory. However, the
collapse occurs not to a point but to a distribution with
the characteristic scale being of the order of magnitude of the
medium stratification period. Note that the growing parabolic
phase for high-power beams will break the well-known
periodical regime of a NLS soliton in the continuum media
(see Fig. 2).

To achieve deeper understanding of the self-action pattern
in a discrete system, we studied the wave beam evolution
numerically on the basis of the equations of the aberration-free
approximation (13). Two self-action regimes are discerned
within the continuum one-dimensional problem: one (spatial
soliton) with the wave beam width being greater and the other
being smaller than the characteristic size of a homogeneous
wave channel. In the discrete system, an analytical study can
be performed only in the first case, which is related to the
transcendence of the right-hand part of Eq. (16).

Figure 2 shows the evolution of the wave beam width along
the propagation path at different values of the power P . At
P < Pcr , this behavior is identical to that in the continuum
medium: wide wave beams become narrower at the initial stage
of the periodic process [see Fig. 2(a)], and the narrow beams
become wider [see Fig. 2(b)]. At P > Pcr , the self-action
regime changes qualitatively: the collapse of the radiation to a
single wave channel takes place.

This self-channeling process differs from the usual one.
The phase front of the wave field inside the channel is
parabolic, rather than planar. The curvature β of the phase
front increases obeying the linear law [Eq. (25)] along the
propagation path. Therefore, this process is a collapse in our
continuous description of the discrete system. For wide wave
beams, Pcr � 3.4, while for narrow beams, Pcr � 3.9, which
is rather close to estimate (20).

Upon the whole, one can say that the results of studying the
evolution of wave beams in discrete systems on the basis of
approximation of the discrete field distribution with a smooth
distribution (in accordance with Poisson’s formula) yield a
pattern which largely coincides with the data for numerical
simulation of initial equation (1) in Sec. III. It should be noted
that the law of the self-focusing length z0 ∝ 1/

√
P decreasing

with increasing P is well confirmed in our calculations.

FIG. 2. Dependence of the transverse size a of the wave packet
on the evolution variable z for two different initial beam size values:
(a) a0 = 10, (b) a0 = 2, and for different power values P .

Probably, the most important thing here is the description of
the collapse regime. It takes place at a power level exceeding
critical power (19). This agrees well with the data for the
numerical calculations in Sec. II.

For the width of the field localization area in the collapse
process, the analytical value [Eqs. (17) and (24)] proves to be
somewhat overstated. For a more accurate value, one should
allow for the release of the wave field during self-focusing. For
example, at the input power Pin = 3.6, the power in the central
part of the beam (with respect to the level of the intensity
decrease by 1/e2) decreases to Pout = 2.7, and in the case
of Pin = 10, the value Pout is almost two times smaller. Thus,
allowing for the wave field release yields the width of the beam
localization area, which is comparable to the distance between
the light guides.

It should also be noted that the power P in the compressed
distribution of the field with allowance for the radiation
processes stays greater than the critical values (P > Pcr ). This
means that the structure formed in the process of radiation self-
focusing differs from homogeneous wave channels (spatial
solitons) of the type of Eq. (14).
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FIG. 3. Dynamics of the beam amplitude |�(z,n)| in an array of coupled light guides for the case when the initial distribution (26) is
specified at the medium input at different noise levels: (a) μ = 0.001, (b) μ = 0.01, and (c) μ = 0.1. (d) The amplitude distribution at z = 396
for different values of μ. Here, δ = 0.1 and Q is the noise signal.

IV. CONTINUATION OF NUMERICAL SIMULATION
OF RADIATION SELF-ACTION REGIMES

In what follows, we consider the question of the stability
of the wave-field self-focusing regime in a one-dimensional
system of weakly coupled light guides in the presence of initial
perturbations of the noise type. Figure 3 shows the evolution
of the wave field specified at the input of the nonlinear medium

in the form

�n = 3
√

2δ[1 + μQ(n)]

cosh[δ(n − n0)]
(26)

at δ = 0.1 and different values of μ: μ = 0.001 [see Fig. 3(a)],
μ = 0.01 [see Fig. 3(b)], and μ = 0.1 [see Fig. 3(c)]. Here,
Q(n) is the noise signal.

FIG. 4. Dynamics of the beam amplitude |�(z,n)|2 in an array of coupled light guides for the case when the initial distribution �(z =
0,n) = A0 δn,n0 is specified at the medium input at different values of A0: (a) A0 = 1.7, (b) A0 = 2, (c) A0 = 3, and (d) A0 = 4.
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For the sake of comparison, Fig. 1(c) presents the results
of numerical simulation of the evolution of the corresponding
distribution [Eq. (3)] atN = 3 in the absence of noise (μ = 0).
It follows from Figs. 3(a), 3(b), and 3(c) that the process
of wave-field self-focusing in an array of light guides is
accompanied by irregular and asymmetric radiation release
into neighboring channels, in contrast to the case of μ = 0.
One can see that in the process of self-focusing, purification
of the wave packet of the noise component and further
self-channeling of the field occur, as in the case of μ = 0 [see
Fig. 1(c)]. In this case, the share of the energy in the central
part of the beam decreases as the noise level μ increases.
Figure 3(d) shows amplitude distributions of the self-
channeled wave structure at z = 396 for different μ. One
can see that an increase in the noise amplitude in the initial
distribution leads to an increase in the beam size compared
with the case of μ = 0. It is also seen from Fig. 3(d) that the
initial noise will lead to an irregular position of the center
of the self-channeled structure. This requires additional study
which will be done in further works.

To conclude this section, we will turn to the question of the
existence of wave structures which are strongly localized near
one light guide. This was discussed in [14]. Figure 4 shows
the dynamics of the field amplitude |�(z,n)| in an array of
coupled light guides in the case when only the central channel
is powered at the input:

�(z = 0,n) = A0 δn,n0 , (27)

where n0 is the location of the central channel. It is seen from
Fig. 4 that in the case where A0 � 1.9 [see Fig. 4(a)], the wave
beam spreads rather fast due to the linear coupling between
the light guides. However, as one can see from Fig. 4(b),
at A � 2 the wave beam spreads and becomes several times
wider (z ∼ 6.4), but then the beam focuses to approximately
the initial value (z ∼ 256). As follows from Fig. 4(b), the field
amplitude in the central channel decreased by only two times
compared with the initial value. At a further increase in the
initial amplitude [see Figs. 4(c) and 4(d)], the wave field does
not undergo diffraction and is localized entirely in the central
channel. Note that the power P = A2

0, at which the wave field
does not diffract, is comparable with the critical self-focusing
power in discrete system (19). Thus, the nonlinear mode (27)

can be regarded as the final stage of self-focusing of wide wave
beams at P > Pcr .

V. CONCLUSION

In this paper, we generalize a method for approximate
description of self-action of wave fields in a one-dimensional
system of weakly coupled light guides. This method is the
variational generalization of the aberration-free approximation
for Gaussian wave beams with a parabolic phase front, which
is used successfully in continuous media. As a result, we could
analyze analytically the specific features of the evolution of the
wave field with the characteristic scale, which is comparable
to the period of a microstructured medium. It is shown that
these features are related to weakening of the diffraction in a
periodically microstructured medium. The main result of the
work is the conclusion about the possibility of a collapse in a
one-dimensional discrete system of an initially wide (on the
scale of the medium inhomogeneity) wave beam. It is realized
at the power level, which exceeds the critical value, and leads
to self-channeling of the wave beam in a region with the size
approximately equal to the grating size.

The conclusions made herein about the regimes of self-
action of wave beams (periodic changes in the beam width in
the propagation process, collapse and stationary soliton-type
structures with the characteristic scale being of the order
of magnitude of the grating size) and the critical power for
field self-channeling are confirmed by the results of numerical
simulation of both the aberration-free approximation equations
and the basic initial equation (1). The question of the stability
of the collapse regime was considered especially in the
framework of the one-dimensional DNSE equation in the
presence of initial noise-type perturbations. It was shown that
in the self-focusing process, the wave beam is purified of noise
and the wave field is self-localized, as in the case of smooth
beams. At a high noise level (∼10%), the self-channeled
structure is retained, but its intensity center undergoes a minor
irregular displacement.

ACKNOWLEDGMENT

This work was supported by the Russian Science Founda-
tion (Project No. 16-12-10472).

[1] Y. Kivshar and G. Agrawal, Optical Solitons: From Fibers to
Photonic Crystals (Academic, Amsterdam, 2005).

[2] A. Scott, Nonlinear Science: Emergence and Dynamics
of Coherent Structures (Oxford University Press, Oxford,
2003).

[3] D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature
(London) 424, 817 (2003).

[4] T. X. Tran, D. C. Duong, and F. Biancalana, Phys. Rev. A 89,
013826 (2014).

[5] P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney,
Nat. Photonics 9, 543 (2015).

[6] T. X. Tran, D. C. Duong, and F. Biancalana, Phys. Rev. A 90,
023857 (2014).

[7] L. G. Wright, D. N. Christodoulides, and F. W. Wise, Nat.
Photonics 9, 306 (2015).

[8] S. Minardi, F. Eilenbergen, Y. V. Kartashov et al., Phys. Rev.
Lett. 105, 263901 (2010).

[9] S. K. Turitsyn, A. M. Rubenchik, M. P. Fedoruk, and E.
Tkachenko, Phys. Rev. A 86, 031804 (2012).

[10] E. W. Laedke, K. H. Spatschek, and S. K. Turitsyn, Phys. Rev.
Lett. 73, 1055 (1994).

[11] A. M. Rubenchik, I. S. Chekhovskoy, M. P. Fedoruk et al., Opt.
Lett., 40, 721 (2015).

[12] G. Mourou, T. Tajima, M. N. Quinnb, B. Brocklesbyc, and J.
Limpertd, Nucl. Instrum. Methods Phys. Res., Sect. A 740, 17
(2014).

063806-7

https://doi.org/10.1038/nature01936
https://doi.org/10.1038/nature01936
https://doi.org/10.1038/nature01936
https://doi.org/10.1038/nature01936
https://doi.org/10.1103/PhysRevA.89.013826
https://doi.org/10.1103/PhysRevA.89.013826
https://doi.org/10.1103/PhysRevA.89.013826
https://doi.org/10.1103/PhysRevA.89.013826
https://doi.org/10.1038/nphoton.2015.125
https://doi.org/10.1038/nphoton.2015.125
https://doi.org/10.1038/nphoton.2015.125
https://doi.org/10.1038/nphoton.2015.125
https://doi.org/10.1103/PhysRevA.90.023857
https://doi.org/10.1103/PhysRevA.90.023857
https://doi.org/10.1103/PhysRevA.90.023857
https://doi.org/10.1103/PhysRevA.90.023857
https://doi.org/10.1038/nphoton.2015.61
https://doi.org/10.1038/nphoton.2015.61
https://doi.org/10.1038/nphoton.2015.61
https://doi.org/10.1038/nphoton.2015.61
https://doi.org/10.1103/PhysRevLett.105.263901
https://doi.org/10.1103/PhysRevLett.105.263901
https://doi.org/10.1103/PhysRevLett.105.263901
https://doi.org/10.1103/PhysRevLett.105.263901
https://doi.org/10.1103/PhysRevA.86.031804
https://doi.org/10.1103/PhysRevA.86.031804
https://doi.org/10.1103/PhysRevA.86.031804
https://doi.org/10.1103/PhysRevA.86.031804
https://doi.org/10.1103/PhysRevLett.73.1055
https://doi.org/10.1103/PhysRevLett.73.1055
https://doi.org/10.1103/PhysRevLett.73.1055
https://doi.org/10.1103/PhysRevLett.73.1055
https://doi.org/10.1364/OL.40.000721
https://doi.org/10.1364/OL.40.000721
https://doi.org/10.1364/OL.40.000721
https://doi.org/10.1364/OL.40.000721
https://doi.org/10.1016/j.nima.2013.10.041
https://doi.org/10.1016/j.nima.2013.10.041
https://doi.org/10.1016/j.nima.2013.10.041
https://doi.org/10.1016/j.nima.2013.10.041


BALAKIN, LITVAK, MIRONOV, AND SKOBELEV PHYSICAL REVIEW A 94, 063806 (2016)

[13] G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, Nat.
Photonics 7, 258 (2013).

[14] D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13, 794
(1988).

[15] V. K. Mezentsev, S. L. Musher, I. V. Ryzhenkova, and S. K.
Turitsyn, JETP Lett. 60, 829 (1994); E. W. Laedke, K. H.
Spatschek, V. K. Mezentsev, S. L. Musher, I. V. Ryzhenkova,
and S. K. Turitsyn, ibid. 62, 677 (1995).

[16] T. X. Tran and F. Biancalana, Phys. Rev. Lett. 110, 113903
(2013).

[17] P. G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation:
Mathematical Analysis, Numerical Computations and Physical
Perspectives (Springer, Berlin, 2009).

[18] M. Syafwan, H. Susanto, S. M. Cox, and B. A. Malomed,
J. Phys. A 45, 075207 (2012).

[19] C. Chong, R. Carretero-Gonzalez, B. A. Malomed, and P. G.
Kevrekidis, Phys. D (Amsterdam, Neth.) 238, 126 (2009).

[20] B. A. Malomed, Prog. Opt. 43, 71 (2002).
[21] D. J. Kaup, Math. Comput. Simul. 69, 322 (2005).
[22] A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001).

063806-8

https://doi.org/10.1038/nphoton.2013.75
https://doi.org/10.1038/nphoton.2013.75
https://doi.org/10.1038/nphoton.2013.75
https://doi.org/10.1038/nphoton.2013.75
https://doi.org/10.1364/OL.13.000794
https://doi.org/10.1364/OL.13.000794
https://doi.org/10.1364/OL.13.000794
https://doi.org/10.1364/OL.13.000794
https://doi.org/10.1103/PhysRevLett.110.113903
https://doi.org/10.1103/PhysRevLett.110.113903
https://doi.org/10.1103/PhysRevLett.110.113903
https://doi.org/10.1103/PhysRevLett.110.113903
https://doi.org/10.1088/1751-8113/45/7/075207
https://doi.org/10.1088/1751-8113/45/7/075207
https://doi.org/10.1088/1751-8113/45/7/075207
https://doi.org/10.1088/1751-8113/45/7/075207
https://doi.org/10.1016/j.physd.2008.10.002
https://doi.org/10.1016/j.physd.2008.10.002
https://doi.org/10.1016/j.physd.2008.10.002
https://doi.org/10.1016/j.physd.2008.10.002
https://doi.org/10.1016/S0079-6638(02)80026-9
https://doi.org/10.1016/S0079-6638(02)80026-9
https://doi.org/10.1016/S0079-6638(02)80026-9
https://doi.org/10.1016/S0079-6638(02)80026-9
https://doi.org/10.1016/j.matcom.2005.01.015
https://doi.org/10.1016/j.matcom.2005.01.015
https://doi.org/10.1016/j.matcom.2005.01.015
https://doi.org/10.1016/j.matcom.2005.01.015
https://doi.org/10.1103/PhysRevLett.86.2353
https://doi.org/10.1103/PhysRevLett.86.2353
https://doi.org/10.1103/PhysRevLett.86.2353
https://doi.org/10.1103/PhysRevLett.86.2353



