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Spectroscopic signatures of quantum friction
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We present a formula for the spectroscopically accessible level shifts and decay rates of an atom moving at an
arbitrary angle relative to a surface. Our Markov formulation leads to an intuitive analytic description whereby
the shifts and rates are obtained from the coefficients of the Heisenberg equation of motion for the atomic flip
operators but with complex Doppler-shifted (velocity-dependent) transition frequencies. Our results conclusively
demonstrate that for the limiting case of parallel motion the shifts and rates are quadratic or higher in the atomic
velocity. We show that a stronger, linear velocity dependence is exhibited by the rates and shifts for perpendicular
motion, thus opening the prospect of experimentally probing the Markovian approach to the phenomenon of
quantum friction.
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I. INTRODUCTION

How does an atom with a fluctuating dipole moment behave
when moving relative to a surface? Given the recent resurgence
of interest in short-range fluctuation-induced forces brought
about by advances in micro- and nanoscale technology, one
would expect this question to have a clear-cut, unambiguous
answer. Indeed the intuition for the effect is clear—the
properties of a fluctuating atomic dipole depend on the
distance to an image dipole [1], meaning that a relative
motion between the two should cause velocity-dependent
dynamical corrections. However, even for relatively simple and
idealized models of atoms and surfaces there are significant
disagreements between different approaches to calculating, for
instance, the frictional force that an atom may experience while
moving parallel to a surface. For example, Refs. [2,3] disagree
with Refs. [4–6] about the power law governing the velocity
dependence of the effect at zero temperature; it is even argued
in Ref. [7] that the effect does not exist at all, or in Ref. [8] that
some methods (e.g., Ref. [9]) are very sensitive to the initial
velocity preparation. These discrepancies arise largely because
several different and incompatible formalisms have been used
in calculating the velocity-dependent force. These include
linear-response theory [10], Born-Markov approximations [6],
time-dependent perturbation theory [8], and appeals to a
generalized fluctuation-dissipation theorem [2]. As in all
physics, the only real validation of a successful approach is
via experiments, which are sorely lacking in atomic friction.
This is because the forces involved are extremely small, and
there are serious experimental challenges concerning precision
measurements of forces on atoms near surfaces [11,12],
meaning that it is difficult to confirm or exclude particular
theoretical approaches.

Here, we take a different route and consider the much
more experimentally accessible internal dynamics of the
atom, which in principle can be measured spectroscopically,
thus providing a testable prediction of a velocity-dependent
quantum-vacuum effect. We present results for the paradig-
matic setup of a zero-temperature neutral atom with dipole
moment d and nonrelativistic velocity v moving next to a
perfectly smooth macroscopic surface, as shown in Fig. 1. For
an atom at rest, the interaction of the atom’s fluctuating dipole

moment with its image causes the Casimir-Polder corrections
to the atom’s levels and decay rates [1]. If the atom is allowed
to move relative to the surface, fields induced by images at
previous times reach the atom; in other words, the motion of the
atom causes it to “see” its image as being at a different position
than where it is currently, resulting in dynamical effects.

II. MODEL

The dynamics shown in Fig. 1 consists of three mutually
coupled parts: (i) the atom’s center-of-mass motion, (ii) the
internal dynamics of the atom, and (iii) the dynamics of
the medium-assisted electromagnetic field which surrounds
the atom. The center-of-mass motion may be separated
from the other degrees of freedom in the spirit of the
Born-Oppenheimer approximation. Accordingly, the coupled
atom-field dynamics are solved for a fixed atomic velocity. For
the description of the dynamics of the composite field-matter
system consisting of the electromagnetic field coupled to the
charges making up the medium, we use the framework of
macroscopic quantum electrodynamics [13,14]. The latter
is a prescription for the quantization of the electromagnetic
field interacting with macroscopic, dispersive, and absorbing
bodies. As a consequence, the field-matter system is
represented by a bosonic field with elementary excitations fλ
for each electric or magnetic-type excitation λ = {e,m}, with
position r and frequency ω. The Hamiltonian HF describing
this part of the dynamics is then simply the canonical form
integrated over all space:

HF = �

∫
d3r

∫ ∞

0
dωω f†λ(r,ω) · fλ(r,ω). (1)

The free atom of mass m and center-of-mass momentum p is
described by a Hamiltonian

HA = p2

2m
+

∑
n

En |n〉 〈n|, (2)

where n indexes an atomic level of energy En. The third
and final part of the Hamiltonian comprises the interaction
between the macroscopic QED electric field E(r) and the
atom. This interaction is described in the dipole approximation
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FIG. 1. Atom moving next to a surface with velocity v. Its electric
dipole d(t) fluctuates about zero. The atom may have emitted a photon
at time t − τ which is reabsorbed at time t .

by a Hamiltonian

HAF = −
∑
mn

|m〉 〈n| dmn · E(rA), (3)

furnishing us with the total Hamiltonian H = HF + HA +
HAF. Note that magnetic contributions to the interaction are
omitted since they play a minor role in close proximity to the
surface. The macroscopic QED electric field in a region with
permittivity ε(r,ω) and permeability μ(r,ω) is given explicitly
in terms of the bosonic operators fλ(r,ω) introduced above by

E(r) =
∑

λ

∫
d3r′

∫ ∞

0
dω Gλ(r,r′,ω) · fλ(r′,ω) + H.c. (4)

with

Ge(r,r′,ω) = i
ω2

c2

√
�ε0

π
Imε(r′,ω)G(r,r′,ω), (5)

Gm(r,r′,ω) = i
ω

c

√
�

πμ0

Imμ(r′,ω)

|μ(r′,ω)|2 G(r,r′,ω), (6)

where G(r,r′,ω) is the Green’s function for the Helmholtz
equation[

∇ × 1

μ(r,ω)
∇ × −ω2

c2
ε(r,ω)

]
G(r,r′,ω) = δ(r − r′). (7)

This Green’s function describes the propagation of field-matter
excitations of frequency ω from r′ to r thereby encoding all
the information about the environment, i.e., its geometry as
well as its dispersive and absorptive properties.

Using Eq. (4) in our Hamiltonian H , we have for the
Heisenberg equations of motion,

Ȧmn(t) = iωmn + 1

i�
[Amn(t),HAF(t)], (8)

for the atomic flip operators Amn ≡ |m〉 〈n| a differential
equation which can be formally solved in a Dyson-like
expansion in the square of the electric dipole moment d of the
atom. The dipole operator dmnAmn induces an atomic transition
from one electronic level to another, which will necessarily be
accompanied by the emission or absorption of a body-assisted
field excitation given the form of the atom-field coupling in
Eq. (3). Hence, restricting to quadratic order in d corresponds
to considering (at most) two emission or absorption events,
which—if a surface is present—means neglecting multiple

reflections. Doing this, we find for the dynamics of the d2

approximation A(2)
mn(t) to the atomic flip operator

Ȧ(2)
mn(t) = Ȧ(0)

mn(t) − 1

i�

∑
ij

[
A(0)

mn(t), A(0)
ij (t)dij · E(1)(rA,t)

]
,

(9)

where E(1) is the free field plus that induced by an atom
described via the d0 approximation A(0)

mn(t) to the atomic flip
operator. Taking the normal-ordered vacuum expectation value
of (9) and utilizing the Heisenberg equation of motion for the
fλ(r,ω) one arrives at〈

Ȧ(2)
mn(t)

〉 = {iωmn − [Cn(t) + C∗
m(t)]}〈A(2)

mn(t)
〉
, (10)

where we have replaced A(0)
mn(t) → A(2)

mn(t) on the right-hand
side. The resulting error will be of order d4, as can be
easily seen from the coefficients Cn = ∑

k Cnk given explicitly
by [15]

Cnk = μ0

π�

∫ t

t0

dt ′
∫ ∞

0
dωω2dnk · [ImG(rA,r′

A,ω)] · dkn

× e−i(ω−ωnk )(t−t ′), (11)

where rA = rA(t) and r′
A = rA(t ′) are the current and previous

positions of the atom, respectively. Here we have used a well-
known integral relation for electromagnetic dyadic Green’s
functions [15]:∑

λ

∫
d3s Gλ(r,s,ω) · G∗

λ(s,r′,ω) = �μ0

π
ω2ImG(r,r′,ω).

(12)
Inspection of Eq. (10) shows that the real and imaginary parts
of Cn deliver respectively the rate of spontaneous decay, �n,
and the level shift �δωn with respect to the bare level En of
the state n via

�n = 2
∑
k<n

ReCnk, δωn =
∑

k

ImCnk. (13)

Having set up the model, we now present our main results,
which are the first predictions of level shifts and decay rates
for an atom moving in an arbitrary direction near a surface.
In order to produce concrete numbers for the level shifts and
decay rates, we employ a Markov approximation in which the
coefficients in Eq. (10) are presupposed to be time independent.
In other words, we assume clear separation of the three time
scales involved. First, the both the field dynamics and the
internal dynamics of the atom are assumed to happen at a much
faster pace than the atomic center-of-mass motion. Hence, the
atom’s position and velocity may be treated as instantaneous
and fixed—eliminating implicit time dependencies in the Cnk .
Second, typical time scales of the field’s dynamics—given by
its memory, i.e., autocorrelation time—are presupposed to be
very small compared to the time scales on which electronic
transitions in the atom take place. Therefore, any residual time
dependence—saturated on the scale of the field’s memory—
will not be resolved in the internal atomic dynamics. This is the
well-known coarse-graining effect the Markov approximation
relies on. Consistency with such an approximation requires
that we assume approximately uniform motion rA − r′

A ≈
v(t − t ′) ≡ vτ .
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We take advantage of translational invariance parallel to
the surface to take the Fourier transform ImG of the imaginary
part of the Green’s function appearing in Eq. (11). Similarly,
we split up the atomic velocity v and the wave vector k into
components parallel to the surface {v‖,k‖} and perpendicular
to it {v⊥,k⊥}, giving for Eq. (11)

Cnk = μ0

π�

∫ ∞

0
dτ

∫ ∞

0
dωω2

∫
d2k‖

× dnk · [ImG(k‖,zA,ω)] · dkne
−i(ω−ω′

nk )τ , (14)

where a Doppler-shifted frequency ω′
nk ≡ ωnk + k · v has

naturally arisen and we have made use of a shorthand
G(k‖,z,ω) ≡ G(k‖,z,z,ω). Finally, we have taken the limit
t0 → −∞, which is justified as long as t0 is significantly larger
than the width of the field’s memory kernel, consistent with
the Markov approximation.

Since we ultimately want to determine the shifts δωn and
rates �n given in Eq. (13) and accordingly aim to identify the
real and imaginary parts of Eq. (14), it is useful to further
simplify ImG (the Fourier transform of the imaginary part of
G) as this quantity has no obvious separation into real-valued
and imaginary components. To this end, we note that for real
dnk only the symmetric portion SG of the Fourier-transformed
Green’s tensor G contributes, which, for a half-space geometry
described by G = GHS that we use later on, is precisely the
part for which Fourier transforming and taking the imaginary
part commute: S[ImGHS] = S[ImGHS]. Now we have the
imaginary part of the Fourier transform (rather than vice
versa) which is manifestly real. Thus we now have a clear
separation of real and imaginary parts in Eq. (14), enabling us
to easily identify level shifts and rates of spontaneous decay
via Eq. (13).

Furthermore, we specialize to the nonretarded (i.e., near-
field) regime where the atom-surface distance zA is short
enough that the finite round-trip time of a reflected pho-
ton is negligible compared to atomic time scales. This
regime is defined by ωnkzA/c � 1. Under these conditions,
k⊥ ≈ (−k2

‖)1/2 and the Doppler-shifted atomic transition
frequencies become ω′

nk → ωnk + k‖ · v‖ − ik‖v⊥, where we
have made the physical choice of branch of the square root such
that evanescent waves are decaying away from the surface as
z → ∞.

Finally, let us spell out in more detail the connection
between contributions stemming from a finite atomic center-
of-mass velocity v to the internal atomic dynamics on the
one hand and quantum friction, i.e., finite-v contributions
to the Casimir-Polder force, on the other hand. An agreed-
upon feature of the various approaches to quantum friction
mentioned in the introduction is the following expression for
the Casimir-Polder force:

FCP(t) = iμ0

4π3
∇

∫ t

0
dt ′

∫
d2k‖

∫ ∞

0
dωω2e−iω(t−t ′)

×tr{Cd (t,t ′; v) · [ImG(k‖,zA,ω)]}eik‖·(rA−r′
A),

(15)

where Cd is the two-time correlator of the atomic dipole
moment,

Cd (t,t ′; v) = 〈d(t)d(t ′)〉. (16)

The Casimir-Polder force (15) experienced by an atom which
moves parallel to a macroscopic surface comprises the afore-
mentioned dynamical contributions in twofold manner: first,
explicitly via the distance rA − r′

A traveled by the atom during
emission at time t and reabsorption at time t ′ of a photon,
and second, implicitly, via the time evolution of the dipole
operator which evolves according to the entire Hamiltonian
which naturally includes the atomic center-of-mass motion
and hence v. This implicit dependence is indicated by the third
argument of the correlator Cd and corresponds exactly to the
finite-velocity contributions to the internal dynamics provided
by Eqs. (13) and (14).

There is consensus that the leading-order-in-v contributions
to the friction force acting on an atom moving parallel to the
surface stem from the explicit velocity dependence rather than
the implicit one in the correlator. Noncompatible assumptions
on the precise long-time behavior of the latter are nevertheless
believed to bring about the contradicting results for that very
leading order in relative velocity of the friction force. While
Intravaia et al., for instance, assume a power-law decay of
correlations for very large times [2], the Markovian approach
presupposes exponential decay of correlations on all time
scales [6]. This large-time behavior strongly influences the
low-frequency contributions to quantum friction, which are
the ones most sensitive to the explicit, Doppler-shift-like,
corrections in Eq. (15).

While not lending our voice to either of the contra-
dicting assumptions, we solely focus on the fact that the
Markov approach—in contrast to the generalized fluctuation-
dissipation approach—does not only render a prediction for
dynamical corrections to the static Casimir-Polder force,
but moreover predicts dynamical corrections on the level
of the internal dynamics of the atom, associated with the
implicit velocity dependence of that force. The latter can be
probed spectroscopically—which, though challenging, is less
demanding than a force measurement. Hence, the question
whether the Markov approximation is legitimate for a Casimir-
Polder setup subject to relative motion may in principle be
answered by means of spectroscopy. The remainder of this
work focuses on exactly that venture.

III. RESULTS

In order to arrive at physical predictions, we now make use
of the explicit nonretarded half-space Green’s function (see,
for example, Ref. [16])

GHS(r,r′,ω) = rp(ω)c2

8π2ω2

∫ 2π

0
dφ

∫ ∞

0
dκκ2

× eik‖·(r‖−r′
‖)e−κ(z+z′)a ⊗ a, (17)

where a = (cos φ, sin φ,i) and rp(ω) = ε(ω)−1
ε(ω)+1 is the non-

retarded limit of the Fresnel reflection coefficient for p-
polarized (transverse magnetic) radiation of frequency ω

incident upon a nonmagnetic [μ(r,ω) = 1] half-space of
permittivity ε(ω). We have written the frequency integral in
Eq. (17) in polar coordinates k‖ = (κ cos φ,κ sin φ). Defining
a weighted squared dipole moment d

2(φ)
nk ≡ dnk · [a ⊗ a] · dkn

and inserting Eq. (17) into Eq. (14) with G = GHS and making
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use of the the Heaviside step function �(x) we find

Cnk = − i

8π2ε0�

∫ ∞

0
dκκ2

∫ 2π

0
dφ

[
rp(ω′

nk)�[Re(ω′
nk)]

− 1

π

∫ ∞

0
dξ

ω′
nkrp(iξ )

ξ 2 + ω′2
nk

]
e−2κzd

2(φ)
nk , (18)

which is our main result. Its detailed derivation (see the
Appendix) proves that Eq. (18) is valid for either sign of v⊥,
as long as the component of velocity away from the interface
is not too large, as then the atom would “remember” having
emerged from inside the medium, where our model does not
apply. We also note that, in practice, the argument Re[ω′

nk]
of the step function in Eq. (18) is dominated by ωnk , because
ωnk � k‖v‖. To see this we note that the k‖ integral in Eq. (18)
is effectively cut off at ∼ 1/z. Then one can easily check that
the resulting condition ωnk � v‖/z is comfortably satisfied for
all nonrelativistic velocities and distances greater than a few
nanometers. Equation (18) contains a remarkable amount of
information—the decay rates and frequency shifts for an atom
with any velocity vector v can be obtained from it simply by
taking real and imaginary parts via Eqs. (13).

Physical insight can be gained from expanding our for-
mula (18) in a Taylor series for low atomic velocities:

C
‖res
nk � −i

32πε0�z3

[
d

(i)2
nk rp(ωnk) + 3d

(a)2
nk v2

‖
8z2

r ′′
p(ωnk)

]
, (19)

C⊥res
nk � −id

(i)2
nk

32πε0�z3

[
rp(ωnk) − 3iv⊥

2z
r ′
p(ωnk)

]
, (20)

where d
(i)2
nk =d2

nk,x + d2
nk,y + 2d2

nk,z and d
(a)2
nk =3d2

nk,x+d2
nk,y +

4d2
nk,z and the primes denote derivatives with respect to

frequency. Here we have presented only the resonant part of the
interaction since the nonresonant part is orders of magnitude
smaller, as shown more explicitly later on.

If applied to parallel motion and a plasma-model medium,
Eq. (19) exactly coincides with known results [17]. We
immediately see from Eq. (19) [via Eq. (13)] that the lowest-
order velocity-dependent corrections to the resonant level
shifts δω

‖
n and decay rates �

‖
n for parallel motion are quadratic

in the atomic velocity; in fact all odd-order terms vanish.
This is expected given that the sign of the velocity should
not matter for motion parallel to the surface, since the system
is translationally invariant along those directions. Turning our
attention to perpendicular motion, we observe from Eq. (20)
that the leading velocity-dependent corrections are linear in
the velocity. This is physically reasonable as the system is not
translationally invariant along the direction perpendicular to
the surface, so that changing the sign of the velocity in that
direction should matter. Note that the vanishing of all even
orders in velocity in the case of parallel motion is by no means
a contradiction to the fact that the friction force [Eq. (15)]
must be odd in relative velocity. As mentioned when this force
was introduced, its leading-order-in-v contribution does not
stem from the internal dynamics of the atom, i.e., the shifts
and rates we studied in this section. Instead, leading-order
dynamical contributions to the friction force rather stem from
an explicit, Doppler-shift-like v dependence attributed to the
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FIG. 2. Dependence of shifts δω and decay rates � (relative
to the respective free-space values) on possible atomic transition
frequencies of a 133Cs atom moving parallel (red) or perpendicular
(blue) to a sapphire surface. The actual 6D3/2 → 7P1/2 transition is
indicated by the vertical axis. The parameters describing the surface
and the atom are zA = 10 nm; v = ±500, ±1000 m/s, η = 2.71, ωT =
1.56 × 1014 s−1, ωP = 1.2ωT, γ = 0.02ωT, and d = 5.85 × 10−29

Cm and isotropic. We also include the static shifts and rates as dashed
lines. The vertical line marks the actual transition frequency. The inset
shows the emission-line profile for static (dashed) and moving (blue)
atoms at v⊥ = 500 m/s after averaging over 5 nm < zA < 1 μm.
For parallel motion the corrections are much smaller than for the
perpendicular one and have no visible effect on the line profile.

distance rA − r′
A traveled by the atom during emission and

reabsorption of a photon.

IV. EXPERIMENTAL RELEVANCE

As a concrete example, consider 133Cs whose far infrared
6D3/2 → 7P1/2 transition is near resonant with the 12.21-μm
phononic resonance of ordinary sapphire [18] which strongly
enhances resonant Casimir-Polder effects. We describe the
sapphire with a dominant-resonance Drude-Lorentz model,
ε(ω) = η[1 − ω2

P/(ω2 − ω2
T + iγ ω)], where ωP is the plasma

frequency, ωT is an absorption line frequency, γ is the damping
parameter, and η accounts for the small background stemming
from other atomic transitions. By means of Eq. (18) we
can now determine the velocity-dependent shifts and rates
corresponding to this 133Cs transition in front of a sapphire
surface. In Fig. 2 we plot the dependence of these shifts and
rates on the atomic transition frequency for a selection of
center-of-mass velocities. For parallel motion the dynamical
corrections are much smaller than those for perpendicular
motion. Hence, the inset in Fig. 2 depicts a spatially averaged
(5 nm < zA < 1 μm) profile of the mentioned emission line—
as, e.g., obtained by evanescent-wave spectroscopy—of atoms
moving perpendicularly towards the surface at 500 m/s.
Compared to the static profile it is slightly shifted and clearly
more peaked. An observation of the latter effect is demanding
but much more in reach than measurement of quantum friction
forces. Similar experiments have already been carried out in
order to measure the static Casimir-Polder shift [19]. In Fig. 3
we show the velocity dependence of the decay rate for a 133Cs
atom moving arbitrarily with respect to the sapphire surface.
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FIG. 3. Velocity dependence of the decay rate for parallel (thick
red line, θ = ±π/2) and perpendicular (thick blue line, θ = 0, π )
motion of a 133Cs atom in front of sapphire in units of the static decay
rate �

(0)
1 , alongside the leading-order-in-v expressions (dashed lines,

with the parallel motion asymptote being barely distinguishable from
the exact result at this scale). The thin lines between these extremal
cases are for intermediate 0 < θ < π/2 evenly spaced in steps of
π/16. All parameters chosen here are the same as in Fig. 2, and the
transition frequency is taken as ωL as indicated in Fig. 2. Inset: Detail
of low-velocity region.

The nonresonant shifts and rates are a factor of (ω2
P +

ω2
T)1/2/γ ≈ 100 smaller than the resonant shifts for any

realistic choice of parameters, meaning that we can safely
ignore them here. The known static, resonant, Casimir-Polder
shifts and rates emerge from the terms zero order in velocity
in Eqs. (19) and (20). For an atom whose dipole moment is
aligned along the positive z direction they read

δω
(0)
n,�+ = d2

z

16πε0�

η

(η + 1)

ω2
p

ωLγ

1

z3
A

, (21)

�
(0)
n,L = d2

z

4πε0�

η

(η + 1)

ω2
p

ωLγ

1

z3
A

, (22)

when evaluated at their respective maxima �+ and ωL (see
Table I) and taken at leading order in γ � ωT.

In Table I we summarize the lowest-order velocity-
dependent contributions to the level shifts and decay rates,
expressed as ratios to the static quantities (21) and (22). One

TABLE I. Leading-order contributions δωloc
n and �loc

n to resonant
level shifts and rates for an atom moving with velocity v < γ zA

next to a surface, with its dipole moment aligned along the positive
z direction. We have reported only the leading terms in γ since the
next terms will be smaller by a similar factor as the nonresonant parts,
which we have ignored here. Each quantity is evaluated at the maximal
points of the static quantities; that is, decay rates are evaluated at
ωL =

√
ηω2

P/(η + 1) + ω2
T and level shifts at �+ = ωL + γ /2.

Perpendicular motion Parallel motion

δωloc
n /δω

(0)
n,�+ ± 3v⊥

γ zA
− 3v2

‖
γ 2z2

A

�loc
n /�

(0)
n,L

3v⊥
γ zA

− 6v2
‖

γ 2z2
A

can estimate the radius of convergence of the Taylor expansion
by finding the ratios of successive orders. So from Table I one
can see that the series converge for v‖,⊥ � γ zA ≈ 1 THz ×
1 nm = 103 m/s. Typical velocities of atomic beams generated
through thermal effusion are in the range 1 × 102–1 × 103 m/s
(see, for example, Ref. [20]), meaning that even the simple
asymptotic formulas in Table I are immediately relevant to
experiment.

Finally, let us discuss our assumptions and associated er-
rors. Nonrelativistic (v/c � 1 × 10−5), nonretarded (ωTz/c �
1 × 10−3), and single-reflection (d2ω2

T/�ε0c
3 � 1 × 10−8)

approximations lead to a relative error of about 1 × 10−3,
which is not detectable for the class of experiments we compare
to here. The Born-Oppenheimer and Markov approximations
assume separation of field autocorrelation time, τF = γ −1,
internal atomic time scales, τA = �−1, and center-of-mass time
scales, τC, respectively. The significant difference between
the masses of the electron and the nucleus causes τC to
clearly separate from internal atomic as well as field time
scales (τC � τA,τF). However, the separation of the latter
(τA � τF) strongly depends on zA. The proposed experiment
may hence serve to confirm or refute the applicability of
the Markov approximation in this crossover regime. Finally,
finite temperature enhances both static and dynamic effects
by a factor n(ωA) + 1, where n(ωA) is the thermal occupation
number of the mode ωA corresponding to the atomic transition
of interest. For the aforementioned transition of 133Cs at room
temperature, n(ωA) � 0.02.

V. SUMMARY

Here we have presented spectroscopically accessible ana-
lytical predictions of the dynamical corrections to the internal
structure of an atom as it moves in an arbitrary direction
near a surface. We have obtained the general formula (18)
that gives the full set of level shifts and decay rates for an
obliquely moving, possibly excited, atom near a half-space
with results shown in Fig. 3. Our asymptotic results show
that the relevant expansion parameter for small velocities is
v/(γ zA), which is large compared to, for example, v/c or
v/(ωTzA). This, alongside the fact that the results we have
presented for perpendicular motion are linear in this parameter
(in contrast to the quadratic dependence for parallel motion),
means that these quantities are larger than previously thought,
and therefore more easily measurable. In addition to being a
velocity-dependent vacuum effect in its own right, our results
constitute a testable prediction related to the less-accessible
phenomenon of quantum friction. Our results represent a
test-bed for the applicability of the Markov approximation
in this setting. Refuting Markovianity by experiments would
rule out one of the contradicting standpoints in the quantum
friction debate.
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APPENDIX: DERIVATION OF EQ. (18)

Starting with the Heisenberg coefficients (6), substituting the nonretarded scattering Green’s function for a half-space (7), and
performing the κ integration, one arrives at

Cnk = 1

4π3�ε0

∫ T

0
dτ

∫ ∞

0
dω

∫ 2π

0
dφ d(φ)2

nk Imrp(ω)e−i(ω−ωnk )τ (2zA − vτ cos θ − ivτ sin θ cos φ)−3. (A1)

Here, without loss of generality, the coordinate system is chosen such that the y component of the atom’s velocity is zero.
Expanding the denominator of Eq. (13) in the unitless parameter s = vτ/2zA around zero and abbreviating fφ,θ = cos θ +
i sin θ cos φ yields

Cnk = 1

64π3�ε0z
3
A

∫ T

0
dτ

∫ ∞

0
dω

∫ 2π

0
dφ d(φ)2

nk Imrp(ω)e−i(ω−ωnk )τ
∞∑

j=0

(j + 2)!

j !
sjf

j

φ,θ . (A2)

Due to the oscillating nature of the integrand, the latter does not contribute to the integral for τ � ωnk . Hence, the domain where
the above series is convergent, i.e., for vωnk � 2zA, matches the domain where the integrand contributes. The powers of τ can
be rewritten as derivatives with respect to ω which, via partial integration, may be shifted onto the reflection coefficient rp(ω).
Afterwards, the τ integral can be solved, giving

Cnk = 1

64π3�ε0z
3
A

∞∑
j=0

(j + 2)!

j !

∫ ∞

0
dω

∫ 2π

0
dφ d(φ)2

nk Imr (j )
p (ω)

(
− ivfφ,θ

2zA

)j[
πδ(ω − ωnk) − iP 1

ω − ωnk

]
. (A3)

Carrying out the complex-frequency integration separates resonant (pole) and nonresonant contributions:

Cres
nk = − i

64π2�ε0z
3
A

∞∑
j=0

(j + 2)!

j !

∫ 2π

0
dφ d(φ)2

nk

(
− ivfφ,θ

2zA

)j

r (j )
p (ωnk), (A4)

Cnres
nk = i

128π3�ε0z
3
A

∞∑
j=0

(j + 2)!
∫ 2π

0
dφ d(φ)2

nk

(
ivfφ,θ

2zA

)j ∫ ∞

0
dξ

(ωnk + iξ )(j+1) + (ωnk − iξ )(j+1)

(ω2
nk + ξ 2)(j+1)

rp(iξ ). (A5)

This can be rewritten as

Cres
nk = − i �(ωnk)

8π2�ε0

∫ 2π

0
dφ

∫ ∞

0
dκκ2e−2κzA d(φ)2

nk rp(ω′
nk), (A6)

and

Cnres
nk = i

8π3�ε0

∫ 2π

0
dφ

∫ ∞

0
dκκ2e−2κzA d(φ)2

nk

∫ ∞

0
dξ

ω′
nkrp(iξ )

ω′2
nk + ξ 2

. (A7)

The above derivation demonstrates that Eq. (18) is valid for either sign of v⊥, as long as the component of velocity away from
the interface is not too large—more precisely as long as vωnk � 2zA.
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